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Getting the data




Introduction

In this series we look at the log-returns of the BMW stock between June 1986
and March 1990. Unfortunately we do not have the original time stamps nor the

stock price.
X; = log(P/Pi—1),
where P; is the stock price. Given Py, can reconstruct the original time series:

Py
Pt—l
P, = P,_1exp(X;).

= exp(X;)
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Load the data and try to reconstruct the price

bmwlr <- scan("http://stat.ethz.ch/Teaching/Datasets/bmw.dat")

## extract original price: we need a sequence P t which is of length n+l1 and
## with index starting at 0:

n <- length(bmwlr)
P ts <- numeric(n + 1)
P ts[1l] <-1
for (1 in 2:(n + 1)) {
P ts[i] <- P _ts[i - 1] * exp(bmwlr[i - 1])
}
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First look at the data
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First look at the data

Any idea what happened then??
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Critical thinking

Do you see any problem with the data? Is it possible to have such log-returns?
the maximum observed value is 11.7, which would mean that

P, = 122900 = P,_; !! do you think we observe such things in reality? the data are
actually , hot . You can do two things:

lgnore this problem and just treat them as log-returns. It's not realistic but
who cares?

+ Try to reconstruct some plausible log-returns from the data (optional).

8/29




Reconstructed log-returns

if the data are returns, then given Py we can easily reconstruct the series as
P, = P, + x,. Let us assume that Py, = 50 which seems like a reasonable value.

n <- length(bmwlr)
P ts <- numeric(n + 1)
P ts[1] <- 50
for (i in 2:(n + 1)) {
P ts[i] <- P_ts[i - 1] + bmwlr[i - 1]
}
log ret <- log(P ts[-1]/P ts[-(n + 1)])
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Reconstructed log-returns

original time series of returns
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Lessons

Always check the validity of your data. Ask yourself this type of questions:

- Is the range of data plausible?
+ Should some of the data always be positive/negative?
+ How are missing values encoded (often something like -999 or other monster)

+Any other feature that you can think of given the data at hand. Never take the
data as simple x and y without a meaning!
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Modelling the data




ARCH and GARCH

We want a model which explains that the variance is not constant in time. A
typical choice is a ARCH model:

X; = or¢;, where E(e;) = 0, Var(e;) = 1,
6[2 = Z/(X;_l).

v is called the volatility-function and is often modelled parametrically, however in

this series we try to do it non-parametrically. In a GARCH model the variance is
also autocorrelated as:

61‘2 — U(Xl‘—l 9 Gtz_l )
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Non-parametric ARCH

Here we want to model v non-parametrically. We restrict ourselves to a ARCH
model because a GARCH model requires an iterative procedure where the
unobserved o; process has to be estimated. Notice that we can rewrite the

model as follows:
Y, =X? =v(X—1) +1n:, wheren, = v(X—1)(€? —1).

Because E(1;) = 0 we can try to estimate v by regressing Y, on X, using our
favorite estimator.

Remark: You can try to show that E(5,) = 0 in task e), but only if you feel like it.
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Second look at the data to fit

Let's construct the data for the regression and see what we are trying to do:

X <- bmwlr[-length(bmwlr)] # last value of xt cannot be used for x
y <- bmwlr[-1]"2 # first value of xt cannot be used for y

Data to fit

0.00 0.05 010 0.15

-0.2 0.0 0.2 0.4
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Implied volatility

The volatility is different at every time step so we can't estimate it directly. But
we can try to estimate the implied volatility by using a running window.

l <- 5 #window size = 2*1+1
implied vol <- numeric(n - 2 * 1)
vol indices <- (1 + 1):(n - 1)
for (i in vol indices) ({
local indices <- (i - 1):(i + 1)
implied vol[i - 1] <- sd(bmwlr[local indices])

}

Remark: with a time window like this we assume that the volatility is in
time, but with our ARCH model we do not capture that (no dependence of ¢, on

O1—1)
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Implied volatility (2)
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Implied volatility (3)
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The exercise




Task a)

Remember: zero correlation does not imply independence!
For example with our data, Cov(X;,X;—1) = 0, but Cov(X?,X? ) # 0!

Task: Check this by using the function acf () which compute and plot the
autocorrelation of a time series at all possible lags.
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ACF

The ACF is the autocorrelation function of a random variable. It computes the
autocorrelation between times separated by a given lag. At lag zero the

autocorrelation is always 1 (correlation of X with itself). Let's say we generate the
following data:

## white noise = no autocorrelation
eps <- rnorm(1000)

## AR(1) process: y t = alpha * y t-1 + eps_t
y ar <- arima.sim(list(ar = 0.9), 1000)
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ACF: white noise
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ACF: autocorrelated noise
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Task b)

Estimate the volatility function v by fitting the data (X;, Y;). For the sake of the

exercise we try different smoothers that you learned in class: local polynomial
(with loess), smoothing splines(with smooth.spline) and Nadaraya-Watson

(with ksmooth).

Remark: In principle you should choose the smoothness parameter with cross-
validation or other objective criterion. For the moment just try to explore and

play with it.

R-tips: Each function has its own peculiarities, which is something you have to
get used to. Read the documentation (type ?£oo) and try to understand. For
generic methods related to a kind of object you can find the help by doing 2
method.object, for example ?predict.loess.
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Interpretation

Try be critical: what we are trying to do in the present exercise is a bit
adventurous... Ask yourself if the function that you estimate makes sense. Plot

the resulting estimated stochastic volatility as a function of X,_; and as a function
of time.

What about the residuals?
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Interpretation (2)

You should obtain something like that:

Estimated volatility function
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Interpretation (3)

Some questions you could ask yourself:

- |Is the amount of smoothness reasonable?
+Is the estimated function meaningful (think of the application)?

-+ Can linterpret some of its most striking features (general shape, symmetry,
etc)?

+ How could I improve the model?
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Task c)

Here the goal is to use yet another smoothing function on the same data. The
most interesting is to try lokerns which compute a locally adaptive bandwidth.

The idea is that you can use a small bandwidth in area of high density and fall
back on a larger bandwidth when the data are sparse.

In practice things are not that easy. Non-parametric regression is always a tricky

business: be critical with the results you obtain with any kind of automated
method.
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Take home message

- Be critical of the data you are given.
- Be critical of the model you choose for the data.
+ Be critical of the estimates you get out of your procedure.

- Have fun!
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