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A First Example
In 2006, Singapore Airlines decided to place an order for new 
aircraft. It contained the following jets:

- 20 Boeing 787
- 20 Airbus A350
- 9 Airbus A380

How was this decision taken?

It was based on a combination of time series analysis on 
airline passenger trends, plus knowing the corporate plans 
for maintaining or increasing the market share. 
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A Second Example
•     Taken from a former research project @ ZHAW
•     Airline business: # of checked-in passengers per month
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Some Properties of the Series
•     Increasing trend (i.e. generally more passengers)
•     Very prominent seasonal pattern (i.e. peaks/valleys)
•     Hard to see details beyond the obvious

Goals of the Project
• Visualize, or better, extract trend and seasonal pattern
•     Quantify the amount of random variation/uncertainty
•     Provide the basis for a man-made forecast after mid-2007
•     Forecast (extrapolation) from mid-2007 until end of 2008
•     How can we better organize/collect data?
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Organization of the Course
Contents:
•  Basics, Mathematical Concepts, Time Series in R
• Descriptive Analysis (Plots, Decomposition, Correlation)
• Models for Stationary Series (AR(p), MA(q), ARMA(p,q))
• Non-Stationary Models (SARIMA, GARCH, Long-Memory)
• Forecasting (Regression, Exponential Smoothing, ARMA)
• Miscellaneous (Multivariate, Spectral Analysis, State Space)

Goal:
The students acquire experience in analyzing time series 
problems, are able to work with the software package R, and 
can perform time series analyses correctly on their own.



Organization of the Course

 more details are given on the
additional organization sheet
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Introduction: What is a Time Series?
A time series is a set of observations , where each of the
observations was made at a specific time   .

- the set of times is discrete and finite
- observations were made at fixed time intervals
- continuous and irregularly spaced time series are not covered

Rationale behind time series analysis:

The rationale in time series analysis is to understand the past of a 
series, and to be able to predict the future well.
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Example 1: Air Passenger Bookings
> data(AirPassengers)
> AirPassengers

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1949 112 118 132 129 121 135 148 148 136 119 104 118
1950 115 126 141 135 125 149 170 170 158 133 114 140
1951 145 150 178 163 172 178 199 199 184 162 146 166
1952 171 180 193 181 183 218 230 242 209 191 172 194
1953 196 196 236 235 229 243 264 272 237 211 180 201
1954 204 188 235 227 234 264 302 293 259 229 203 229
1955 242 233 267 269 270 315 364 347 312 274 237 278
1956 284 277 317 313 318 374 413 405 355 306 271 306
1957 315 301 356 348 355 422 465 467 404 347 305 336
1958 340 318 362 348 363 435 491 505 404 359 310 337
1959 360 342 406 396 420 472 548 559 463 407 362 405
1960 417 391 419 461 472 535 622 606 508 461 390 432
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Example 1: Air Passenger Bookings
> plot(AirPassengers, ylab="Pax", main="Pax Bookings")
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Example 2: Lynx Trappings
> data(lynx)
> plot(lynx, ylab="# of Lynx", main="Lynx Trappings")

Lynx Trappings

Time

# 
of

 L
yn

x 
Tr

ap
pe

d

1820 1840 1860 1880 1900 1920

0
20

00
40

00
60

00



13Marcel Dettling, Zurich University of Applied Sciences

Applied Time Series Analysis
SS 2015 – Introduction

Example 3: Luteinizing Hormone
> data(lh)
> plot(lh, ylab="LH level", main="Luteinizing Hormone")
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Example 3: Lagged Scatterplot
> plot(lh[1:47], lh[2:48], pch=20)
> title("Scatterplot of LH Data with Lag 1")
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Example 4: Swiss Market Index
We have a multiple time series object:

> data(EuStockMarkets)
> EuStockMarkets
Time Series:
Start = c(1991, 130) 
End = c(1998, 169) 
Frequency = 260 

DAX    SMI    CAC   FTSE
1991.496 1628.75 1678.1 1772.8 2443.6
1991.500 1613.63 1688.5 1750.5 2460.2
1991.504 1606.51 1678.6 1718.0 2448.2
1991.508 1621.04 1684.1 1708.1 2470.4
1991.512 1618.16 1686.6 1723.1 2484.7
1991.515 1610.61 1671.6 1714.3 2466.8
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Example 4: Swiss Market Index
> smi <- ts(tmp, start=start(esm), freq=frequency(esm))
> plot(smi, main="SMI Daily Closing Value")
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Example 4: Swiss Market Index
> lret.smi <- log(smi[2:1860]/smi[1:1859])
> plot(lret.smi, main="SMI Log-Returns")
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Goals in Time Series Analysis
1) Exploratory Analysis

Visualization of the properties of the series
- time series plot
- decomposition into trend/seasonal pattern/random error
- correlogram for understanding the dependency structure

2) Modeling
Fitting a stochastic model to the data that represents and 
reflects the most important properties of the series
- done exploratory or with previous knowledge
- model choice and parameter estimation is crucial
- inference: how well does the model fit the data?
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Goals in Time Series Analysis
3) Forecasting

Prediction of future observations with measure of uncertainty
- mostly model based, uses dependency and past data
- is an extrapolation, thus often to take with a grain of salt
- similar to driving a car by looking in the rear window mirror

4) Process Control
The output of a (physical) process defines a time series
- a stochastic model is fitted to observed data
- this allows understanding both signal and noise
- it is feasible to monitor normal/abnormal fluctuations
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Goals in Time Series Analysis
5) Time Series Regression

Modeling response time series using 1 or more input series

where       is independent of      and    , but not i.i.d.  

Example: (Ozone)t = (Wind)t + (Temperature)t +

Fitting this model under i.i.d error assumption:
- leads to unbiased estimates, but...
- often grossly wrong standard errors
- thus, confidence intervals and tests are misleading

0 1 2t t t tY u v E     

tE tvtu

tE
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Stochastic Model for Time Series
Def: A time series process is a set                of random

variables, where     is the set of times. Each of the random 
variables has a univariate probability distribution    . 

• If we exclusively consider time series processes with 
equidistant time intervals, we can enumerate

• An observed time series is a realization of                          , 
and is denoted with small letters as                       .

• We have a multivariate distribution, but only 1 observation 
(i.e. 1 realization from this distribution) is available. In order 
to perform “statistics”, we require some additional structure.

 ,tX t


,tX t tF

 1,2,3,...T 

 1, , nX X X 
1( , , )nx x x 
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Stationarity
For being able to do statistics with time series, we require that the 
series “doesn’t change its probabilistic character” over time. This is 
mathematically formulated by strict stationarity.

Def: A time series                  is strictly stationary, if the joint 
distribution of the random vector                       is equal to 
the one of                        for all combinations of and .

 all     are identically distributed
all     have identical expected value
all have identical variance
the autocov depends only on the lag 

 ,tX t
( , , )t t kX X 

( , , )s s kX X 

tX
tX
tX

h

~tX F
[ ]tE X 

2( )tVar X 
( , )t t h hCov X X  

,t s k
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Stationarity
It is impossible to „prove“ the theoretical concept of stationarity 
from data. We can only search for evidence in favor or against it.

However, with strict stationarity, even finding evidence only is too
difficult. We thus resort to the concept of weak stationarity.

Def: A time series is said to be weakly stationary, if

for all lags

and thus also:

Note that weak stationarity is sufficient for „practical purposes“.

 ,tX t

[ ]tE X 
( , )t t h hCov X X   h

2( )tVar X 
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Testing Stationarity
• In time series analysis, we need to verify whether the series 

has arisen from a stationary process or not. Be careful: 
stationarity is a property of the process, and not of the data.

• Treat stationarity as a hypothesis! We may be able to reject it 
when the data strongly speak against it. However, we can 
never prove stationarity with data. At best, it is plausible. 

• Formal tests for stationarity do exist ( see scriptum). We 
discourage their use due to their low power for detecting 
general non-stationarity, as well as their complexity.

Use the time series plot for deciding on stationarity!
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Evidence for Non-Stationarity
• Trend, i.e. non-constant expected value

• Seasonality, i.e. deterministic, periodical oscillations

• Non-constant variance, i.e. multiplicative error

• Non-constant dependency structure

Remark:

Note that some periodical oscillations, as for example in the 
lynx trappings data, can be stochastic and thus, the underlying 
process is assumed to be stationary. However, the boundary 
between the two is fuzzy.



26Marcel Dettling, Zurich University of Applied Sciences

Applied Time Series Analysis
SS 2015 – Mathematical Concepts

Strategies for Detecting Non-Stationarity
1) Time series plot

- non-constant expected value (trend/seasonal effect)
- changes in the dependency structure
- non-constant variance

2) Correlogram (presented later...)
- non-constant expected value (trend/seasonal effect)
- changes in the dependency structure

A (sometimes) useful trick, especially when working with the 
correlogram, is to split up the series in two or more parts, and 
producing plots for each of the pieces separately.
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Example: Simulated Time Series 1
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Example: Simulated Time Series 2

Simulated Time Series Example
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Example: Simulated Time Series 3
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Example: Simulated Time Series 4

Simulated Time Series Example
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Time Series in R
• In R, there are objects, which are organized in a large 

number of classes. These classes e.g. include vectors, 
data frames, model output, functions, and many more. Not 
surprisingly, there are also several classes for time series. 

• We focus on ts, the basic class for regularly spaced time 
series in R. This class is comparably simple, as it can only 
represent time series with fixed interval records, and only 
uses numeric time stamps, i.e. enumerates the index set.

• For defining a ts object, we have to supply the data, but 
also the starting time (as argument start), and the frequency
of measurements as argument frequency.
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Time Series in R: Example
Data: number of days per year with traffic holdups in front of 
the Gotthard road tunnel north entrance in Switzerland. 

> rawdat <- c(88, 76, 112, 109, 91, 98, 139)
> ts.dat <- ts(rawdat, start=2004, freq=1)

> ts.dat
Time Series: Start = 2004 
End = 2010; Frequency = 1 
[1]  88  76 112 109  91  98 139

2004 2005 2006 2007 2008 2009 2010

88 76 112 109 91 98 139
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Time Series in R: Example
> plot(ts.dat, ylab="# of Days", main="Traffic Holdups")
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Further Topics in R
The scriptum discusses some further topics which are of 
interest when doing time series analysis in R:

• Handling of dates and times in R

• Reading/Importing data into R

 Please thoroughly read and study these chapters. 
Examples will be shown/discussed in the exercises.
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Descriptive Analysis
As always, when working with data, it is important to first gain 
an overview. In time series analysis, the following is required:

• Understanding the context of the data and the data source
• Making suitable plots, looking for structure and outliers
• Thinking about transformations, e.g. to reduce skewness
• Judging stationarity and achieve it by decomposition
• For stationary series, the analysis of autocorrelations
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Visualization: Time Series Plot
> plot(tsd, ylab="(%)", main="Unemployment in Maine")
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Multiple Time Series Plots
> plot(tsd, main="Chocolate, Beer & Electricity")
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Only One or Multiple Frames?
• Due to different scale/units it is often impossible to directly

plot multiple time series in one single frame. Also, multiple 
frames are convenient for visualizing the series.

• If the relative development of multiple series is of interest, 
then we can (manually) index the series and (manually) plot 
them into one single frame.

• This clearly shows the magnitudes for trend and seasonality. 
However, the original units are lost.

• For details on how indexing is done, see the scriptum.
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Multiple Time Series Plots
> plot(tsd, main="Chocolate, Beer & Electricity")
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Transformations
For strictly stationary time series, we have:

We did not specify the distribution     and there is no restriction 
to it. However, many popular time series models are based on:

1) Gaussian distribution
2) linear relations between the variables 

If the data show different behaviour, we can often improve the 
situation by transforming             to                      . The most 
popular and practically relevant transformation is:

~tX F

F

1,..., nx x 1( ),..., ( )ng x g x

( ) log( )g   
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Transformations: Lynx Data
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Transformations: Lynx Data
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Transformations: Lynx Data
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Decomposition
Stationarity is key for statistical learning, but real data often 
have trend/seasonality, and are non-stationary. We can (often) 
deal with that using the simple additive decomposition model: 

= trend + seasonal effect + stationary remainder

The goal is to find a remainder term     , as a sequence of 
correlated random variables with mean zero, i.e. a stationary ts.

We can employ: 1) taking differences (=differencing) 
2) smoothing approaches (= filtering)
3) parametric models (= curve fitting)
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t t t tX m s R  

tR



Multiplicative Decomposition
is not always a good model: 
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t t t tX m s R  
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Multiplicative Decomposition
Better:                       , respectively
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t t t tX m s R   log( )t t t tX m s R    
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Differencing: Removing a Trend
 see blackboard…

Summary:

• Differencing means analyzing the observation-to-observation 
changes in the series, but no longer the original.

• This may (or may not) remove trend/seasonality, but does not 
yield estimates for and , and not even for .  

• Differencing changes the dependency in the series, i.e it
artificially creates new correlations.

tm ts tR
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Differencing: Example

tm ts tR
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Differencing: Example
> plot(diff(SwissTraffic), main=…)
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Differencing: Further Remarks
• If log-transformed series are difference (i.e. the SMI series),

we are considering (an approximation to) the relative changes:

• The backshift operator “go back 1 step” allows for
convenient notation with all differencing operations: 

Backshift operator:

Differencing:

1 1
1

1 1 1

log( ) log( ) log log 1t t t t t
t t t

t t t

X X X X XY X X
X X X

 


  

    
        

   

1( )t tB X X 

1(1 )t t t tY B X X X    
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Differencing Series with Transformation
SMI Daily Closing Value
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Differencing Series with Transformation
SMI Log-Returns
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Higher-Order Differencing
The “normal” differencing from above managed to remove any 
linear trend from the data. In case of polynomial trend, that is no 
longer true. But we can take higher-order differences:

A quadratic trend can be removed by taking second-order 
differences. However, what we obtain is not an estimate of the 
remainder term     , but something that is much more complicated. 

2
1 2

2

1 1 2

1 2 2

,
(1 )
( ) ( )

2 2

t t t

t t

t t t t

t t t

X t t R R stationary
Y B X

X X X X
R R R

  


  

 

   
 
   
   

tR
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Removing Seasonal Effects
Time series with seasonal effects can be made stationary through
differencing by comparing to the previous periods’ value.

•   Here,      is the frequency of the series.

• A potential trend which is exactly linear will be removed by the
above form of seasonal differencing.

• In practice, trends are rarely linear but slowly varying:
However, here we compare      with        , which means that 
seasonal differencing often fails to remove trends completely. 

(1 )p
t t t t pY B X X X    

p

1t tm m 
tm t pm 
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Seasonal Differencing: Example
> data(co2); plot(co2, main=…)
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Seasonal Differencing: Example
> sd.co2 <- diff(co2, lag=12)

Differenced Mauna Loa Data (p=12)
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Seasonal Differencing: Example
This is:

Twice Differenced Mauna Loa Data (p=12, p=1)
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Differencing: Remarks
Some advantages and disadvantages:

+ trend and seasonal effect can be removed

+ procedure is very quick and very simple to implement

- ,     and are not known, and cannot be visualised

- resulting time series will be shorter than the original

- differencing leads to strong artificial dependencies

- extrapolation of ,    is not possible

ˆ tm t̂s

ˆ tm t̂s

ˆ
tR
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Smoothing, Filtering: Part 1
In the absence of a seasonal effect, the trend of a non-stationary 
time series can be determined by applying any additive, linear 
filter. We obtain a new time series     , representing the trend:

- the window, defined by     and    , can or can‘t be symmetric
- the weights, given by     , can or can‘t be uniformly distributed
- other smoothing procedures can be applied, too.

ˆ
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Trend Estimation with the Running Mean
> trd <- filter(SwissTraffic, filter=c(1,1,1)/3)

Time
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Smoothing, Filtering: Part 2
In the presence a seasonal effect, smoothing approaches are still 
valid for estimating the trend. We have to make sure that the sum 
is taken over an entire season, i.e. for monthly data: 

An estimate of the seasonal effect     at time    can be obtained by:

By averaging these estimates of the effects for each month, we 
obtain a single estimate of the effect for each month.

6 5 5 6
1 1 1ˆ 7,..., 6
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Trend Estimation for Mauna Loa Data
> wghts <- c(.5,rep(1,11),.5)/12
> trd <- filter(co2, filter=wghts, sides=2)

Mauna Loa CO2 Concentrations
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Estimating the Seasonal Effects
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Estimating the Remainder Term
ˆ ˆ ˆt t t tR x m s  

Estimated Stochastic Remainder Term
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Smoothing, Filtering: Part 3
• The smoothing approach is based on estimating the trend

first, and then the seasonality.

• The generalization to other periods than , i.e. monthly
data is straighforward. Just choose a symmetric window and
use uniformly distributed coefficients that sum up to 1.

• The sum over all seasonal effects will be close to zero. 
Usually, it is centered to be exactly there.

• This procedure is implemented in R with function: 
decompose()

12p 
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Estimating the Remainder Term
> plot(decompose(co2))
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Smoothing, Filtering: Remarks
Some advantages and disadvantages:

+ trend and seasonal effect can be estimated

+ ,     and are explicitly known, can be visualised

+ procedure is transparent, and simple to implement

- resulting time series will be shorter than the original

- the running mean is not the very best smoother

- extrapolation of ,    are not entirely obvious

ˆ tm t̂s

ˆ tm t̂s

ˆ
tR
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Smoothing, Filtering: STL-Decomposition
The Seasonal-Trend Decomposition Procedure by Loess

•    is an iterative, non-parametric smoothing algorithm
•    yields a simultaneous estimation of trend and seasonal effect
 similar to what was presented above, but more robust!

+ very simple to apply
+ very illustrative and quick
+ seasonal effect can be constant or smoothly varying
- model free, extrapolation and forecasting is difficult

 Good method for „having a quick look at the data“
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STL-Decomposition for Periodic Series
> co2.stl <- stl(co2, s.window="periodic")

> plot(co2.stl, main="STL-Decomposition of CO2 Data")

STL-Decomposition of CO2 Data
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Using the stl() Function in R

We need to supply argument x (i.e. the data) and s.window
(for seasonal smoothing), either by setting it to "periodic" or 
to a numerical value. We can adjust t.window to a numerical 
value for altering the trend smoothing. Leave the rest alone!
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STL for Series with Evolving Seasonality
> lap.stl <- stl(lap, s.window=13) 
> plot(lap.stl, main="STL for Air Pax Bookings")

STL for Air Pax Bookings
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Monthplot, s.window="periodic"
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STL for Series with Evolving Seasonality
> monthplot(stl(lap, s.window="periodic"))

Constant Seasonality:

Check the STL plot on
the previous slide for
assessing whether this
is reasonable or not!



Monthplot, s.window=5

se
as

on
al

J F M A M J J A S O N D

-0
.2

-0
.1

0.
0

0.
1

0.
2

73Marcel Dettling, Zurich University of Applied Sciences

Applied Time Series Analysis
SS 2015 – Descriptive Analysis

STL for Series with Evolving Seasonality
> monthplot(stl(lap, s.window=5))

Evolving Seasonality:

Too little smoothing in
the seasonal effect, the
changes are irregular. 
As a remedy, increase
parameter s.window



Monthplot, s.window=13
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STL for Series with Evolving Seasonality
> monthplot(stl(lap, s.window=13))

Evolving Seasonality:

Adequate amount of
smoothing will well
chosen s.window
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Smoothing, Filtering: Remarks
Some advantages and disadvantages:

+ trend and seasonal effect can be estimated

+ ,     and are explicitly known, can be visualised

+ procedure is transparent, and simple to implement

- resulting time series will be shorter than the original

- the running mean is not the very best smoother

- extrapolation of ,    are not entirely obvious

ˆ tm t̂s

ˆ tm t̂s

ˆ
tR
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Parametric Modelling
When to use?

 Parametric modelling is often used if we have previous 
knowledge about the trend following a functional form.

 If the main goal of the analysis is forecasting, a trend in 
functional form may allow for easier extrapolation than a 
trend obtained via smoothing.

 It can also be useful if we have a specific model in mind 
and want to infer it. Caution: correlated errors!
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Parametric Modelling: Example
Maine unemployment data: Jan/1996 – Aug/2006

Unemployment in Maine

Time

(%
)

1996 1998 2000 2002 2004 2006

3
4

5
6
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Modeling the Unemployment Data
Most often, time series are parametrically decomposed by using
regression models. For the trend, polynomial functions are widely
used, whereas the seasonal effect is modelled with dummy
variables (= a factor).

where

Remark: choice of the polynomial degree is crucial!

2 3 4
0 1 2 3 4 ( )t i t tX t t t t E               

 
 

1,2,...,128

( ) 1,2,...,12

t

i t




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Polynomial Order / OLS Fitting
Estimation of the coefficients will be done in a regression con-
text. We can use the ordinary least squares algorithm, but: 

•   we have violated assumptions,      is not uncorrelated
•   the estimated coefficients are still unbiased
•   standard errors (tests, CIs) can be wrong

Which polynomial order is required?

Eyeballing allows to determine the minimum grade that is 
required for the polynomial. It is at least the number of 
maxima the hypothesized trend has, plus one.

tE
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Important Hints for Fitting
• The main predictor used in polynomial parametric modeling

is the time of the observations. It can be obtained by typing
time(maine).  

• For avoiding numerical and collinearity problems, it is
essential to center the time/predictors!

• R sets the first factor level to 0, seasonality is thus
expressed as surplus to the January value.

• For visualization: when the trend must fit the data, we have
to adjust, because the mean for the seasonal effect is
usually different from zero!
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Trend of O(4), O(5) and O(6)
Unemployment in Maine

Time

(%
)

1996 1998 2000 2002 2004 2006

3
4

5
6

O(4)
O(5)
O(6)
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Residual Analysis: O(4)

Residuals vs. Time, O(4)

Time

1996 1998 2000 2002 2004 2006
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Residual Analysis: O(5)

Residuals vs. Time, O(5)

Time

1996 1998 2000 2002 2004 2006
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Residual Analysis: O(6)

Residuals vs. Time, O(6)

Time

1996 1998 2000 2002 2004 2006
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Parametric Modeling: Remarks
Some advantages and disadvantages:

+ trend and seasonal effect can be estimated

+ and are explicitly known, can be visualised

+ even some inference on trend/season is possible

+  time series keeps the original length

- choice of a/the correct model is necessary/difficult

- residuals are correlated: this is a model violation!

- extrapolation of ,    are not entirely obvious

ˆ tm t̂s

ˆ tm t̂s



86Marcel Dettling, Zurich University of Applied Sciences

Applied Time Series Analysis
SS 2015 – Autocorrelation

Where are we?
For most of the rest of this course, we will deal with (weakly) 
stationary time series. They have the following properties:

•
•
•

If a time series is non-stationary, we know how to decompose 
into deterministic and stationary, random part. 

Our forthcoming goals are:
- understanding the dependency in a stationary series
- modeling this dependency and generate forecasts

[ ]tE X 
2( )tVar X 

( , )t t h hCov X X  
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Autocorrelation
The aim of this section is to estimate, explore and understand
the dependency structure within a stationary time series.

Def: Autocorrelation

Autocorrelation is a dimensionless measure for the strength of the
linear association between the random variables         and . 

There are 2 estimators, i.e. the lagged sample and the plug-in.
 see slides & blackboard for a sketch of the two approaches…

( , )( , ) ( )
( ) ( )

t k t
t k t

t k t

Cov X XCor X X k
Var X Var X
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Practical Interpretation of Autocorrelation
We e.g. assume

 The square of the autocorrelation, i.e.                     ,
is the percentage of variability explained by the linear 
association between      and its predecessor       . 

 Thus, in our example,        accounts for roughly 49%
of the variability observed in random variable     . Only 
roughly because the world is not linear.

 From this we can also conclude that any                   is 
not a strong association, i.e. has a small effect on the 
next observation only. 

( ) 0.7k 
2( ) 0.49k 

tX 1tX 

( ) 0.4k 

1tX 

tX
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Example: Wave Tank Data

Time
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Lagged Scatterplot Approach
Generate a plot of               for all                     and compute the
canonical Pearson correlation coefficient from these data pairs.

> lag.plot(wave, do.lines=FALSE, pch=20)

> title("Lagged Scatter, k=1, cor=0.47")

> 
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Plug-In Estimation
For obtaining an estimate of         , determine the sample 
covariance at lag     and divide by the sample variance.

where

This is the standard approach for computing autocorrelations in 
time series analysis. It is better than the lagged scatterplot idea.

1
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Comparison Idea 1 vs. Idea 2
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Comparison Idea 1 vs. Idea 2
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What is important about ACF estimation?
- Correlations are never to be trusted without a visual

inspection with a scatterplot.

- The bigger the lag k, the fewer data pairs remain for 
estimating the acf at lag k.

- Rule of the thumb: the acf is only meaningful up to about

a) lag 10*log10(n)
b) lag n/4

- The estimated sample ACs can be highly correlated.

- The correlogram is only meaningful for stationary series!!!
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Correlogram
> acf(wave, ylim=c(-1,1))
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Random Series – Confidence Bands
If a time series is White Noise, i.e. consists of iid random
variables     , the (theoretical) autocorrelations are all 0.

However, the estimated are not. We thus need to decide, 
whether an observed is significantly so, or just appeared
by chance. This is the idea behind the confidence bands.  
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Random Series – Confidence Bands
For long iid series, it can be shown that is approximately

.  Thus, under the null hypothesis that a series is iid
and hence , the 95% acceptance region for the null is
given by the interval . 
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Random Series – Confidence Bands
Thus, even for a (long) i.i.d. time series, we expect that 5% of the 
estimated autocorrelation coeffcients exceed the confidence 
bounds. They correspond to type I errors.

Note: the probabilistic properties of non-normal i.i.d series are 
much more difficult to derive.
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Ljung-Box Test
The Ljung-Box approach tests the null hypothesis that a number of 
autocorrelation coefficients are simultaneously equal to zero. Thus, 
it tests for significant autocorrelation in a series. The test statistic is:

In R:

> Box.test(wave, lag=10, type="Ljung-Box")
Box-Ljung test
data: wave 
X-squared = 344.0155, df = 10, p-value < 2.2e-16

2
2

1

ˆ
( ) ( 2) ~

h
k

h
k
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n k
 



   




100Marcel Dettling, Zurich University of Applied Sciences

Applied Time Series Analysis
SS 2015 – Autocorrelation

Short Term Positive Correlation
Simulated Short Term Correlation Series
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Short Term Positive Correlation
Stationary series often exhibit short-term correlation, characterized
by a fairly large value of         , followed by a few more coefficients
which, while significantly greater than zero, tend to get successively
smaller. For longer lags k, they are close to 0.

A time series which gives rise to such a correlogram, is one for
which an observation above the mean tends to be followed by one
or more further observations above the mean, and similarly for
observations below the mean.

A model called an autoregressive model may be appropriate for
series of this type.  

ˆ (1)
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Alternating Time Series
Simulated Alternating Correlation Series
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Non-Stationarity in the ACF: Trend
Simulated Series with a Trend
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Non-Stationarity in the ACF: Seasonal Pattern
De-Trended Mauna Loa Data
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ACF of the Raw Airline Data
Airline Data
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Outliers and the ACF
Outliers in the time series strongly affect the ACF estimation!

Beaver Body Temperature
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Outliers and the ACF
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Lagged Scatterplot with k=1 for Beaver Data

1 Outlier, appears 2x
in the lagged scatterplot
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Outliers and the ACF
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Outliers and the ACF
The estimates are very sensitive to outliers. They can be
diagnosed using the lagged scatterplot, where every single outlier
appears twice.

Strategy for dealing with outliers:

- if it is bad data point: delete the observation

- replace the now missing observations by either:

a) global mean of the series
b) local mean of the series, e.g. +/- 3 observations
c) fit a time series model and predict the missing value

ˆ ( )k
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General Remarks about the ACF
a) Appearance of the series   =>   Appearance of the ACF

Appearance of the series   <=   Appearance of the ACF

b) Compensation

All autocorrelation coefficients sum up to -1/2. For large 
lags k, they can thus not be trusted, but are at least 
damped. This is a reason for using the rule of the thumb.

1

1
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n
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How Well Can We Estimate the ACF?
What do we know already?

- The ACF estimates are biased
- At higher lags, we have few observations, and thus variability
- There also is the compensation problem…

 ACF estimation is not easy, and interpretation is tricky.

For answering the question above:

- For an AR(1) time series process, we know the true ACF
- We generate a number of realizations from this process
- We record the ACF estimates and compare to the truth
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Theoretical vs. Estimated ACF
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How Well Can We Estimate the ACF?
A) For AR(1)-processes we understand the theoretical ACF

B) Repeat for i=1, …, 1000

Simulate a length n AR(1)-process
Estimate the ACF from that realization

End for

C) Boxplot the (bootstrap) sample distribution of ACF-estimates
Do so for different lags k and different series length n
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How Well Can We Estimate the ACF?
Variation in ACF(1) estimation

n=20 n=50 n=100 n=200

-1
.0

-0
.5

0.
0

0.
5

1.
0



115Marcel Dettling, Zurich University of Applied Sciences

Applied Time Series Analysis
SS 2015 – Autocorrelation

How Well Can We Estimate the ACF?
Variation in ACF(2) estimation
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How Well Can We Estimate the ACF?
Variation in ACF(5) estimation
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How Well Can We Estimate the ACF?
Variation in ACF(10) estimation
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Trivia ACF Estimation
• In short series, the ACF is strongly biased. The consistency 

kicks in and kills the bias only after ~100 observations.

• The variability in ACF estimation is considerable. We observe 
that we need at least 50, or better, 100 observations.

• For higher lags k, the bias seems a little less problematic, but 
the variability remains large even with many observations n.

• The confidence bounds, derived under independence, are 
not very accurate for (dependent) time series.

 Interpreting the ACF is tricky!
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Application: Variance of the Arithmetic Mean
Practical problem: we need to estimate the mean of a realized/ 
observed time series. We would like to attach a standard error.

• If we estimate the mean of a time series without taking into
account the dependency, the standard error will be flawed. 

• This leads to misinterpretation of tests and confidence
intervals and therefore needs to be corrected.

• The standard error of the mean can both be over-, but also 
underestimated. This depends on the ACF of the series.

 For the derivation, see the blackboard…
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Partial Autocorrelation Function (PACF)
The  partial autocorrelation is defined as the correlation
between and , given all the values in between.

Interpretation:

• Given a time series    , the partial autocorrelation of lag k, is 
the autocorrelation between     and         with the linear 
dependence of        through to removed.

• One can draw an analogy to regression. The ACF measu-
res the „simple“ dependence between and , whereas
the PACF measures that dependence in a „multiple“ fashion.

t kX tX

kthk
t kX  tX

1 1 1 1( , | ,..., )k t k t t t t k t kCor X X X x X x         

tX
tX t kX 

1tX  1t kX  
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Facts About the PACF and Estimation
We have:

•

• for AR(1) models, we have ,
because

• For estimating the PACF, we utilize the fact that for any
AR(p) model, we have:               and for all          .

Thus, for finding , we fit an AR(p) model to the series
for various orders p and set

1 1 
2

2 1
2 2

11
 





 2 0 

2
2 1 

p p 

ˆ p
ˆˆ p p 

0k  k p
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Facts about the PACF
• Estimation of the PACF is implemented in R.

• The first PACF coefficient is equal to the first ACF coefficient. 
Subsequent coefficients are not equal, but can be derived
from each other.

• For a time series generated by an AR(p)-process, the
PACF coefficient is equal to the AR-coefficient. All PACF 
coefficients for lags are equal to 0.

• Confidence bounds also exist for the PACF.

thp
thp

k p
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Basics of Modeling

(Time Series) Model  Data

Data       (Time Series) Model

We will first discuss the theoretical properties of the most
important time series processes and then mainly focus
on how to successfully fit models to data.

Simulation & Generation

Estimation, Inference & Residual Analysis
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A Simple Model: White Noise
A time series is a White Noise series if the random
variables                are independent and identically distributed with
mean zero.

This imples that all variables      have the same variance , and

for all          . 

Thus, there are no autocorrelations either:             for all          .  

If in addition, the variables also follow a Gaussian distribution, i.e.
, the series is called Gaussian White Noise.

The term White Noise is due to the analogy to white light.

1 2( , ,..., )nW W W
1 2, ,...W W

tW 2
W

( , ) 0i jCov W W  i j

0k  0k 

2~ (0, )t WW N 
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Example: Gaussian White Noise
> plot(ts(rnorm(200, mean=0, sd=1)))
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Example: Gaussian White Noise
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Estimating the Conditional Mean
 see blackboard…
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Time Series Modeling
There is a wealth of time series models

- AR autoregressive model
- MA moving average model
- ARMA combination of AR & MA
- ARIMA non-stationary ARMAs
- SARIMA seasonal ARIMAs
- …

We start by discussing autoregressive models. They are
perhaps the simplest and most intuitive time series models
that exist.
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Basic Idea for AR(p)-Models
We have a process where the random variable      depends on an 
auto-regressive linear combination of the preceding ,
plus a „completely independent“ term called innovation .  

Here, p is called the order of the autoregressive model. Hence, we
abbreviate by AR(p). An alternative notation is with the backshift
operator : 

or short, 

Here,           is called the characteristic polynomial of the AR(p).
It determines most of the relevant properties of the process.  

1,...,t t pX X 

tE

2
1 2(1 ... )p
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AR(1)-Model
The simplest model is the AR(1)-model

where

is i.i.d with and
We also require that is independent of

Under these conditions,      is a causal White Noise process,
or an innovation. Be aware that this is stronger than the iid
requirement: not every iid process is an innovation and that
property is central to AR(p)-modelling.

tE

1 1t t tX X E  

[ ] 0tE E  2( )t EVar E 

tE

,sX s ttE
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AR(p)-Models and Stationarity
The following is absolutely essential:

AR(p) models must only be fitted to stationary time series. Any 
potential trends and/or seasonal effects need to be removed first. 
We will also make sure that the  processes are stationary.

Under which circumstances is an AR(p) stationary?

 see blackboard…
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Stationarity of AR(p)-Processes
As we have seen, any stationary AR(p) meets:

1) 

2) The condition on                    :

All (complex) roots of the characteristic polynom

lie outside of the unit circle (can be verified with polyroot())

We can always shift a stationary AR(p) process:
The resulting process is still stationary and allows for greater
flexibility in modelling. It is a shifted AR(p) process.

[ ] 0tE X  

1( ,..., )p 

2
1 21 0p

pz z z     
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A Non-Stationary AR(2)-Process
is not stationary… 1 2

1 1
2 2t t t tX X X E   

Non-Stationary AR(2)
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Simulated AR(1)-Series

Simulated AR(1)-Series: alpha_1=0.7
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Simulated AR(1)-Series
Simulated AR(1)-Series: alpha_1=-0.7
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Simulated AR(1)-Series
Simulated AR(1)-Series: alpha_1=1
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Autocorrelation of AR(p) Processes
On the blackboard…

Yule-Walker Equations

We observe that there exists a linear equation system built up from
the AR(p)-coefficients and the ACF-coefficients of up to lag p. 
These are called Yule-Walker-Equations.

We can use these equations for fitting an AR(p)-model:

1) Estimate the ACF from a time series
2) Plug-in the estimates into the Yule-Walker-Equations
3) The solution are the AR(p)-coefficients
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Theoretical vs. Estimated ACF
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Theoretical vs. Estimated ACF
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AR(3): Simulation and Properties
> xx <- arima.sim(list(ar=c(0.4, -0.2, 0.3)), 
n=200)

AR(3) with 1=-0.4, 2=-0.2, 3=0.3
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AR(3): Simulation and Properties
> autocorr <- ARMAacf(ar=c(0.4, -0.2, 0.3),...) 
> plot(0:20, autocorr, type="h", xlab="Lag")
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AR(3): Simulation and Properties
> autocorr <- ARMAacf(ar=..., pacf=TRUE, ...) 
> plot(0:20, autocorr, type="h", xlab="Lag")
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Fitting AR(p)-Models
This involves 3 crucial steps:

1) Is an AR(p) suitable, and what is p?
- will be based on ACF/PACF-Analysis

2) Estimation of the AR(p)-coefficients
- Regression approach
- Yule-Walker-Equations
- and more (MLE, Burg-Algorithm)

3) Residual Analysis
- to be discussed
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AR-Modelling

1                                  2                                     3

Identification Parameter Model
of the Order p Estimation Diagnostics

- ACF/PACF - Regression - Residual Analysis
- AIC/BIC - Yule-Walker - Simulation

- MLE
- Burg
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Is an AR(p) suitable, and what is p?
- For all AR(p)-models, the ACF decays exponentially

quickly, or is an exponentially damped sinusoid.

- For all AR(p)-models, the PACF is equal to zero for
all lags k>p. The behavior before lag p can be anything.

If what we observe is fundamentally different from the above, it is
unlikely that the series was generated from an AR(p)-process. We
thus need other models, maybe more sophisticated ones.

Remember that the sample ACF has a few peculiarities (bias, 
variability, compensation issue) and is tricky to interpret!!!
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Model Order for log(lynx)
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Parameter Estimation for AR(p)
Observed time series are rarely centered. Then, it is inappropriate
to fit a pure AR(p) process. All R routines by default assume the
shifted process . Thus, we face the problem:

The goal is to estimate the global mean , the AR-coefficients
, and some parameters defining the distribution of the

innovation . We usually assume a Gaussian, hence this is .

We will discuss 4 methods for estimating the parameters:

OLS, Burg’s algorithm, Yule-Walker, MLE
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OLS Estimation
If we rethink the previously stated problem:

we recognize a multiple linear regression problem without
intercept on the centered observations. What we need to do is:

1) Estimate and determine

2) Run a regression w/o intercept on      to obtain

3) For , take the residual standard error from the output.

This all works without any time series software, but is a bit
cumbersome to implement. Dedicated procedures exist...

tx
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OLS Estimation
> f.ols <- ar.ols(llynx, aic=F, inter=F, order=2)
> f.ols
Coefficients:

1        2  
1.3844  -0.7479

Order selected 2  sigma^2 estimated as 0.2738

> f.ols$x.mean
[1] 6.685933

> sum(na.omit(f.ols$resid)^2)/112
[1] 0.2737594
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Burg‘s Algorithm
While OLS works, the first      instances are never evaluated as
responses. This is cured by Burg’s algorithm, which uses the 
property of time-reversal in stochastic processes. We thus 
evaluate the RSS of forward and backward prediction errors:

In contrast to OLS, there is no explicit solution and numerical 
optimization is required. This is done with a recursive method 
called the Durbin-Levison algorithm (implemented in R).

2 2
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Burg’s Algorithm
> f.burg <- ar.burg(llynx, aic=F, order.max=2)
> f.burg

Coefficients:
1        2  

1.3831  -0.7461  

Order selected 2  sigma^2 estimated as  0.2707

> f.ar.burg$x.mean
[1] 6.685933

Note: The innovation variance is estimated from the Durbin-
Levinson updates and not from the residuals using the MLE!
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Yule-Walker Equations
The Yule-Walker-Equations yield a LES that connects the true ACF 
with the true AR-model parameters. We plug-in the estimated ACF 
coefficients

for k=1,…,p

and can solve the LES to obtain the AR-parameter estimates.

is the arithmetic mean of the time series
is obtained from the fitted coefficients via
the autocovariance of the series and takes
a different value than before!

There is an implementation in R with function ar.yw().
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Yule-Walker Equations
> f.ar.yw

Call: ar.yw.default(x = log(lynx), aic = FALSE, 
order.max = 2)

Coefficients:
1        2  

1.3504  -0.7200  

Order selected 2  sigma^2 estimated as  0.3109

While the Yule-Walker method is asymptotically equivalent to
OLS and Burg’s algorithm, it generally yields a solution with
worse Gaussian likelihood on finite samples
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Maximum-Likelihood-Estimation
Idea: Determine the parameters such that, given the observed 

time series , the resulting model is the most 
plausible (i.e. the most likely) one.

This requires the choice of a probability model for the time series. 
By assuming Gaussian innovations,                        , any AR(p) 
process has a multivariate normal distribution:

, with     depending on

MLE then provides simultaneous estimates by optimizing:  
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Maximum-Likelihood Estimation
> f.ar.mle

Call: arima(x = log(lynx), order = c(2, 0, 0))

Coefficients:
ar1      ar2  intercept

1.3776  -0.7399     6.6863
s.e. 0.0614   0.0612     0.1349

sigma^2=0.2708; log likelihood=-88.58; aic=185.15

While MLE by default assumes Gaussian innovations, it still 
performs resonably for other distributions as long as they are
not extremly skewed or have very precarious outliers.
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Practical Aspects
• All 4 estimation methods are asymptotically equivalent.

• Even on finite samples, the differences are usually small.

• Under Gaussian distribution, OLS and MLE coincide.

• OLS/YW: explicit solution; Burg/MLE: numerical solution.

• Functions ar.xx() provide easy AIC estimation of     .

•   Function arima() provides standard errors for all parameters.

-> Either work with ar.burg() or with arima(), depending on 
whether you want AIC or standard errors. Watch out for war-
nings if the numerical solution do not converge.

p

Marcel Dettling, Zurich University of Applied Sciences
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Comparison: Alpha Estimation vs. Method

LS YW MLE Burg
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Comparison: Alpha Estimation vs. n
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Comparison: Sigma Estimation vs. Method
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Comparison: Sigma Estimation vs. n
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Model Diagnostics
What we do here is Residual Analysis:

„residuals“ = „estimated innovations“

= 

=

Remember the assumptions we made:

i.i.d,                 ,

and probably

ˆ
tE

 1 1ˆ ˆˆ ˆ ˆ( ) ( ) ... ( )t t p t px m x m x m       

tE [ ] 0tE E  2( )t EVar E 

2~ (0, )t EE N 
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Model Diagnostics
We check the assumptions we made with the following means:

a) Time series plot of

b) ACF/PACF plot of

c) QQ-plot of

 The innovation time series should look like white noise

Lynx example:
fit <- arima(log(lynx), order=c(2,0,0))

acf(resid(fit)); pacf(resid(fit))

ˆ
tE

ˆ
tE

ˆ
tE

ˆ
tE
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Model Diagnostics: log(lynx) data, AR(2)
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Model Diagnostics: log(lynx) data, AR(11)
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Model Diagnostics: Normal Plots
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AIC/BIC
If several alternative models show satisfactory residuals, using 
the information criteria AIC and/or BIC can help to choose the 
most suitable one:

AIC = 
BIC = 

where                                                    

= „Likelihood Function“
p is the number of parameters and equals p or p+1
n is the time series length

Goal: Minimization of AIC and/or BIC

2log( ) 2L p 
2log( ) log( )L n p 

2 2( , , ) ( , , , )L f x     
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AIC/BIC
We need (again) a distribution assumption in order to compute
the AIC and/or BIC criteria. Mostly, one relies again on i.i.d. 
normally distributed innovations. Then, the criteria simplify to:

AIC = 
BIC = 

Remarks:

 AIC tends to over-, BIC to underestimate the true p
 Plotting AIC/BIC values against p can give further insight. 

One then usually chooses the model where the last 
significant decrease of AIC/BIC was observed

2ˆlog( ) 2En p 
2ˆlog( ) log( )En n p 
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AIC/BIC
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Diagnostics by Simulation
As a last check before a model is called appropriate, simulating 
from the estimated coefficients and visually inspecting the 
resulting series (without any prejudices) to the original can be 
done.

 The simulated series should „look like“ the original. If 
this is not the case, the model failed to capture (some 
of) the properties of the original data.
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Diagnostics by Simulation, AR(2)
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Diagnostics by Simulation, AR(11)
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Looking Back & Outlook
We did consider shifted AR(p)-models                     with:

where the correlation structure was as follows:

ACF: „exponential decay“
PACF: = 0 for all lags k>p

Now, in practice we could well observe a time series whose
autocorrelation differs from the above structure. 

We will thus discuss ARMA(p,q) models, a class that is suitable
for modeling a wider spectrum of dependency structures.

1 1 ...t t p t p tX X X E     
t tY m X 
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Moving Average Models
Whereas for AR(p) models, the current observation of a time 
series is written as a linear combination of its own past, MA(q)
models can be seen as an extension of the „pure“ process

,  where is a white noise process,

in the sense that past innovation terms are
included, too. We call this a moving average model:

This is a time series process that is stationary, but not iid. In 
many respects, MA(q) models are complementary to AR(p). 

t tX E tE

1 2, ,...t tE E 

1 1 2 2 ...t t t t q t qX E E E E        
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Notation for MA(q)-models
The backshift operator, and the characteristic polynom, allow for 
convenient notation:

MA(q):

MA(q) with BS:

MA(q) with BS+CP:

where

is the characteristic polynom

1 1 2 2 ...t t t t q t qX E E E E        

 2
1 21 ... q

t q tX B B B E      

( )t tX B E 

2
1 2( ) 1 ... q

qz z z z       
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Stationarity of MA(1)-Models
We first restrict ourselves to the simple MA(1)-model

,  where is a White Noise innovation

The series is weakly stationary, no matter what the choice of
the parameter is.

Remember that for proving this, we have to show that:

- the expected value is 0
- the variance is constant and finite
- the autocovariance only depends on the lag k

 see the blackboard for the proof

1 1t t tX E E   tE

tX
1
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ACF of the MA(1)-Process
We can deduct the ACF for the MA(1)-process:

and

for all k>1.

Thus, we have a “cut-off” situation, i.e. a similar behavior to 
the one of the PACF in an AR(1) process. This is why and 
how AR(1) and MA(1) are complementary.

( ) 0k 

1
2

1

(1)(1) 0.5
(0) (1 )
 
 

  

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Simulated Process with β1=0.7
> ts.ma1 <- arima.sim(list(ma=0.7), n=500)
> plot(ts.ma1, ylab="", ylim=c(-4,4))
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ACF and PACF of MA(1)
> acf.true <- ARMAacf(ma=0.7, lag.max=20)
> pacf.true <- ARMAacf(ma=0.7, pacf=T, lag.m=20)
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MA(1): Remarks
Without additional assumptions, the ACF of an MA(1) doesn‘t 
allow identification of the generating model.

In particular, the two processes

have identical ACF:

10.5t t tX E E   

12t t tU E E   

1 1
2 2

1 1

1/(1)
1 1 (1/ )
 
 

 
 
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MA(1): Invertibilty
• An MA(1)-, or in general an MA(q)-process is said to be

invertible if the roots of the characteristic polynomial
lie outside of the unit circle.

• Under this condition, there exists only one MA(q)-process
for any given ACF. But please note that any MA(q) is
stationary, no matter if it is invertible or not.

• The condition on the characteristic polynomial translates
to restrictions on the coefficients. For any MA(1)-model,  

is required.

• R function polyroot() can be used for finding the roots. 

1| | 1 

( )B
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Practical Importance of Invertibility
The condition of invertibility is not only a technical issue, but 
has important practical meaning. Invertible MA(1)-processes
can be written as an AR(∞):

Invertibility is practically relevant for model fitting!

1 1

1 1 1 2

2 3
1 1 1 2 1 3

1
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MA(1): Example
• daily return of an AT&T bond from 04/1975 to 12/1975

• the time series has 192 observations

• we are looking at the first-order differences

• an MA(1) model seems to fit the data ( next slide)

• since we are looking at a differenced series, this is in fact
an ARIMA(0,1,1) model ( will be discussed later…) 
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MA(1): Example
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MA(q)-Models
The MA(q)-model is defined as follows:

,

where      are i.i.d. innovations (=a white noise process). 

The ACF of this process can be computed from the coefficients:

,   for all k=1,…, q with 

,                for all k>q

tE
1 1 2 2 ...t t t t q t qX E E E E        
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ACF/PACF of MA(q)
ACF
• the ACF of an MA(q) has a cut-off at lag k=q

• it behaves thus like the PACF of an AR(q)-model

PACF
• the PACF is (again) complicated to determine, but:

• the PACF of an MA(q) has an „exponential decay“

• it behaves thus like the ACF of an AR-model
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MA(4): Example
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ARMA(p,q)-Models
An ARMA(p,q)-model combines AR(p) and MA(q):

where      are i.i.d. innovations (=a white noise process). 

It‘s easier to write an ARMA(p,q) with the characteristic polynom:

, where

is the cP of the AR-part, and

is the cP of the MA-part

tE
1 1 1 1... ...t t p t p t t q t qX X X E E E            

( ) ( )t tB X B E  

1( ) 1 ... p
pz z z    

1( ) 1 ... q
qz z z     
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Stationarity/Invertibility of ARMA(p,q)
• both properties are determined by the cP

• the AR-cP determines stationarity

• the MA-cP determines invertibility

• condition: roots of the cP outside of the unit circle 

• stationarity: model can be written as a MA(∞)

• invertibility: model can be written as an AR(∞)
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True ACF/PACF of an ARMA(2,1)
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Simulated ACF/PACF of an ARMA(2,1)
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Properties of ACF/PACF in ARMA(p,q)
ACF PACF

AR(p) exponential decay cut-off at lag p

MA(q) cut-off at lag q exponential decay

ARMA(p,q) mix decay/cut-off mix decay/cut-off

 all linear time series processes can be approximated by
an ARMA(p,q) with possibly large p,q. They are thus are
very rich class of models.
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Fitting ARMA(p,q)
What needs to be done?

1) Achieve stationarity
 transformations, differencing, modeling, …

2) Choice of the order
 determining (p,q)

3) Parameter estimation
 Estimation of   

4) Residual analysis
 if necessary, repeat 1), and/or 2)-4) 

2, , , Em  



193Marcel Dettling, Zurich University of Applied Sciences

Applied Time Series Analysis
SS 2015 – ARMA(p,q)

Identification of the Order (p,q)
Please note:

• We only have one single realization of the time series
with finite length.

• The plots (etc.) we base the order choice on are not
„facts“, but are estimations with uncertainty.

• This holds especially for the ACF/PACF plots.

• Every ARMA(p,q) can be written as AR(∞) or MA(∞)

 There is usually >1 model that describes the data well.
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ARMA(p,q)-Modeling
Make it stationary

Start                     

Is the time series plot stationary?

Is the ACF going to zero?

Check ACF/PACF

MA AR ARMA
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Parameter Estimation
For parameter estimation with AR(p) models, we had 4 choices:

a) Regression
b) Yule-Walker
c) Maximum-Likelihood
d) Burg‘s Algorithm

For ARMA(p,q) models, only two options are remaining, and 
both of them require numerical optimization:

1) Conditional Sum of Squares
2) Maximum-Likelihood
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Conditional Sum of Squares
Idea: This is an iterative approach where the parameters 

are determined such that the sum of squared errors 
(between observations and fitted values) are minimal.

This requires starting values which are chosen as:

A numerical search is used to find the parameter 
values that minimize the entire conditional sum of 
squares. They also serve as starting values for MLE.

2 2
1 1 1 1

1 1

ˆ ˆ ˆ ˆˆ ˆ ˆ( ,..., ) ( ( ... )
n n

q t t t t q
t t

S E X E E    
 
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Maximum-Likelihood-Estimation
Idea: Determine the parameters such that, given the observed 

time series x1,…,xn, the resulting model is the most 
plausible (i.e. the most likely) one.

 This requires the choice of a probability distribution 
for the time series X = (X1, …, Xn)
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Maximum-Likelihood-Estimation
If we assume the ARMA(p,q)-model 

and i.i.d. normally distributed innovations 

the time series vector has a multivariate normal distribution

with covariance matrix V that depends on the model parameters
,     and      . 

2~ (0, )t EE N 

1( ,..., ) ~ ( 1, )nX X X N m V 

 2
E

1 1 1 1... ...t t p t p t t q t qX X X E E E            


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Maximum-Likelihood-Estimation
We then maximize the density of the multivariate normal
distribution with respect to the parameters

,   ,      and .

The observed x-values are hereby regarded as fixed values.

 This is a highly complex non-linear optimization
problem that requires sophisticated algorithms
and starting values which are usually provided
by CSS (at least that's the default in R's arima()).

 2
Em
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Maximum-Likelihood-Estimation
> r.Pmle <- arima(d.Psqrt,order=c(2,0,0),include.mean=T)

> r.Pmle

Call: arima(x=d.Psqrt, order=c(2,0,0), include.mean=T)

Coefficients:

ar1    ar2  intercept

0.275  0.395      3.554

s.e.  0.107  0.109      0.267

sigma^2 = 0.6:  log likelihood = -82.9,  aic = 173.8
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MLE: Remarks
• The MLE approach would work for any distribution. 

However, for innovation distributions other than
Gaussian, the joint distribution might be „difficult“.

• For „reasonable“ deviations from the normality
assumption, MLE still yields „good“ results. 

• Besides the parameter estimates, we also obtain an 
estimate of their standard error

• Other software packages such as for example SAS 
don't rely on MLE, but use CSS, which is in spirit similar
to Burg's algorithm. 
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Douglas Fir: Original Data
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Douglas Fir: Differenced Series
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Douglas Fir: Differenced Series
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Residuals of MA(1)
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Residuals of ARMA(1,1)
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Another Example: Fitting ARMA(p,q)
What needs to be done?

1) Achieve stationarity
 transformations, differencing, modeling, …

2) Choice of the order
 determining (p,q), plus integration order d for ARIMA

3) Parameter estimation
 ML-estimation of     ,    ,    ,

4) Residual analysis
 if necessary, repeat 1), and/or 2)-4) 

  2
E
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The Series, ACF and PACF
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Model 1: AR(4)
> fit1

Call: arima(x = my.ts, order = c(4, 0, 0))

Coefficients:

ar1      ar2     ar3      ar4  intercept

1.5430  -1.2310  0.7284  -0.3000     0.6197

s.e.  0.0676   0.1189  0.1189   0.0697     0.2573

sigma^2=0.8923,  log likelihood=-273.67,  aic=559.33
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Residuals of Model 1: AR(4)
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Model 2: MA(3)
> fit2

Call: arima(x = my.ts, order = c(0, 0, 3))

Coefficients:

ma1     ma2     ma3  intercept

1.5711  1.0056  0.3057     0.6359

s.e.  0.0662  0.0966  0.0615     0.2604

sigma^2=0.9098,  log likelihood=-275.64,  aic=561.29
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Residuals of Model 2: MA(3)
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Model 3: ARMA(1,1)
> fit3

Call: arima(x = my.ts, order = c(1, 0, 1))

Coefficients:

ar1     ma1  intercept

0.6965  0.7981     0.6674

s.e.  0.0521  0.0400     0.3945

sigma^2=0.9107, log likelihood=-275.72,  aic=559.43
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Residuals of Model 3: ARMA(1,1)
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Model 4: ARMA(2,1)
> fit4

Call: arima(x = my.ts, order = c(2, 0, 1))

Coefficients:

ar1      ar2     ma1  intercept

0.8915  -0.2411  0.7061     0.6420

s.e.  0.0855   0.0856  0.0625     0.3208

sigma^2=0.8772, log likelihood=-272.01, aic=554.02
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Residuals of Model 4: ARMA(2,1)
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Model 5: ARMA(4,1)
> fit5

Call: arima(x = my.ts, order = c(4, 0, 1))

Coefficients:

ar1      ar2     ar3      ar4     ma1  intercept

1.0253  -0.4693  0.2190  -0.1280  0.5733     0.6312

s.e.  0.1725   0.2658  0.2124   0.1062  0.1653     0.2930

sigma^2=0.8708, log likelihood=-271.3, aic = 556.59
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Residuals of Model 5: ARMA(4,1)
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Summary of the Order Choice Problem
• Regarding ACF/PACF, all 5 models are plausible

 ARMA(2,1) would be my favorite

• The residuals look fine (i.e. independent) for all 5 models
 no further evidence for a particular model

• Regarding AIC, the ARMA models do better
 ARMA(2,1) would be my favorite

• Significance of the coefficients
 excludes the ARMA(4,1) as the last contender

Best choice: ARMA (2,1)
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Time Series Regression
Idea:

t=2   t=3   t=4

tY

1tx

2tx

tE

4 0 1 41 2 42 tY x x E     
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Time Series Regression
• We speak of time series regression if response and predictors 

are time series, i.e. if they were observed in a sequence.

• In principle, it is perfectly fine to apply the usual OLS setup

Be careful: this assumes that the errors are uncorrelated.

• With correlated errors, the estimates      are still unbiased, but 
more efficient estimators than OLS exist. The standard errors 
are wrong, often underestimated, causing spurious significance.

• The Generalized Least Squares procedure solves the issue! 

0 1 1 ...t t q tp tY x x E      

ˆ
j
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Example 1: Global Temperature
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Example 1: Global Temperature
Temperature = Trend + Seasonality + Remainder

 Recordings from 1971 to 2005, 

 The remainder term is usually a stationary time series, 
thus it would not be surprising if the regression model
features correlated errors. 

 The applied question which is of importance here is
whether there is a significant trend, and a significant
seasonal variation

2 [ " "] 12 [ " "]0 1 1 ... 1 ,· month Feb mont Dect h tt EY          

420n 
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Example 2: Air Pollution
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Example 2: Air Pollution
Oxidant = Wind + Temperature + Error

 Recordings from 30 consecutive days, 

 The data are from the Los Angeles basin, USA

 The pollutant level is influence by both wind and tem-
perature, plus some more, unobserved variables.

 It is well conceivable that there is "day-to-day memory" 
in the pollutant levels, i.e. there are correlated errros.

0 1 1 2 2t t t tY x x E     

30n 
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Example 2: Air Pollution
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Finding Correlated Errors
1) Start by fitting an OLS regression and analyze residuals
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Finding Correlated Errors
2) Continue with a time series plot of OLS residuals

1970 1975 1980 1985 1990 1995 2000 2005

-0
.2

0.
0

0.
2

0.
4

dat$time

re
si

d(
fit

.lm
)

Residuals of the lm() Function



229Marcel Dettling, Zurich University of Applied Sciences

Applied Time Series Analysis
SS 2015 – Time Series Regression

Finding Correlated Errors
3) Also analyze ACF and PACF of OLS residuals
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Model for Correlated Errors
 It seems as if an AR(2) model provides an adequate

model for the correlation structure observed in the
residuals of the OLS regression model.

> fit.ar2 <- ar.burg(resid(fit.lm)); fit.ar2

Call: ar.burg.default(x = resid(fit.lm))

Coefficients:
1       2  

0.4945  0.3036  

Order selected 2  sigma^2 estimated as  0.00693

Residuals of this AR(2) model must look like white noise!
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Does the Model Fit?
5) Visualize a time series plot of the AR(2) residuals
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Does the Model Fit?
5) ACF and PACF plots of AR(2) residuals

0 5 10 15 20 25

-1
.0

-0
.5

0.
0

0.
5

1.
0

Lag

AC
F

ACF of AR(2) Residuals

0 5 10 15 20 25

-1
.0

-0
.5

0.
0

0.
5

1.
0

Lag

P
ar

tia
l A

C
F

ACF of AR(2) Residuals



233Marcel Dettling, Zurich University of Applied Sciences

Applied Time Series Analysis
SS 2015 – Time Series Regression

Global Temperature: Conclusions
• The residuals from OLS regression are visibly correlated.

• An AR(2) model seems appropriate for this dependency.

• The AR(2) yields a good fit, because its residuals have
White Noise properties. We have thus understood the
dependency of the regression model errros.

We need to account for the correlated errors, else the
coefficient estimates will be unbiased but inefficient, and
the standard errors are wrong, preventing successful
inference for trend and seasonality
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Air Pollution: OLS Residuals
Time series plot: dependence present or not?
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Air Pollution: OLS Residuals
ACF and PACF suggest: there is AR(1) dependence
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Pollutant Example
> summary(erg.poll,corr=F)

Call: lm(formula = Oxidant ~ Wind + Temp, data = pollute)

Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept) -5.20334   11.11810  -0.468    0.644    

Wind        -0.42706    0.08645  -4.940 3.58e-05 ***

Temp         0.52035    0.10813   4.812 5.05e-05 ***

Residual standard error: 2.95 on 27 degrees of freedom

Multiple R-squared: 0.7773, Adjusted R-squared: 0.7608 

F-statistic: 47.12 on 2 and 27 DF,  p-value: 1.563e-09
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Pollutant Example
> summary(erg.poll,corr=F)

Call: lm(formula = Oxidant ~ Wind + Temp, data = pollute)

Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept) -5.20334   11.11810  -0.468    0.644    

Wind        -0.42706    0.08645  -4.940 3.58e-05 ***

Temp         0.52035    0.10813   4.812 5.05e-05 ***

Residual standard error: 2.95 on 27 degrees of freedom

Multiple R-squared: 0.7773, Adjusted R-squared: 0.7608 

F-statistic: 47.12 on 2 and 27 DF,  p-value: 1.563e-09
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Durbin-Watson Test 
• The Durbin-Watson approach is a test for autocorrelated

errors in regression modeling based on the test statistic:

• This is implemented in R: dwtest() in library(lmtest). 
A p-value for the null of no autocorrelation is computed.

• This test does not detect all autocorrelation structures. If the
null is not rejected, the residuals may still be autocorrelated.

Never forget to check ACF/PACF of the residuals!
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Durbin-Watson Test 
Example 1: Global Temperature
> library(lmtest)

> dwtest(fit.lm)

data:  fit.lm

DW = 0.5785, p-value < 2.2e-16

alt. hypothesis: true autocorrelation is greater than 0

Example 2: Air Pollution
> dwtest(fit.lm)

data:  fit.lm

DW = 1.0619, p-value = 0.001675

alt. hypothesis: true autocorrelation is greater than 0
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Generalized Least Squares
 See the blackboard for full explanation

• OLS regression assumes a diagonal error covariance matrix, 
but there is a generalization to .  

• If we find             , the regression model can be rewritten as:

with

• One obtains the generalized least square estimates: 
with

2( )Var E  

1 1 1

* * *

y X E
S y S X S E
y X E






  

 
 
  * 2( )Var E I

1 1 1ˆ ( )T TX X X y      1 1 2ˆ( ) ( )TVar X X   

TSS 
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Generalized Least Squares
For using the GLS approach, i.e. for correcting the dependent
errors, we need an estimate of the error covariance matrix . 

The two major options for obtaining it are:

1) Cochrane-Orcutt (for AR(p) correlation structure only)
iterative approach: i)   ,   ii)    ,   iii) 

2) GLS (Generalized Least Squares, for ARMA(p,q))
simultaneous estimation of and

 Full explanation of the two different approaches is
provided on the blackboard!  


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
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GLS: Syntax
Package nlme has function gls(). It does only work if the
correlation structure of the errors is provided. This has to be
determined from the residuals of an OLS regression first.

> library(nlme)
> corStruct <- corARMA(form=~time, p=2)
> fit.gls <- gls(temp~time+season, data=dat,

correlation=corStruct)

The output contains the regression coefficients and their
standard errors, as well as the AR-coefficients plus some
further information about the model (Log-Likeli, AIC, ...).
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GLS: Residual Analysis
The residuals from a GLS must look like coming from a time 
series process with the respective structure:
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GLS/OLS: Comparison of Results
 The trend in the global temperature is significant!

> coef(fit.lm)["time"]
time 

0.01822374 
> confint(fit.lm, "time")

2.5 %    97.5 %
time 0.01702668 0.0194208

> coef(fit.gls)["time"]
time 

0.02017553 
> confint(fit.gls, "time")

2.5 %     97.5 %
time 0.01562994 0.02472112

OLS

GLS
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GLS/OLS: Comparison of Results
 The seasonal effect is not significant!

> drop1(fit.lm, test="F")
temp ~ time + season

Df Sum of Sq RSS     AIC  F value  Pr(F)    
<none>               6.4654 -1727.0                    
time    1   14.2274 20.6928 -1240.4 895.6210 <2e-16 ***
season 11    0.1744  6.6398 -1737.8   0.9982 0.4472

> anova(fit.gls)
Denom. DF: 407 

numDF F-value p-value
(Intercept)     1 78.40801  <.0001
time            1 76.48005  <.0001
season         11  0.64371  0.7912

OLS

GLS
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Example 1: Global Temperature
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Air Pollution: Results
Both predictors are significant with both approaches...

> confint(fit.lm, c("Wind", "Temp"))
2.5 %     97.5 %

Wind -0.6044311 -0.2496841
Temp  0.2984794  0.7422260

> confint(fit.gls, c("Wind", "Temp"))
2.5 %     97.5 %

Wind -0.5447329 -0.2701709
Temp  0.2420436  0.7382426

 But still, it is important to use GLS with correlated errors!

OLS

GLS
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Simulation Study: Model
We want to study the effect of correlated errors on the quality of 
estimates when using the least squares approach:

where       is from an AR(1)-process with                  and            .

We generate 100 realizations from this model and estimate the 
regression coefficient and its standard error by:

1) LS
2) GLS

/ 50tx t
22t t t ty x x E  

0.65   0.1 tE
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Simulation Study: Series

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Series Yt

x

y

Series Et

Time

e

0 10 20 30 40 50
-0

.2
0

-0
.1

0
0.

00
0.

05
0.

10



250Marcel Dettling, Zurich University of Applied Sciences

Applied Time Series Analysis
SS 2015 – Time Series Regression
Simulation Study: ACF of the Error Term
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Simulation Study: Results
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Missing Input Variables
- (Auto-)correlated errors are often caused by the non-

presence of crucial input variables.

- In this case, it is much better to identify the not-yet-present -
variables and include them in the analysis.

- However, this isn‘t always possible.

 regression with correlated errors can be seen as a sort 
of emergency kit for the case where the non-present 
variables cannot be added.
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Example: Ski Sales
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Ski Sales: Residual Diagnostics
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Ski Sales: ACF/PACF of Residuals
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Ski Sales: Model with Seasonal Factor
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Residuals from Seasonal Factor Model
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Residuals from Seasonal Factor Model
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Ski Sales: Summary
• the first model (sales vs. PDI) showed correlated errors

• the Durbin-Watson test failed to indicate this correlation

• this apparent correlation is caused by ommitting the season

• adding the season removes all error correlation!

 the emergency kit „time series regression“ is, 
after careful modeling, not even necessary in
this example. This is quite often the case!
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Non-Stationary Models: ARIMA and SARIMA
Why?

We have seen that many time series we encounter in prac-
tice show trends and/or seasonality. While we could de-
compose them and model the stationary part, it might also 
be attractive to directly model a non-stationary series.

How does it work?
There is a mechanism, "the integration" or "the seasonal
integration" which takes care of the deterministic features, 
while the remainder is modeled using an ARMA(p,q).

There are some peculiarities!
 see blackboard!



261

Applied Time Series Analysis
SS 2015 – ARIMA, SARIMA & GARCH 

Example: Monthly Oil Prices
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Taking the Logarithm is Key
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Differencing Yields a Stationary Series
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ARIMA(p,d,q)-Models
Idea: Fit an ARMA(p,q) to a time series where the dth

order difference with lag 1 was taken before. 

Example: If                                                                   ,
then  

Notation: With backshift-operator B()

Stationarity: ARIMA-models are usually non-stationary!

Advantage: it‘s easier to forecast in R!

1 (1 ) ~ ( , )t t t tY X X B X ARMA p q   

( )(1 ) ( )d
t tB B X B E   

~ ( ,1, )tX ARIMA p q
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ACF/PACF of the Differenced Series
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Fitting an ARIMA in R
We start by fitting an ARIMA(1,1,2) to the oil series:

> arima(lop, order=c(1,1,2))

Call:
arima(x = lop, order = c(1, 1, 2))

Coefficients:
ar1      ma1      ma2

0.8429  -0.5730  -0.3104
s.e.  0.1548   0.1594   0.0675

sigma^2 = 0.0066:  ll = 261.88,  aic = -515.75
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Alternative Fitting
Instead of fitting an ARIMA(1,1,2) to the logged oil series,
we can also take the differenced log-oil series and fit an
ARMA(1,2) to it.

IMPORTANT:

In this case, we have to do fitting without including an 
intercept (why?), thus:

> arima(diff(log(oil.price)), order=c(1,0,2),
include.mean=FALSE)
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Meaning of the Model / Recipe
We can rewrite the ARIMA(1,1,2) model as an ARMA(2,2),
see blackboard...

Some guidelines on how to fit ARIMA models to observed
time series can also be found on the blackboard...
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Residual Analysis of the ARIMA(1,1,2)
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SARIMA(p,d,q)(P,D,Q)s

= a.k.a. Airline Model. We are looking at the log-trsf. airline data 

Log-Transformed Airline Data

Time

A
irP

as
se

ng
er

s

1950 1952 1954 1956 1958 1960

10
0

20
0

30
0

40
0

60
0



271Marcel Dettling, Zurich University of Applied Sciences

Applied Time Series Analysis
SS 2015 – ARIMA, SARIMA & GARCH 

Seasonal Differencing Helps…
or at the log-transformed Australian Beer Production 
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… But More Is Needed!
or at the log-transformed Australian Beer Production 
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SARIMA(p,d,q)(P,D,Q)s

We perform some differencing… ( see blackboard)
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ACF/PACF of SARIMA(p,d,q)(P,D,Q)s
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Modeling the Airline Data
Since there are “big gaps” in ACF/PACF:

This is an MA(13)-model with many coefficients equal to 0,
or equivalently, a SARIMA(0,1,1)(0,1,1)12.

Note: Every SARIMA(p,d,q)(P,D,Q)s can be written as 
an ARMA(p+sP,q+sQ), where many coefficients
will be equal to 0.

12
1 1(1 )(1 )t tZ B B E   

1 1 1 12 1 1 13t t t tE E E E        
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SARIMA(p,d,q)(P,D,Q)s

The general notation is:

Interpretation:

- one typically chooses d=D=1
- s = periodicity in the data (season)
- P,Q describe the dependency on multiples of the period
 see blackboard...

(1 ) (1 )

( ) ( ) ( ) ( )

d s D
t t

s s
s t s t

Z B B X

B B Z B B E

  

    
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Forecasting Airline Data
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Residual Analysis of SARIMA(0,1,1)(0,1,1)
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Outlook to Non-Linear Models
What are linear models?

Models which can be written as a linear combination of
i.e. all AR-, MA- and ARMA-models

What are non-linear models?
Everything else, e.g. non-linear combinations of , 
terms like in the linear combination, and much more!  

Motivation for non-linear models?
- modeling cyclic behavior with quicker increase then decrease
- non-constant variance, even after transforming the series

tX

tX
2
tX
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SMI Log-Returns

SMI Log-Returns
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Normal Plot of SMI Log-Returns
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ACF of SMI Log-Returns
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ACF of of Squared SMI Log-Returns
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The ARCH / GARCH Model
 See blackboard...
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Model Choice
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Fitting an ARCH(2) Model
R allows for convenient fitting...

> fit <- garch(lret.smi, order = c(0,2)) 
> fit

Call: garch(x = lret.smi, order = c(0, 2))

Coefficient(s):
a0         a1         a2  

6.568e-05  1.309e-01  1.074e-01
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Forecasting with Time Series
Goal: Prediction of future observations with a measure of 

uncertainty (confidence interval)

Note: - will be based on a stochastic model
- builds on the dependency structure and past data
- is an extrapolation, thus to take with a grain of salt
- similar to driving a car by using the rear window mirror
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Forecasting, More Technical
Past                                    Future

|      |      |    …                |      |      |      |    …          |

x1 x2 x3 xn-1 xn Xn+1 Xn+2 Xn+k

observed                                 forecast

observations                            estimates             

 1 1, , n
nx x X  1,1: ,1:

ˆ ˆ, ,n n n k nX X 
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Sources of Uncertainty in Forecasting
There are 4 main sources of uncertainty:

1) Does the data generating model from the past 
also apply in the future? Or are there any breaks?

2) Is the AR(p)-model we fitted to the data
correctly chosen? What is the “true” order?

3) Are the parameters              ,       and accurately
estimated? How much do they differ from the “truth”?

4) The stochastic variability coming from the innovation

 we will here restrict to short-term forecasting!

 1, , nx x

1,..., p  2
E 

tE
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How to Forecast?
Probabilistic principle for point forecasts:

 we forecast the expected value, given our observations

Probabilistic principle for prediction intervals:

 we use the conditional variance

, 1
ˆ | n

n k n n kX E X X    

 1| n
n kVar X X
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How to Apply the Principles?
• The principles provide a nice setup, but are only useful and 

practicable under additional assumptions.

• For stationary AR(1)-processes with normally distributed 
innovations, we can apply the principles and derive formulae

 see blackboard for the derivation!
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AR(1): 1-Step Forecast
The 1-step forecast for a shifted AR(1) process with mean is:

with prognosis interval

Note that when are plugged-in, this adds additional 
uncertainty which is not accounted for in the prognosis interval, i.e. 

1,
ˆ 1.96n n EX   

1, 1
ˆ ( )n n nX x m m   

1 1 1
ˆ( ) ( | )n

n nVar X Var X X 

1ˆ ˆ ˆ, , E  

m
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Simulation Study
We have seen that the usual prognosis interval is too small. But by
how much? A simulation study yields some insight:

Generated are 10‘000 1-step forecasts on a time series that was 
generated from an AR(1) process with . The series length
was variable.

The 95%-prognosis interval was determined and it was checked
whether it included the true value or not. The empirically estimated
confidence levels were:

n=20 n=50       n=100 n=200
91.01% 93.18%   94.48%     94.73%

0.5 
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AR(1): k-Step Forecast
The k-step forecast for an AR(1) process is:

with prognosis interval based on

It is important to note that for           , the expected value and the 
variance from above go to      and       respectively.  

1
2 2

, 1
1

( | ) 1
k

n j
n k n E

j
Var X X  






 
   
 



, 1
ˆ ( )k

n k n nX x m m   

 2
X

k 
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Forecasting the Beaver Data
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Forecasting AR(p)
The principle is the same, forecast and prognosis interval are:

and

The computations are more complicated, but do not yield any
further insight. We are thus doing without.

1-step-forecast:

k-step-forecast:

If an observed value is available, we plug it in. Else, the forecast is
determined in a recursive manner.

1[ | ]n
n kE X X 1( | )n

n kVar X X

1,1: 1 1
ˆ ( ) ... ( )n n n p n pX x m x m m        

,1: 1 1,1: ,1:
ˆ ˆ ˆ( ) ... ( )n k n n k n p n k p nX X m X m m          
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Forecasting the Lynx Data
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Forecasting: Remarks
• AR(p) processes have a Markov property. Given the model 

parameters, we only need the last     observations to compute 
the forecast.

• The prognosis intervals are not simultaneous prognosis
intervals, and they are generally too small. However, 
simulation studies show that this is not excessively so. 

• Retaining the final part of the series, and predicting it with 
several competing models may give hints which one yields 
the best forecasts. This can be an alternative approach for 
choosing the model order   .

p

p
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Sources of Uncertainty in Forecasting
There are 4 main sources of uncertainty:

1) Does the data generating model from the past 
also apply in the future? Or are there any breaks?

2) Is the ARMA(p,q)-model we fitted to the data
correctly chosen? What is the “true” order?

3) Are the parameters        ,       and accurately
estimated? How much do they differ from the “truth”?

4) The stochastic variability coming from the innovation

 we will here restrict to short-term forecasting!

 1, , nx x

,  2
E 

tE
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How to Forecast?
Probabilistic principle for point forecasts:

 we forecast the expected value, given our observations

Probabilistic principle for prediction intervals:

 we use the conditional variance

, 1
ˆ | n

n k n n kX E X X    

 1| n
n kVar X X
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How to Apply the Principles?
• The principles provide a nice setup, but are only useful and 

practicable under additional assumptions.

• Whereas for AR(p), knowing the last p observations is 
sufficient for coming up with a forecast, ARMA(p,q) models 
require knowledge about the infinite past.

• In practice, one is using recursive formulae

 see blackboard for the derivation in the MA(1) case!
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MA(1) Forecasting: Summary
• We have seen that for an MA(1)-process, the k-step 

forecast for k>1 is equal to    . 

• In case of k=1, we obtain for the MA(1)-forecast:

The conditional expectation is (too) difficult to compute

• As a trick, we not only condition on observations 1,…,n, 
but on the infinite past:

m

1, 1 1
ˆ [ | ]n

n n nX E E X    

: [ | ]n
n ne E E X 
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MA(1) Forecasting: Summary
• We then write the MA(1) as an AR(∞) and solve the model 

equation for      :

• In practice, we plug-in the time series observations
where available. For the „early“ times, where we don‘t 
have observations, we plug-in     . 

• This is of course only an approximation to the true MA(1)-
forecast, but it works well in practice, because of:

nE

1
0

( ) ( )j
n n j

j

E X m





   

1| | 1 

n jx 

m̂
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ARMA(p,q) Forecasting
As with MA(1)/MA(q) forecasting, we face problems with

which is difficult to compute. We use the same tricks as for 
MA(1) and obtain

where …

1[ | ]n
n jE E X  

,
1

ˆ ( [ | ] )
p

n
n k n i n k i

i

X E X X     


  

1

[ | ] [ | ]
q

n n
n k j n k j

j

E E X E E X    


 
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ARMA(p,q) Forecasting
…where

if t≤n

if t>n

and

if t≤n

0 if t>n 

with

[ | ]n
tE X X  

tx

,
ˆ

t nX

[ | ]n
tE E X  

te

1 1
( )

p q

t t i t i j t j
i j

e x x e    
 

     
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ARMA(p,q) Forecasting: Douglas Fir
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ARMA(p,q) Forecasting: Example
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Forecasting with SARIMA
Time series with a trend and/or seasonal effect can either be
predicted after decomposing or with exponential smoothing. It
is also very easy and quick to predict from a SARIMA model.

• The SARIMA model is fitted in R as usual. Then, we can
simply employ the predict() command and obtain the
forecast plus a prediction interval.

• Technically, the forecast comes from the non-stationary
ARMA(p,q)-formulation of the SARIMA model.

• The disadvantage of working with SARIMA forecasts is that it
has somewhat the touch of a black box approach.
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Forecasting with SARIMA: Example

Time
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Marcel Dettling, Zurich University of Applied Sciences
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Forecasting Decomposed Series
The principle for forecasting time series that are decomposed
into trend, seasonal effect and remainder is:

1) Stationary Remainder
Is usually modelled with an ARMA(p,q), so we can generate
a time series forecast with the methodology from before.

2) Seasonal Effect
Is assumed as remaining “as is”, or “as it was last” (in the
case of evolving seasonal effect) and extrapolated.

3) Trend
Is either extrapolated linearly, or sometimes even manually.

Marcel Dettling, Zurich University of Applied Sciences
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Forecasting Decomposed Series: Example

Unemployment in Maine

Time
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5
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Marcel Dettling, Zurich University of Applied Sciences
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Forecasting Decomposed Series: Example

Marcel Dettling, Zurich University of Applied Sciences

Logged Unemployment in Maine
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Forecasting Decomposed Series: Example

Marcel Dettling, Zurich University of Applied Sciences

STL-Decomposition of Logged Maine Unemployment Series
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Forecasting Decomposed Series: Example

Marcel Dettling, Zurich University of Applied Sciences
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Forecasting Decomposed Series: Example

Marcel Dettling, Zurich University of Applied Sciences
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Forecasting Decomposed Series: Example

Marcel Dettling, Zurich University of Applied Sciences
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Forecasting Decomposed Series: Example
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Forecast of Logged Unemployment in Maine
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Forecasting Decomposed Series
The principle for forecasting time series that are decomposed
into trend, seasonal effect and remainder is:

1) Stationary Remainder
Is usually modelled with an ARMA(p,q), so we can generate
a time series forecast with the methodology from before.

2) Seasonal Effect
Is assumed as remaining “as is”, or “as it was last” (in the
case of evolving seasonal effect) and extrapolated.

3) Trend
Is either extrapolated linearly, or sometimes even manually.

Marcel Dettling, Zurich University of Applied Sciences
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Forecasting Decomposed Series: Example

Unemployment in Maine
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Marcel Dettling, Zurich University of Applied Sciences
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Forecasting Decomposed Series: Example

Marcel Dettling, Zurich University of Applied Sciences

Logged Unemployment in Maine
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Forecasting Decomposed Series: Example

Marcel Dettling, Zurich University of Applied Sciences

STL-Decomposition of Logged Maine Unemployment Series
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Forecasting Decomposed Series: Example

Marcel Dettling, Zurich University of Applied Sciences
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Forecasting Decomposed Series: Example

Marcel Dettling, Zurich University of Applied Sciences
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Forecasting Decomposed Series: Example
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Forecasting Decomposed Series: Example

Marcel Dettling, Zurich University of Applied Sciences

Forecast of Logged Unemployment in Maine

Time

lo
g(

%
)

1996 1998 2000 2002 2004 2006 2008

1.
0

1.
2

1.
4

1.
6

1.
8



326Marcel Dettling, Zurich University of Applied Sciences

Applied Time Series Analysis
SS 2015 – Forecasting

Simple Exponential Smoothing
This is a quick approach for estimating the current level of a time 
series, as well as for forecasting future values. It works for any 
stationary time series without a trend and season. 

The simple, intuitive idea behind is:

where                                   and

The weights are often chosen to be exponentially decaying,
two examples with different parameters are on the next slide. 
However, there is also a deeper mathematical notion of ExpSmo.

 See the blackboard for the derivation...

1

1,1:
0

ˆ
n

n n i n i
i

X w x


 


 0 1 2 ... 0w w w   
1

0
1

n

i
i

w



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Choice of Weights
An usual choice are exponentially decaying weights:

where (1 )i
iw    (0,1) 
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Simple Exponential Smoothing: Summary
What is it?
- A method for estimating and forecasting the conditional mean

Basic notion:
- is the conditional expectation, which we try to estimate

from the data. The estimate     is called level of the series. 
- is a completely random innovation term.

Estimation of the level: two notions exist…
- Weighted updating:
- Exponential smoothing: 

t t tX E 

t

tE
ta

1(1 )t t ta x a    

0
(1 )i

t t i
i

a x 





 



329Marcel Dettling, Zurich University of Applied Sciences

Applied Time Series Analysis
SS 2015 – Forecasting

Forecasting with Exponential Smoothing
The forecast, for any horizon          is:

Hence, the forecast is given by the current level, and it is 
constant for all horizons    . However, it does depend on the
choice of the smoothing parameter    . In R, a data-adaptive
solution is available by minimizing SS1PE:

1-step-prediction-error:   

The solution needs to be found with numerical optimization.

,1:
ˆ

n k n nX a 

0k 

k


;1:( 1) 1
ˆ

t t t t t te x X x a    

2

2

ˆ arg min
n

t
i

e


 
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Exponential Smoothing: Example

Complaints to a Motorizing Organization
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Exponential Smoothing: Example
> fit  <- HoltWinters(cmpl, beta=F, gamma=F)

Holt-Winters exponential smoothing without trend 
and without seasonal component.

Smoothing parameters:
alpha:  0.1429622 
beta :  FALSE 
gamma:  FALSE 

Coefficients:
[,1]

a 17.70343
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Exponential Smoothing: Example
Holt-Winters filtering
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Holt-Winters Method
Purpose:

- is for time series with deterministic trend and/or seasonality
- is still a heuristic, model-free approach
- again based on weighted averaging

Is based on these 3 formulae:

 See the blackboard for the derivation...

1 1

1 1

( ) (1 )( )
( ) (1 )
( ) (1 )

t t t p t t

t t t t

t t t t p

a x s a b
b a a b
s x a s

 
 
 

  

 



    
   
   
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Holt-Winters: Example
Sales of Australian White Wine
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Holt-Winters: Example
Logged Sales of Australian White Wine
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Holt-Winters: R-Code and Output
> HoltWinters(x = log(aww)) 

Holt-Winters exponential smoothing with trend and 
additive seasonal component.

Smoothing parameters:
alpha:  0.4148028; beta :  0; gamma:  0.4741967 

Coefficients:
a    5.62591329; b    0.01148402
s1  -0.01230437; s2   0.01344762; s3   0.06000025
s4   0.20894897; s5   0.45515787; s6  -0.37315236
s7  -0.09709593; s8  -0.25718994; s9  -0.17107682
s10 -0.29304652; s11 -0.26986816; s12 -0.01984965
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Holt-Winters: Fitted Values & Predictions

Holt-Winters filtering
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Holt-Winters: In-Sample Analysis
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Holt-Winters: Predictions on Original Scale
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Exercise
Data:

 use the Australian white wine sales data...
 ... or any other dataset you like

Goal: 

- Find a good model describing these data
- Evaluate which model yields the best predictions
- Generate a 29-month forecast from this model

Method:

 Remove the last 29 observations and mimic oos-forecasting
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Multivariate Time Series Analysis
Idea: Infer the relation between two time series

and                 .

What is the difference to time series regression?

• Here, the two series arise „on an equal footing“, and we are
interested in the correlation between them.

• In time series regression, the two (or more) series are causally
related and we are interested in inferring that relation. There is
an independent and several dependent variables.

• The difference is comparable to the difference between
correlation and regression.

1 1,( )tX X 2 2,( )tX X
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Example: Permafrost Boreholes

A collaboration between the Swiss Institute 
for Snow and Avalanche Research with the
Zurich University of Applied Sciences:

Evelyn Zenklusen Mutter & Marcel Dettling 
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Example: Permafrost Boreholes
• Given is a bivariate time series with 2*92 observations

• 2 measurements were made everyday in summer 2006

• Series 1: air temperature at Platthorn 3345m

• Series 2: soil temperature at Hörnli hut 3295m

Goal of the analysis:

1) Answer whether changes in the air temperature are
correlated with changes in the soil temperature.

2) If a correlation is present, what is the delay?  
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Air & Soil Temperature Comparison
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Are the Series Stationary?
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How to Proceed?
1) The series seem to have „long memory“

2) Pure AR/MA/ARMA do not fit the data well

 Differencing may help with this

Another advantage of taking differences:

 we infer, whether there is a relation between the changes
in the air temperatures, and the changes in the soil
temperatures. 
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Changes in the Air Temperature
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ACF/PACF for Air Temperature Changes
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Changes in the Soil Temperature
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ACF/PACF for Soil Temperature Changes
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Cross Covariance
The cross correlations describe the relation between two time 
series. However, note that the interpretation is quite tricky!

usual „within series“
covariance

cross covariance,
independent from t

Also, we have:

11 1, 1,( ) ( , )t k tk Cov X X 

22 2, 2,( ) ( , )t k tk Cov X X 

12 1, 2,( ) ( , )t k tk Cov X X 

21 2, 1,( ) ( , )t k tk Cov X X 

12 1, 2, 2, 1, 21( ) ( , ) ( , ) ( )t k t t k tk Cov X X Cov X X k     
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Cross Correlations
It suffices to analyze , and neglect , but we have to
regard both positive and negative lags k.

We again prefer to work with correlations:

which describe the linear relation between two values of and
, when the series is time units ahead.

12 ( )k 21( )k

12
12

11 22

( )( )
(0) (0)

kk 
 



1X
1X

2X k
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Estimation
Cross covariances and correlations are estimated as follows:

and

,    respectively.

The plot of              versus the lag is called the cross
correlogram. It has to be inspected for both + and – . 

12 1, 1 2, 2
1ˆ ( ) ( )( )t k t

t

k x x x x
n

   

12
12

11 22

ˆ ( )ˆ ( )
ˆ ˆ(0) (0)

kk 
 



12ˆ ( )k k
k
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Sample Cross Correlation
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Interpreting the Sample Cross Correlation
The confidence bounds in the sample cross correlation are only 
valid in some special cases, i.e. if there is no cross correlation 
and at least one of the series is uncorrelated.

Important: the confidence bounds are often too small!

For computing them, we need:

This is a difficult problem. We are going to discuss a few special 
cases and then show how the problem can be circumvented.

12ˆ( ( ))Var k
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Special Case 1
We assume that there is no cross correlation for large lags k:

If                     for              , we have for               :

This goes to zero for large k and we thus have consistency.
For giving statements about the confidence bounds, we would 
have to know more about the cross correlations, though.

12 ( ) 0j  | |j m | |k m

 12 11 22 12 12
1ˆ( ( )) ( ) ( ) ( ) ( )

j
Var k j j j k j k

n
    





   
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Special Case 2
There is no cross correlation, but and are both
time series that show correlation „within“:

See the blackboard… for the important example showing that
the cross correlation estimations can be arbitrarily bad!

12 11 22
1ˆ( ( )) ( ) ( )

j
Var k j j

n
  





 

1X 2X
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Special Case 2: Simulation Example
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Special Case 3
There is no cross correlation, and is a White Noise series
that is independent from . Then, the estimation variance
simplifies to:

Thus, the confidence bounds are valid in this case.

However, we introduced the concept of cross correlation to infer
the relation between correlated series. The trick of the so-called
„prewhitening“ helps.

12
1ˆ( ( ))Var k
n
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1X
2X
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Prewhitening
Prewhitening means that the time series is transformed such 
that it becomes a white noise process, i.e. is uncorrelated.

We assume that both stationary processes and can be
rewritten as follows:

and , 

with uncorrelated and . Note that this is possible for
ARMA(p,q) processes by writing them as an AR(∞). The left
hand side of the equation then is the innovation.

1,
0

t i t i
i

U a X



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 2,
0

t i t i
i

V b X




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1X 2X

tU tV
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Cross Correlation of Prewhitened Series
The cross correlation between and can be derived from
the one between and : 

Thus we have:

for all      for all   

Now: generate ; estimate cross correlations; and, by using
the confidence bands, check whether they are signficant

1 2
0 0

( ) ( )UV i i X X
j j

k a b k i j 
 

 

  

( ) 0UV k 
1 2

( ) 0X X k 

tU tV
1X 2X

k k

,t tU V
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Simulation Example
Since we are dealing with simulated series, we know that:

, thus

In practice, we don‘t know the AR-coefficients, but plug-in the
respective estimates:

with

with

We will now analyse the sample cross correlation of and , 
which will also allow to draw conclusions about and .

, , 10.9i t i t tX X E  

1, 1,1 1, 1ˆt t tU X X   1,1ˆ 0.911 

, , 10.9t i t i tE X X   

2, 2,1 2, 1ˆt t tV X X   2,1ˆ 0.822 

tU tV
1X 2X
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Cross Correlation in the Simulation Example
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Cross Correlation in the Simulation Example
We observe that:

- and are white noise processes

- There are no (strongly) significant cross correlations

We conjecture that:

- and are not cross correlated either.

 This matches our „expectations“, or better, true process.

tU tV

1X 2X
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Prewhitening the Borehole Data
What to do:

- ARMA(p,q)-models are fitted to the differenced series

- Best choice: AR(5) for the air temperature differences
MA(1) for the soil temperature differences

- The residual time series are and , White Noise

- Check the sample cross correlation (see next slide)

- Model the output as a linear combination of past
input values: transfer function model.

tU tW
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Prewhitening the Borehole Data
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Transfer Function Models
Properties:

- Transfer function models are an option to describe the
dependency between two time series.

- The first (input) series influences the second (output) 
one, but there is no feedback from output to input.

- The influence from input to output only goes „forward“.

The model is:

2, 2 1, 1
0

( )t j t j t
j

X X E  




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Transfer Function Models
The model is:

-

- and are uncorrelated for all and .

- and are usually correlated.

- For simplicity of notation, we here assume that the
series have been mean centered.

2, 2 1, 1
0

( )t j t j t
j

X X E  




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[ ] 0tE E 
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Cross Covariance
When plugging-in, we obtain for the cross covariance:

- If only finitely many coefficients are different from zero, 
we could generate a linear equation system, plug-in
and      to obtain the estimates    .   

 This is not a statistically efficient estimation method.

21 2, 1, 1, 1, 11
0 0

( ) ( , ) , ( )t k t j t k j t j
j j

k Cov X X Cov X X k j   
 

  
 

 
    

 
 

1̂
21̂ ˆ j
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Special Case: X1,t Uncorrelated
If was an uncorrelated series, we would obtain the
coefficients of the transfer function model quite easily:

However, this is usually not the case. We can then:

- transform all series in a clever way
- the transfer function model has identical coefficients
- the new, transformed input series is uncorrelated

 see blackboard for the transformation

21

11

( )
(0)k
k




1,tX
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Borehole Transformed
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Borehole: Final Remarks
• In the previous slide, we see the empirical cross correlations

of the two series and .

• The coefficients from the transfer function model will be
proportional to the empirical cross correlations. We can al-
ready now conjecture that the output is delayed by 1-2 days.

• The formula for the transfer function model coefficients is: 

21
ˆˆ ˆ ( )
ˆ

Z
k

D

k 




21ˆ ( )k tD tZ

ˆk
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Borehole: R-Code and Results
> dd.air <- resid(fit.air)
> coefs <- coef(fit.air)[1:5])
> zz.soil <- filter(diff(soil.na), c(1, -coefs, sides=1)
> as.int  <- ts.intersect(dd.air, zz.soil)
> acf.val <- acf(as.int, na.action=na.pass)

Transfer Function Model Coefficients:
> multip <- sd(zz.soil, na.rm=..)/sd(dd.air, na.rm=..)
> multip*acf.val$acf[,2,1]

[1]  0.054305137  0.165729551  0.250648114  0.008416697
[5]  0.036091971  0.042582917 -0.014780751  0.065008411
[9] -0.002900099 -0.001487220 -0.062670672  0.073479065

[13] -0.049352348 -0.060899602 -0.032943583 -0.025975790
[17] -0.057824007
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Spectral Analysis
Idea: Time series are interpreted as a combination of 

cyclic components, and thus, a linear combination
of harmonic oscillations.

Why: As a descriptive means, showing the character and
the dependency structure within the series. 

What: It is in spirit, but also mathematically, closely related
to the correlogram

Where:- engineering
- economics
- biology/medicine
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Lynx Data

Log Lynx Data
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Ocean Wave Data
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2-Component-Mixture Data

Time

K
on

fig
 1

0 50 100 150 200 250

0.
02

0.
05

2-Component-Mixture: Series 1

Time

K
on

fig
 2

0 50 100 150 200 250

0.
02

0.
05

2-Component-Mixture: Series 2



378Marcel Dettling, Zurich University of Applied Sciences

Applied Time Series Analysis
SS 2015 – Spectral Analysis
Harmonic Oscillations
The most simple periodic functions are sine and cosine, which 
we will use as the basis of our analysis.

A harmonic oscillation has the following form:

For the derivation, see the blackboard…

• In discrete time, we have aliasing, i.e. some frequencies
cannot be distinguished ( see next slide).

• The periodic analysis is limited to frequencies between 
0 and 0.5, i.e. things we observe at least twice.

( ) cos(2 ) sin(2 )y t t t    
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Aliasing
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Regression Model & Periodogram
We try to write a time series with a regression equation 
containing sine and cosine terms at the fourier frequencies.

 see the blackboard

The most important frequencies within the series, which when 
omitted, lead to pronounced increase in goodness-of-fit.

• This idea is used as a proxy for the periodogram,
 see the blackboard…

• However, if the „true“ frequency is not a fourier 
frequency, we have leakage ( see next 2 slides).
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Periodogram of a Simulated Series
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Periodogram of the Shortened Series
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Properties of the Periodogram
Periodogram and correlogram are mathematically equivalent, 
the former is the fourier transform of the latter.

 see the blackboard for the derivation

Note: this is a reason why we divided by 1/n in the ACV.

• or                  are plotted against

• Estimates seem rather instable and noisy

• On the log-scale, most frequencies are present

• It seems as if smoothing is required for interpretation.

( )kI  log( ( ))kI  k
n
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Periodogram of the Log Lynx Data
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Periodogram of the Ocean Wave Data
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Periodogram of the 2-Component-Mixture
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The Spectrum
Observed time series  Stochastic process

Empirical ACF  Theoretical ACF

Periodogram  Spectrum

There is a link between ACF and periodogram/spectrum

and

respectively. The spectrum is thus the Fourier transformation of 
the ACV.

( ) ( ) cos(2 )
k

f k k  




 

0.5

0.5
( ) ( ) cos(2 )k f k d   




 
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What‘s the Spectrum Good For?
Theorem:  Cramer Representation

Every stationary process can be written as the limit of a linear 
combination consisting of harmonic oscillations with random, 
uncorrelated amplitudes.

• The spectrum characterizes the variance of all these random
amplitudes.

• Or vice versa:                  is the variance between the
frequencies that make the integration limits.

• The spectrum takes only positive values. Thus, not every ACF 
sequence defines a stationary series.

2

1

( )f d



 
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A Few Particular Spectra
• White noise

 the spectrum is constant over all frequencies.

• AR(1), see next slide
 already quite a complicated function 

• ARMA (p,q)
 the characteristic polynoms determine the spectrum

• Note: to generate maxima in the spectrum, we require 
an AR-model, where the order is at least .

1

2 | (exp( 2 )) |( )
| (exp( 2 )) |E

if
i
 


 


 
m

2m
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Spectrum of AR(1)-Processes
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Simulated AR(2)-Process
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ACF/Spectrum of Simulated AR(2)-Process
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Spectral Analysis
• Spectral analysis is a descriptive technique, where the 

time series is interpreted as a linear combination of 
harmonic oscillations.

• The periodogram shows empirically, which frequencies 
are „important“, i.e. lead to a substantial increase in RSS 
when ommitted from the linear combination.

• The spectrum is the theoretical counterpart to the 
periodogram. It can also be seen as the Fourier 
transformation of the theoretical autocovariances.

• The periodogram is a poor estimator for the spectrum: 
it‘s not smooth and inconsistent.
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Improving the Raw Periodogram
1) Smoothing with a running mean

+ simple approach
- choice of the bandwith

2) Smoothing with a weighted running mean
+ choice of the bandwith is less critical
- difficulties shift to the choice of weights

3) Weighted plug-in estimation
+ weighted Fourier trsf. of estimated autocovariances
- choice of weights

4) Piecewise periodogram estimation with averaging
+ can serve as a check for stationarity, too 
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Improving the Raw Periodogram
5) Spectrum of an estimated model 

+ fundamentally different from 1)-4)
- only works for „small“ orders p

6) Tapering
+ further modification of periodogram estimation
+ reduces the bias in the periodogram
+ should always be applied

7) Prewhitening and Rescoloring
+ model fit and periodogram estimation on residuals
+ the effect of the model will be added again
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Modified Periodogram of log(Lynx) Data
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Modified Periodogram of log(Lynx) Data
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State Space Models
Basic idea: There is a stochastic process/time series which

we cannot directly observe, but only under the
addition of some measurement noise.

Thus: We observe the time series ,
with iid measurement errors

Example: = # of fish in a lake
= # estimated number of fish from a sample

Other: - Dynamic linear modeling
- Regression with time-varying coefficients

tX

t t tY X V 
2~ (0, )t VV N 

tX
tY
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State Space Formulation
State space models are always built on two different equations, 
one of which aims for the process, and the other for the measure-
ment noise:

State Equation: , where

Observation Equation:                        , where

All matrices in this model, i.e.                      can be time-varying.
However, often they are time-constant, if anything, then is
adapting over time. 

Note: such models are usually estimated with the Kalman filter.

1t t t tX G X W  ~ (0, )t tW N w

t t t tY F X V  ~ (0, )t tV N v

, , ,t t t tG F w v
tF
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AR(1) with Measurement Noise
We assume that the true underlying process is an AR(1), i.e.

,  

where

are i.i.d. innovations, „process noise“.

In practice, we only observe , as realizations of the process

,  with , i.i.d.

and additionally, the are independent of ,      for all s,t, 
thus they are independent „observation white noise“.    

1 1t t tX X W  

t t tY X V  2~ (0, )t VV N 

ty

2~ (0, )t WW N 

tV sWsX
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More Terminology
We call

the „state equation“, and

the „observation equation“.

On top of that, we remember once again that the „process 
noise“      is an innovation that affects all future values       
and thus also       , whereas      only influences the current
observation    , but no future ones.

1 1t t tX X W  

t t tY X V 

tY
tV

tW t kX 

t kY 
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AR(1)-Example with α=0.7
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ACF/PACF of Xt
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ACF/PACF of Yt
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What is the goal?
The goal of State Space Modeling/Kalman Filtering is:

To uncover the „de-noised“ process Xt from the
observed process Yt.

• The algorithm of Kalman Filtering works with non-
stationary time series, too.

• The algorithm is based on a maximum-likelihood-
principle where one assume normal distortions.

• There are extensions to multi-dimensional state space
models. See blackboard for an example how the state
space formulation of an AR(2) is set up .
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State Space and Kalman Filtering in R
## Load the package for Kalman filtering
library(sspir)

## State Space Formulation
ssf <- SS(y = as.matrix(obs), 

Fmat = function(tt,x,phi) { return(matrix(1)) },
Gmat = function(tt,x,phi) { return(matrix(0.7)) },
Vmat = function(tt,x,phi) { return(matrix(0.5)) },
Wmat = function(tt,x,phi) { return(matrix(0.1)) },
m0 = matrix(0), C0 = matrix(0.1))

## Kalman Filtering
fit  <- kfilter(ssf)
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Kalman Filter Solution
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State Space Formulation of an AR(2)
 see blackboard...
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Dynamic Linear Models
In particular: regression models with time-varying coefficients

Example: the sales of a housing company depend on the
general level of sales in that area at time t, and
on the pricing policy at time t.

This is a regression model with price as the predictor, and the
general sales level as the intercept. They are time-varying:

Here,                    are random elements, noise & perturbations

t t t t tS L P V  

1t t tL L L   1t t t    

, ,t t tV L  
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Simulation Example
 see blackboard...
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Kalman Filtering for Regression
### State Space Formulation
ssf <- SS(y=y.mat, x=x.mat,

Fmat=function(tt,x,phi)  return(matrix(c(x[tt,1],x[tt,2]),2,1)),
Gmat=function(tt,x,phi) return(diag(2)),
Wmat=function(tt,x,phi) return(0.1*diag(2)),
Vmat=function(tt,x,phi) return(matrix(1)),
m0=matrix(c(5,3),1,2),C0=10*diag(2))

## Kalman-Filtering
fit <- kfilter(ssf)
plot(fit$m[,1], type="l", xlab="Time", ylab="Intercept")
plot(fit$m[,2], type="l", xlab="Time", ylab="Slope")
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Kalman Filter Solution
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Summary of Kalman Filtering
Summary:

1) The Kalman Filter is a recursive algorithm

2) It relies on an update idea, i.e. we update the
forecast with the difference .

3) The weight of the update is determined by the
relation between the process variance and the
measurement noise .  

4) This relies on the knowledge of G, F,     ,    . In R
we have procedures where everything is estimated
simultaneously.

1,
ˆ

t tX  1 1,
ˆ( )t t ty Y 

2
W

2
V

2
W

2
V
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Additional Remarks
1) For the recursive approach of Kalman filtering, initial

values are necessary. Their choice is not crucial, their
influence cancels out rapidly.

2) The procedures yield forecast and filter intervals:                     
and

3) State space models are a very rich class. Every 
ARIMA(p,d,q) can be written in state space form, and
the Kalman filter can be used for estimating the
coefficients.

1, 1,
ˆ 1.96t t t tX R   1, 1 1, 1

ˆ 1.96t t t tX R    


