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Getting the data



Introduction

In this series we look at the log-returns of the BMW stock between June 1986
and March 1990. Unfortunately we do not have the original time stamps nor the
stock price.

where  is the stock price. Given , can reconstruct the original time series:
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Load the data and try to reconstruct the price

bmwlr <- scan("http://stat.ethz.ch/Teaching/Datasets/bmw.dat") 
## extract original price: we need a sequence P_t which is of length n+1 and 
## with index starting at 0: 
n <- length(bmwlr) 
P_ts <- numeric(n + 1) 
P_ts[1] <- 1 
for (i in 2:(n + 1)) { 
    P_ts[i] <- P_ts[i - 1] * exp(bmwlr[i - 1]) 
}
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First look at the data
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First look at the data

Any idea what happened then??
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Critical thinking

Do you see any problem with the data? Is it possible to have such log-returns?
the maximum observed value is 11.7, which would mean that 

!! do you think we observe such things in reality? the data are
actually , not . You can do two things:

Ignore this problem and just treat them as log-returns. It's not realistic but
who cares?

Try to reconstruct some plausible log-returns from the data (optional).

·

·
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Reconstructed log-returns

if the data are returns, then given  we can easily reconstruct the series as 
. Let us assume that  which seems like a reasonable value.

n <- length(bmwlr) 
P_ts <- numeric(n + 1) 
P_ts[1] <- 50 
for (i in 2:(n + 1)) { 
    P_ts[i] <- P_ts[i - 1] + bmwlr[i - 1] 
} 
log_ret <- log(P_ts[-1]/P_ts[-(n + 1)])
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Reconstructed log-returns
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Lessons

Always check the validity of your data. Ask yourself this type of questions:

Is the range of data plausible?

Should some of the data always be positive/negative?

How are missing values encoded (often something like -999 or other monster)

Any other feature that you can think of given the data at hand. Never take the

data as simple  and  without a meaning!
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Modelling the data



ARCH and GARCH

We want a model which explains that the variance is not constant in time. A

typical choice is a ARCH model:

 is called the volatility-function and is often modelled parametrically, however in

this series we try to do it non-parametrically. In a GARCH model the variance is

also autocorrelated as:
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Non-parametric ARCH

Here we want to model  non-parametrically. We restrict ourselves to a ARCH

model because a GARCH model requires an iterative procedure where the

unobserved  process has to be estimated. Notice that we can rewrite the

model as follows:

Because  we can try to estimate  by regressing  on  using our

favorite estimator.

Remark: You can try to show that  in task e), but only if you feel like it.
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Second look at the data to fit

Let's construct the data for the regression and see what we are trying to do:

x <- bmwlr[-length(bmwlr)]  # last value of xt cannot be used for x 
y <- bmwlr[-1]^2  # first value of xt cannot be used for y
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Implied volatility

The volatility is different at every time step so we can't estimate it directly. But

we can try to estimate the implied volatility by using a running window.

Remark: with a time window like this we assume that the volatility is  in

time, but with our ARCH model we do not capture that (no dependence of  on 

)

l <- 5  #window size = 2*l+1 
implied_vol <- numeric(n - 2 * l) 
vol_indices <- (l + 1):(n - l) 
for (i in vol_indices) { 
    local_indices <- (i - l):(i + l) 
    implied_vol[i - l] <- sd(bmwlr[local_indices]) 
}
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Implied volatility (2)
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Implied volatility (3)
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The exercise



Task a)

Remember: zero correlation does not imply independence!

For example with our data, , but !

Task: Check this by using the function acf() which compute and plot the
autocorrelation of a time series at all possible lags.
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ACF

The ACF is the autocorrelation function of a random variable. It computes the
autocorrelation between times separated by a given lag. At lag zero the
autocorrelation is always 1 (correlation of  with itself). Let's say we generate the
following data:

## white noise = no autocorrelation 
eps <- rnorm(1000) 
 
## AR(1) process: y_t = alpha * y_t-1 + eps_t 
y_ar <- arima.sim(list(ar = 0.9), 1000)
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ACF: white noise
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ACF: autocorrelated noise
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Task b)

Estimate the volatility function  by fitting the data . For the sake of the
exercise we try different smoothers that you learned in class: local polynomial
(with loess), smoothing splines(with smooth.spline) and Nadaraya-Watson
(with ksmooth).

Remark: In principle you should choose the smoothness parameter with cross-
validation or other objective criterion. For the moment just try to explore and
play with it.

R-tips: Each function has its own peculiarities, which is something you have to
get used to. Read the documentation (type ?foo) and try to understand. For
generic methods related to a kind of object you can find the help by doing ?
method.object, for example ?predict.loess.
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Interpretation

Try be critical: what we are trying to do in the present exercise is a bit
adventurous… Ask yourself if the function that you estimate makes sense. Plot
the resulting estimated stochastic volatility as a function of  and as a function
of time.

What about the residuals?
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Interpretation (2)

You should obtain something like that:
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Interpretation (3)

Some questions you could ask yourself:

Is the amount of smoothness reasonable?

Is the estimated function meaningful (think of the application)?

Can I interpret some of its most striking features (general shape, symmetry,

etc)?

How could I improve the model?

·

·

·
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Task c)

Here the goal is to use yet another smoothing function on the same data. The

most interesting is to try lokerns which compute a locally adaptive bandwidth.

The idea is that you can use a small bandwidth in area of high density and fall

back on a larger bandwidth when the data are sparse.

In practice things are not that easy. Non-parametric regression is always a tricky

business: be critical with the results you obtain with any kind of automated

method.
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Take home message

Be critical of the data you are given.

Be critical of the model you choose for the data.

Be critical of the estimates you get out of your procedure.

Have fun!
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