
M. Mächler Computational Statistics SS 2016

Series 9

1. Consider again the ozone dataset. In this exercise we focus on projection pursuit regression
(PPR) and on multivariate adaptive regression splines (MARS). We are interested in com-
paring PPR models with different number of ridge functions and different smoothers, and MARS
models with different degrees of interaction. We use leave-one-out cross-validation to compare the
models (see R-Hints below).

a) Take the log of the renamed response variable O3, remove the outlier and then standardize
the predictors. Note that for PPR, the α-matrix, i.e., the matrix containing as columns the
”projection” vectors α1, ..., αq ∈ Rp, is easier to interpret when the explanatory variables are on
the same scale. You can use the following R -code:

> set.seed(123)

> data(ozone, package = "gss")

> chgNames <- function(dfr, oldNms, newNms) {

colnames(dfr)[colnames(dfr) %in% oldNms] <- newNms

dfr

}

> d.ozone <- chgNames(ozone,

oldNms = c("upo3", "wdsp", "hmdt", "sbtp"),

newNms = c("O3", "wind", "humidity", "temp"))

> d.ozone <- subset(transform(d.ozone, "logO3" = log(O3)), select = -O3)

> d.ozone.e <- d.ozone[-which.max(d.ozone[,"wind"]),]

> d.ozone.es <- d.ozone.e

> d.ozone.es[,-10] <- scale(d.ozone.e[,-10])

b) Fit the data with the MARS model with maximal interaction degree 2. In R this can be done
with the function earth() from the package of the same name. To visualize the effects of the
predictors, we first plot the main effects and then the interactions. This can be done with the
function plotmo(), first with degree2=FALSE and then with degree1=FALSE.

c) We now apply PPR to our dataset. First, fit a model with the default smoother (Friedman’s
“super smoother”) and 4 terms. For this, use the function ppr(). Then, plot the ridge functions.
Looking at the graphs, can you say that the model is good? Why?

d) The goal is now to find the best set of tuning parameters for our model (smoother, number of
terms, and degrees of freedom) using PPR. We are mainly interested in prediction accuracy and
will then use CV-error as a criterion. Use the function cv() (see R-Hints below) to compute the
CV-error for a given set of parameters. Note that the values of the parameters can be specified
directly as arguments of the function cv().

There are three different smoothers to choose from (argument sm.method). The default is supsmu,
Friedmans “super smoother”. Other possibilities are spline, which uses splines with a specified
(equivalent) degrees of freedom for each ridge function, and gcvspline, which also uses splines
but chooses the smoothness by GCV. For each of these smoothers, vary the numbers of ridge
functions (nterms) for nterms ∈ {3, 4, 5}. Aditionally, for the case sm.method="spline", vary
the degrees of freedom (df) for df ∈ {5, 6, 7}.

In all your models, you may also want to specify a value for max.terms to get better results.
Look for details in the help-file of ppr (i.e. ?ppr).

e) Fit a MARS model to the data varying the maximum interaction degree for 1, 2, and 3. You can
use the cv-function: cv(earth, degree = ?). Then, print the CV-errors of all the PPR models
and all the MARS models. Which model performs best? Optionally, you can also compare these
results with the performance of the GAM model that you used in the last series.

f) Choose the best PPR model (in terms of CV-error) and plot the ridge functions like in Section
7.5 of the lecture notes. Compare this model with the one from c).
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g) Interpret the α-matrix (see YourFit$alpha) of the model from f) (for example, what does a large
value of an element of α mean?). You can use round() to get a better overview. If you have
another model which performs nearly as well as the best but has a much nicer interpretation you
may want to prefer it to the best model.

R-Hints: The following function is a general function for cross validation. You can use it in this
exercise, but also later on for other exercises or your own projects. Therefore, it might be worth trying
to understand the functions model.frame and model.response.

> cv <- function(fitfn, formula = logO3 ~ . , data = d.ozone.es, ..., trace = TRUE)

{

modFrame <- model.frame(formula, data = data)

nc <- nrow(data)

ssr <- 0

if(trace) cat(" j = ")

for(j in 1:nc) {

if(trace) cat(if(j %% (nc %/% 10) == 1) paste(j, "") else ".")

## Fit without 'j' :

fit <- fitfn(formula=formula, data = data[-j ,], ...)

## Evaluate at 'j' :

ssr <- ssr + (model.response(modFrame)[j] - predict(fit, modFrame[j,]))^2

}

if(trace) cat("\n")

ssr

}

You can get the code of the function cv with the following command:

> source("http://stat.ethz.ch/Teaching/R/Scripts/cv-fun.R")

Remarks:

1. Scaling of the result of the cv-function with the number of observations is not necessary as long
as we are only interested in comparing the models.

2. The first argument of cv() is a function. ”...” are multiple arguments which are passed to
fitfn.

3. The default values for formula and data in cv() are specified to work with the transformed and
standardized ozone dataset d.ozone.es.

4. Example of usage:

cv.gcv.2 <- cv(ppr, sm.method="gcvspline", nterms = 2, max.terms = 5)

Preliminary discussion: Friday, May 13.

Deadline: Friday, May 20.


