
M. Mächler Computational Statistics SS 2016

Series 2

1. In a study on the contribution of air pollution to mortality, General Motors collected data from 60
US Standard Metropolitan Statistical Areas (SMSAs). The dependent variable is the age adjusted
mortality. The data includes variables measuring demographic characteristics of the cities, variables
measuring climate characteristics and variables recording the pollution potential.

Mortality Age Adjusted mortality
JanTemp Mean January temperature (degrees Fahrenheit)
JulyTemp Mean July temperature (degrees Fahrenheit)
RelHum Relative Humidity
Rain Annual rainfall (inches)
Educ Median education
Dens Population density
NonWhite Percentage of non whites
WhiteCollar Percentage of white collar workers
Pop Population
House Average population per household
Income Median income
HC Hydrocarbon pollution potential
NOx Nitrous Oxide pollution potential
SO2 Sulfur Dioxide pollution potential

Try to find a good linear model that represents the data. Therefore, take the following steps:

1. Inspect the data using scatterplots of the response Mortality versus the predictors and produce
diagnostic plots such as, for instance, residual plots. Which (if any) of these plots are useful in
order to assess the validity of a model? Why? Should we perform any transformation?

Remark: It is good practice to log-transform data that are very right-skewed even though none of the
model assumptions are violated. This and other techniques had been developed by Tukey and are
known as “first aid” transformations. The reasons behind these transformations are a little bit elabo-
rated and involve the diagonal entries of the matrix P of the subsection “Geometrical Interpretation”
of the script as well as the “Residual vs Leverage” plot produced by the R-function “lm”.

2. Perform the transformations suggested in the R-hints. Now, perform a stepwise variable selection.
Do forward selection and backward elimination lead to the same model? Which variables have
a significant influence on the Mortality-level and in which direction? Compare these results to
an all-subsets regression using Mallows-Cp.

R-hints:

> ## Reading the dataset

> url <- "http://stat.ethz.ch/Teaching/Datasets/mortality.csv"

> mortality <- read.csv(url,header = TRUE)

> mortality <- mortality[,-1]

> ##Create pairs plot using the splom() function of the ``lattice" package

> library(lattice)

> splom(~mortality,pscales=0,cex=0.5)

> ## Note that the plots of the response Mortality versus the predictors

> ## are shown in the last row.
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> ## Transform the data

> mortality_old <- mortality ## It is always a good idea to keep the original data.

> mortality[,"logPop"] <- log(mortality[,"Pop"])

> mortality[,"logHC"] <- log(mortality[,"HC"])

> mortality[,"logNOx"] <- log(mortality[,"NOx"])

> mortality[,"logSO2"] <- log(mortality[,"SO2"])

> col_num <- which(names(mortality) %in% c("Pop","HC","NOx","SO2"))

> mortality <- mortality[,-col_num]

> ## Fit the full model

> mortal.full <- lm(Mortality ~. , data=mortality)

> ## Fit the empty model. This is not very useful in itself, but is required

> ## as a starting model for stepwise forward variable selection

> mortal.empty <- lm(Mortality ~ 1, data = mortality)

> ## Backward elimination, starting from the full model

> mortal.bw <- step(mortal.full, direction = "backward")

> ## Forward selection, starting from the empty model

> mortal.fw <- step(mortal.empty, direction = "forward",

scope = list(upper=mortal.full,lower=mortal.empty))

> ## Loading the package for all-subsets regression

> library(leaps)

## All subsets model choice, compare to the stepwise methods

mortal.alls <- regsubsets(...)

## Load function to produce a nice figure of C_p versus p

source("ftp://stat.ethz.ch/Teaching/maechler/CompStat/cp-plot.R")

p.regsubsets(mortal.alls)

2. a) The artificial dataset shown in Figure 1 is generated from a mixture of two normal distributions
(see part b)). Imagine you wouldn’t know anything about the distribution and you’d want to
estimate the density by use of a kernel density estimator with Gaussian kernel. Guess a good
bandwidth.
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Figure 1: Artificial data from mixture of normal distributions
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b) Carry out a simulation with R to evaluate the quality of bandwidths for kernel density estimation
for a mixture of normal distributions where a point is generated by a N (0, 0.01)-distribution with
probability 0.2 and by a N (2, 1)-distribution with probability 0.8. Repeat the following code 200
times for multiple bandwidth values: h = 2k where k ∈ {−5,−4.8, . . . , 1} as well as for a plug-in
estimate of the optimal bandwidth (see below):

R-hints:

> ## You can create a list for the bandwidth values using the following command:

> bandwidths <- c(as.list(2^seq(-5,1,0.2)),"sj")

> ## Elements of a list can be accessed by using double square brackets.

> bandwidths[[5]]

1. Generate a dataset of 100 points from the mixture distribution from above:

> set.seed(1)

> data <- numeric(100)

> for(i in 1:100){

p <- runif(1, min = 0, max = 1)

if (p < 0.2)

data[i] <- rnorm(1, mean = 0, sd = sqrt(0.01))

else

data[i] <- rnorm(1, mean = 2, sd = 1)

}

2. Compute the kernel density estimator with the function density. Consult help(density) to
understand the syntax.

> ke <- density(data, bw = 0.1, n = 61, from = -1, to = 5)

An estimated plug-in bandwidth is obtained by using bw ="sj".

3. In the lecture, we saw that the goodness of a kernel estimate can be measured using the
integrated mean squared error (IMSE). In practice, the IMSE can be approximated by sum-
ming the squared difference between the kernel estimator and the true density values (up to
a constant factor).

> ## Compute the true density at the given datapoints

> dmix <- 0.2 * dnorm(ke$x, mean = 0, sd = sqrt(0.01)) +

0.8 * dnorm(ke$x, mean = 2, sd = 1)

> ## Take the mean of the squared differences

> quality <- mean((ke$y - dmix)^2)

Note that the commands given above are suitable for a single execution, but not necessarily for
the full simulation. For example, you will need a vector of the qualities of all simulation runs. You
may define a matrix for the qualities to store the results for all different bandwidths. Consider
help(matrix), help(apply).

Compute and compare the averaged quality of the kernel estimators for the different bandwidths.

c) (Optional) Repeat the whole project with the Epanechnikov kernel, which can be obtained by
specifying kernel="epanechnikov" in density.

d) Did you guess a good bandwidth?

Preliminary discussion: Friday, March 11.

Deadline: Friday, March 18.


