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1. The dataset bmw is a time series of log returns of the BMW stock (business-daily, between June 1986
and March 1990). The log return is defined as follows:

Xt = log

(
Pt

Pt−1

)
,

where Pt is the stock price at time t. Log returns can be modelled by

Xt = σtεt, where E [εt] = 0,Var (εt) = 1, (1)

εt independent of {Xs; s < t}, σ2
t = v(Xt−1), where v : R 7→ R+ is the so-called “volatility function”.

Thus, Xt depends on {Xs; s < t} only through Xt−1 (Markov-property).

The model can be fitted by nonparametric regression of the function v in

Yt = X2
t = v(Xt−1) + ηt, where ηt = σ2

t (ε2t − 1)

is treated as error term. In task e) you will prove that E [ηt] = 0.
Note: Other usual model assumptions on errors, such as independence, are not fulfilled by ηt, but
with some effort (don’t try!) it can be shown that v can be optimally estimated by the same estimation
methods as if the ηt were independent errors.

a) Model (1) is often chosen for this kind of data because it leads to observations that are not
autocorrelated1, but dependent. Dependency can be verified by showing that under the model,
Cov

(
X2

t , X
2
t−h

)
6= 0, h > 0 (complicated). Plot and interpret the autocorrelation functions of

Xt and X2
t for the BMW-dataset.

The data can be read into R by

> bmwlr <- scan("http://stat.ethz.ch/Teaching/Datasets/bmw.dat")

bmwlr should be a vector of 1000 observations.
R-hint: Function acf. For example, “autocorrelation of lag 1” (in the plot, with 1000 observa-
tions, indicated as lag 1 out of 999) means correlation between Xt and Xt−1. The plot shows
also an acceptance region (at 5%-significance level) for testing the null hypothesis of uncorrelated
observations.

b) Fit the data using the nonparametric regression methods Nadaraya-Watson, local polynomial and
smoothing splines for the regression function v.
Comment on the results and compare the fits obtained using the mentioned nonparametric es-
timators. Look at the estimated volatility function as a function of Xt and at the estimated
implied volatility as a function of time.
R-hint: Use loess for local polynomial, smooth.spline for smoothing splines and ksmooth for
Nadaraya-Watson kernel regression.
The methods have no consistent way to choose the degree of smoothness, but you will learn soon
how to do it with cross-validation. For the present series we give you the parameters to use. For
loess the smoothness is defined by the parameter span, which indicates the fraction of data to
include in support of the kernel (expressed as a number between 0 and 1). For the exercise you
can use the default value of 0.75, but try to play with it and see how it influences the results.
For smooth.spline you can define the smoothness in terms of equivalent degrees of freedom
(edf), which can be computed as the trace of the hat matrix (see lecture notes for more details).
Again you can play with different values, but for the sake of comparison you can use the same
edf as in loess, which can be recovered from the output as fit$trace.hat.
For ksmooth the smoothness is defined in term of the bandwidth. Try to play different values
and see how it influences the result. To ensure that you have the same smoothness as for the
other method, you need to numerically search for the bandwidth value that results in the same
edf. To save you this trouble, here is the answer: use h=3.54.
Remark: ksmooth internally reorder its x input in increasing order, so you will lose the time
ordering. To recover it, you have to do the following:

1“Autocorrelated” refers to correlation over time, i.e., correlation between Xt and Xt−h, h > 0.



2

ox <- order(x)

fit <- ksmooth(x,y,...)

fit$x <- fit$x[order(ox)]

fit$y <- fit$y[order(ox)]

Check model assumptions, but don’t spend too much time on this since the structure of the data
is pretty unclear. Note that for computing residuals it is necessary to know the fitted values
at the data points. For ksmooth they are provided via argument x.points and for loess and
smooth.spline via fitted().

c) Fit the data using the functions glkerns (kernel regression with global optimal bandwidth) and
lokerns (kernel regression with local optimal bandwidth) of the R package lokern. Compare
the fits. Plot the local bandwidths from lokerns and compare them to the global bandwidth of
the function glkerns. How does the local bandwith relate to the density of the data?

Remark: It is not so easy to control how the function optimizes the bandwidth internally
and can easily lead to misleading results. In the present case be careful to pass the argument
is.rand=FALSE to specifiy that the design is fixed and hetero=FALSE. Even though the errors
are heteroscedastic, this would have to be modelled explicitely and cannot be done automatically
by the function.

d) (optional) Compute E [Xt|Xt−1, Xt−2, . . .], Var (Xt|Xt−1, Xt−2, . . .), Cov (Xt, Xt−h) , h > 0.

Background about conditional expectations:
For two (possibly multi-dimensional) random variables X and Y , the conditional distribution
PY |X=x can be uniquely defined for P−almost all values of X. Define h(x) = E [Y |X = x]
as the expectation of Y under the conditional distribution PY |X=x. For the random variable
X, h(X) = E [Y |X] is a random variable. Here is a very useful equation (the so-called tower
property), which will be needed for parts a and b:

E [Y ] = E [E [Y |X]] , (2)

the outer expectation taken over the distribution of X. Conditional variances and covariances
are defined analogously.

e) (optional) Show E [ηt] = 0.

Preliminary discussion: Friday, April 08.

Deadline: Friday, April 15.


