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1. a) Consider the linear regression model

yi = µ+

p∑
j=1

βjxij + εi, i = 1, ..., n. (1)

Define β := (β1, ..., βp)T and the generalized residuals as

ri(β) := yi − µ−
p∑

j=1

βj · xij , i = 1, ..., n. (2)

Show that taking µ = ȳ −
∑p

j=1 βj x̄.j the generalized residuals can be written as

ri(β) = yi − ȳ −
p∑

j=1

βj(xij − x̄.j), i = 1, ..., n, (3)

where x̄.j = 1
n

∑n
i=1 xij . Note that in equations (2) and (3), β1, ..., βp are the same. Hence by

centering the response and predictor variables it is always possible to get rid of the intercept µ in
equation (1) to estimate β1, ..., βp. Moreover, having equal generalized residuals implies having
the same value of the Residual Sum of Squares, and therefore the Least Squares estimation of
β1, ..., βp are the same in both the model with an intercept and in the model without it.

b) (Optional) Show that the ridge-regression solution defined as

β̃
∗
(s) = arg min

‖β‖2≤s
‖Y −Xβ‖2

is given by

β̂
∗
(λ) = (XᵀX + λI)−1XᵀY.

where λ is a suitably chosen Lagrange-multiplicator. Therefore the ridge estimator is still linearly
depending on the response Y. Note that for λ large enough the ridge solution exists even if XᵀX
does not have full rank or if it is computationally close to singular. Therefore ridge regression is
practicable also if n� p.
Hint: Use the method of Lagrange multipliers with one-sided inequality constraint from convex
optimization.

In sub-tasks c) and d) we will use bold lower case letters to denote vectors and upper case letters to
denote matrices.

c) Let n ≥ p. The ridge traces β̂
∗
(λ) can be determined computationally easily by using the singular

value decomposition of the data matrix X = UDV ᵀ, where U(n×p) and V (p×p) are orthogonal
and D is diagonal. Use the result of b) to show that:

β̂
∗
(λ) = V (D2 + λI)−1DUᵀy.

d) Show that the ridge regression fit is just a linear combination of shrinked response-components
yi with respect to the orthogonal basis defined by U . More explicitly show that:

ŷridge(λ) =

p∑
j=1

d2j
d2j + λ

ujuj
ᵀy,

where dj , j = 1, ..., p, are the diagonal elements of D and ui, i = 1, ..., p, are the columns of U . In
fact one can show that the directions defined by uj are the so called principal components of the
dataset X. The smaller the corresponding dj-value, the smaller the data variance in direction uj.
For directions with small data variance, the gradient estimation for the minimization problem is
difficult, therefore ridge regression shrinks the corresponding coefficients the most.
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e) Ridge regression can also be motivated by Bayesian theory. We assume that

Y|β ∼ N (Xβ, σ2I) and β ∼ N (0, τI).

Show that the ridge estimator β̂∗(λ) is the maximum a posteriori estimator (MAP) and deduce
that it corresponds to the mean of the posterior distribution. What is the relationship between
λ, τ and σ2?

2. In this task we revisit the ozone dataset that you have already encountered several times. You may
get the data as indicated in Series 8. The aim here is to get acquainted with penalized regresssion
methods, i.e. ridge regression, the lasso and elastic net, in R .

a) Load the data, apply a log transformation on the response upo3 and remove the outlier (obser-
vation number 92) as done in Series 8.

b) Generate a R -formula and the according design matrix for a cubic penalized regression model
that accounts for all 3-way interactions.
R-Hints:
Use the wrapFormula function of the sfsmisc package to set up formula and model.matrix to
get the design matrix.

require(sfsmisc)

ff <- wrapFormula(logupo3 ~ ., data=?, wrapString="poly(*,degree=?)")

ff <- update(ff, logupo3 ~ ?)

mm <- model.matrix(?, data=?)

c) Fit a cubic penalized regression model that accounts for all 3-way interactions to the data. Use
ridge and lasso regression for the regularization problem. Plot the ridge and lasso traces. How
do they differ?
R-Hints:
To perform penalized regression via ridging and lasso use the glmnet function in the package of
the same name.

require(glmnet)

ridge <- glmnet(mm, ?, alpha=?)

lasso <- glmnet(mm, ?, alpha=?)

plot(?, xvar="lambda")

d) Select an optimal tuning parameter λ with an elastic net penalty α = 0.5 via 10-fold cross
validation. Find an optimal λ according to the ”1-std error rule” from a plot that shows the mean
squared error as a function of log(λ).
R-Hints:
To perform cross validation for the elastic net use the cv.glmnet function

set.seed(1)

cv.eln <- cv.glmnet(?,?,alpha=?, nfolds=?)

plot(cv.eln)

e) Compare your results from d) with findings from Series 8. Which model is more suited for
prediction: the gam (Series 8) or the elastic net model?
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