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1. The following table contains some functions which can be linearized by a suitable transformation.
Complete the table by inserting the needed transformations of x and y, and the resulting linear forms.

Function Transformation Linear form
y = αxβ y′ = log(y), x′ = log(x) y′ = log(α) + β · x′
y = αeβ·x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
y = α+ β · log(x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
y = x/(α · x− β) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

y = eα+βx

1+eα+β·x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

y = αeβ/x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
y = 1/(α+ βe−x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2. The behaviour of the least squares estimator can be investigated by a small simulation study. Here
are the R-commands for linear regression:

> ## simple linear regression

> set.seed(21) # initializes the random number generator

> x <- seq(1,40,1) # generates equidistant x-values

> y <- 2*x+1+5*rnorm(length(x)) # y-values=linear function(x) + error

> reg <- lm(y~x) # fit of the linear regression

> summary(reg) # output of selected results

> plot(x,y) # scatter plot

> abline(reg) # draws regression line

and as outlook to Chapter 3 nonparametric regression:

> ## modern smoothing

> fit <- loess(y~x) # ``smoothed fit'' (to be introduced later)

> lines(predict(fit),lty=2) # draws fitted curve

> txt <- c("Regression","Smooth") # vector of strings for comment

> legend("topleft",txt,lty=1:2) # adds comment to plot

a) Write a sequence of R-commands which randomly generates 100 times a vector of y-values accord-
ing to the above model with the given x-values and generates a vector of slopes of the regression
lines.
R-hint: help(for).

b) Draw a histogram of the 100 estimated slopes and add the normal density of the theoretically
true distribution of the slopes to the histogram.
R-hints: Because of part d), you should use par(mfrow=c(1,2)). The histogram must be drawn
with parameter freq=FALSE, so that the y-axis is suitably scaled for drawing the density. The
density can be added by something like

lines(seq(1.8,2.3,by=0.01),dnorm(seq(1.8,2.3,by=0.01),mean=?,sd=?)),

where you have to find the correct values for mean and sd. To compute the inverse of a matrix
use solve().

c) Compute the mean and empirical standard deviation of the estimated slopes.

d) Repeat the simulation with a skew, non-normal error distribution. That is, replace the second
line by

y <- 2*x+1+5*(1-rchisq(length(x), df=1))/sqrt(2)

# You may try hist(5*(1-rchisq(40, df=1))/sqrt(2))

# to explore the error distribution
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Repeat part b) using the new slopes. Add the same normal density, which is only an asymptotic
approximation to the true distribution in this setup. Why does the normal approximation fit
well? Note that the random variable (1− χ2)/

√
2 has expectation 0 and variance 1.

3. The dataset airline contains the monthly number of flight passengers in the USA in the years
1949-1960.

a) Plot the data against time and verbally describe what you observe.

b) Compute the logarithms of the data and plot them against time. Comment on the differences.

c) Define a linear model of the form

log(yt) =

p∑
j=1

θjfj(t) + εt

by choosing f1(t) = t (linear trend in time) and by defining f2, . . . , f13 as indicator functions of
the months, e.g.

f2(t) =

{
1 if t corresponds to a January month
0 otherwise.

Remark: It is not necessary to specify an intercept parameter. Why ? (optional)

d) Fit the model specified in c) and plot the fitted values and residuals against time. Do you think
that the model assumptions hold?

R-hints: read data:
airline <- scan("http://stat.ethz.ch/Teaching/Datasets/airline.dat")

If this is not possible at home, save the data locally and read it by:
airline <- scan("filename")

Use plot(airline,...) for a) and consider the parameter type="l" of plot for the plots. Regression
fit by

reg <- lm(log(airline) ~ f1+...+fp-1)

fj must be a vector of length 144 containing the values of fj(t). The inclusion of -1 in the lm-
command prevents the fit of an intercept parameter (which would be done by default otherwise). f2

can be generated by rep(c(1,rep(0,11)),12). The construction of the other terms fj is similar.
The commands fitted(reg) and resid(reg) extract fitted values and residuals from an lm-object.

Preliminary discussion: Friday, March 04.

Deadline: Friday, March 11.


