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Motivation

Linear regression model: let X ∈ Rn×p, β ∈ Rp, where n is the
number of observations, p the number of predictors, and
ε ∼ N (0, 1n×n)

y = Xβ + ε.

I The goal of a regression analysis is a good fit and an
interpretable model.

I Forward/Backward selection, Cp-Mallows, AIC, BIC, etc.

I New idea: restrict the number of non-zero variables.

The optimization problem then looks like for some s ≤ p

minimize ‖y − Xβ‖2
2, subject to ‖β‖0 =

p∑
j=1

1{βj 6=0} ≤ s

BUT: This optimization problem is not convex!!!



Lasso

Solution: Take the ‖ · ‖1 - norm as a convex surrogate of the
‖ · ‖0-“norm”. The optimization problem can then be formulated
for some t > 0 as

minimize ‖y − Xβ‖2
2, subject to ‖β‖1 =

p∑
j=1

|βj | ≤ t.

Formulate this minimization problem as an unconstrained problem
by introducing a Lagrange multiplier λ > 0. The Lasso estimator is
then given by

β̂ = arg min
β
‖y − Xβ‖2

2 + λ‖β‖1.



Lasso
Why does the Lasso set some variables to 0? To see this consider
the case p = 2, n > p, and remember that

β̂LS = (XTX )−1XT y .

We then have (blackboard) that

‖y − Xβ‖2
2 = yT y + (β − β̂LS)TXTX (β − β̂LS)− β̂LSX

TX β̂LS.

The solid blue region corresponds to |β1|+ |β2| ≤ s. From Hastie
et al., “The Elements of Statistical Learning”, Springer:



Ridge regression
Another possibility that doesn’t have the same effect is to penalize
by the ‖ · ‖2 of the predictors.

β̂ridge = arg min
β

1

2
‖y − Xβ‖2

2 + λ‖β‖2
2

Advantage: analytic solution.
Disadvantage: no variable selection, just shrinkage, see exercise 1
of series 11. From Hastie et al., “The Elements of Statistical
Learning”, Springer:



Elastic net

If p > n the lasso selects at most n variables. Also if there is a
group of highly correlated predictors, then the lasso tends to select
only one variable from a group and ignore the others.
To overcome these limitations the idea is to combine ridge
regression and lasso. For λ1, λ2 > 0 the elastic net estimator is
defined as

β̂EN = arg min
β

{
‖y − Xβ‖2

2 + λ2‖β‖2
2 + λ1‖β‖1

}
.



Bayesian interpretation of the lasso
This example is taken from the lecture notes “Mathematical
Statistics” written by Sara van de Geer. Consider the model

Xi = θi + εi , i = 1, . . . , n, εi
i.i.d.∼ N (0, 1).

We then have Xi ∼ N (θi , 1) and the Xi are independent. The n
parameters θi are all unknown. Define the estimator

θ̂ = arg min
ϑ

n∑
i=1

(Xi − ϑi )2 + 2λ
n∑

i=1

|ϑi |,

where λ > 0 is a regularization parameter. The estimator is then
given by

θ̂i =


Xi − λ, if Xi > λ,

0, if |Xi | ≤ λ,
Xi + λ, if Xi < −λ.

Suppose that θ1, . . . , θn
i.i.d.∼ w(z) = 1

τ
√

2
exp

[
−
√

2|z|
τ

]
, where

w(z) is the density of the double-exponential distribution for
z ∈ R.



Bayesian interpretation of the lasso

To compute the posterior distribution w(ϑ|X1, . . . ,Xn).

w(ϑ|X1, . . . ,Xn) =
w(ϑ,X1, . . . ,Xn)

w(X1, . . . ,Xn)
=

w(ϑ,X1, . . . ,Xn)

w(X1, . . . ,Xn)

w(ϑ)

w(ϑ)

∝ w(X1, . . . ,Xn|ϑ)w(ϑ)

= (2π)−n/2 exp

[
−
∑n

i=1(Xi − ϑi )2

2

]
× (2πτ)−n/2 exp

[
−
√

2
∑n

i=1 |ϑi |
τ

]

Thus, we see that θ̂ with regularization parameter λ = 2
√

2/τ is
the maximum a posteriori estimator.



Matrix completion via nuclear norm penalization

e.g. Netflix, Spotify, etc.

aaaaaa
Users

Films Titanic Goldfinger The Da Vinci Code Ocean’s 13

Alice 1 NA 3.5 5

Bob NA 1.4 NA NA

Anna 1 NA 3.4 4.7

John NA NA NA 2.8

I The matrix contains (possibly noisy) ratings and many
missing entries (NA = not available). How can we fill in the
gaps/predict the missing entries?

I We assume that the (noisy) observations are drawn randomly
from the set of entries.

I Since the ratings/tastes are similar the matrix is assumed to
have a low rank.



Matrix completion via nuclear norm penalization

We could penalize by the rank of the matrix but as in the
regression case this quantity is not convex. Therefore, we use the
nuclear norm as its convex surrogate:

‖B‖nuclear =

q∑
k=1

σk ,

where σk are the singular values of the matrix B. A matrix with
rank r has exactly r non-zero singular values.
A possible estimator of the unknown entries is given by

B̂ = arg min
B∈Rp×q

‖B|Ω − B0|Ω‖2
F + λ‖B‖nuclear,

where Ω is the set of observed entries.


