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High-dimensional data
Behavioral economics and genetics (with Ernst Fehr, U. Zurich)

I n = 1′525 persons
I genetic information (SNPs): p ≈ 106

I 79 response variables, measuring “behavior”

p � n

goal: find significant associations
between behavioral responses
and genetic markers
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... and let’s have a look at Nature 496, 398 (25 April 2013)

Challenges in irreproducible research
...
“the complexity of the system and of the tech-
niques ... do not stand the test of further stud-
ies”

I “We will examine statistics more closely and encourage
authors to be transparent, for example by including their
raw data.”

I “We will also demand more precise descriptions of
statistics, and we will commission statisticians as
consultants on certain papers, at the editor’s discretion and
at the referees’ suggestion.”

I “Too few budding scientists receive adequate training in
statistics and other quantitative aspects of their subject.”
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statistics is important...

and its mathematical roots as well !
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P-values for high-dimensional linear models

Y = Xβ0 + ε

want uncertainty quantification!

goal: statistical hypothesis testing

H0,j : β0
j = 0 or H0,G : β0

j = 0 for all j ∈ G ⊆ {1, . . . ,p}

background: if we could handle the asymptotic distribution of
the Lasso β̂(λ) under the null-hypothesis
; could construct p-values

this is very difficult!
asymptotic distribution of β̂ has some point mass at zero,...
Knight and Fu (2000) for p <∞ and n→∞
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; standard bootstrapping and subsampling cannot be used



Low-dimensional projections and bias correction
Or de-sparsifying the Lasso estimator
related work by Zhang and Zhang (2011; publ. 2014)

motivation:

β̂LS,j from projection of Y onto residuals (Xj − X−j γ̂
(j)
LS)

projection not well defined if p > n
; use “regularized” residuals from Lasso on X -variables

Zj = Xj − X−j γ̂
(j)
Lasso



using Y = Xβ0 + ε ;

Z T
j Y = Z T

j Xjβ
0
j +

∑
k 6=j

Z T
j Xkβ

0
k + Z T

j ε

and hence

Z T
j Y

Z T
j Xj

= β0
j +

∑
k 6=j

Z T
j Xk

Z T
j Xj

β0
k︸ ︷︷ ︸

bias

+
Z T

j ε

Z T
j Xj︸ ︷︷ ︸

noise component

; de-sparsified Lasso:

b̂j =
Z T

j Y

Z T
j Xj
−

∑
k 6=j

Z T
j Xk

Z T
j Xj

β̂Lasso;k︸ ︷︷ ︸
Lasso-estim. bias corr.



b̂j is not sparse!... and this is crucial to obtain Gaussian limit
nevertheless: it is “optimal” (see later)

I target: low-dimensional component β0
j

I η := {β0
k ; k 6= j} is a high-dimensional nuisance parameter

; exactly as in semiparametric modeling!
and sparsely estimated (e.g. with Lasso)
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Asymptotic pivot and optimality

Theorem (van de Geer, PB, Ritov & Dezeure, 2013)

√
n(b̂j − β0

j )⇒ N (0, σ2
εΩjj) (j = 1, . . . ,p)

Ωjj explicit expression ∼ (Σ−1)jj optimal!
reaching semiparametric information bound

; asympt. optimal p-values and confidence intervals
if we assume:

I population Cov(X ) = Σ has minimal eigenvalue ≥ M > 0
√

I sparsity for regr. Y vs. X : s0 = o(
√

n/ log(p))“quite sparse”
I sparsity of design: Σ−1 sparse

i.e. sparse regressions Xj vs. X−j : sj ≤ o(
√

n/ log(p))
may not be realistic

I no beta-min assumption !
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It is optimal!
Cramer-Rao



Uniform convergence:

√
n(b̂j − β0

j )⇒ N (0, σ2
εΩjj) (j = 1, . . . ,p)

convergence is uniform over B(s0) = {β; ‖β‖00 ≤ s0}

; honest tests and confidence regions!

and we can avoid post model selection inference
(cf. Pötscher and Leeb)



Simultaneous inference over all components:

√
n(b̂ − β0) ≈ (W1, . . . ,Wp) ∼ Np(0, σ2

εΩ)

; can construct P-values for:

H0,G with any G: test-statistics maxj∈G |b̂j |
since covariance structure Ω is known

and
can easily do efficient multiple testing adjustment since
covariance structure Ω is known!



Alternatives?

I versions of bootstrapping (Chatterjee & Lahiri, 2013)

; super-efficiency
phenomenon!

i.e. non-uniform convergence
Joe Hodges

• good for estimating the zeroes (i.e., j ∈ Sc
0 with β0

j = 0)
• bad for estim. the non-zeroes (i.e., j ∈ S0 with β0

j 6= 0)

I multiple sample splitting (Meinshausen, Meier & PB, 2009)
split the sample repeatedly in two halfs:
• select variables on first half
• p-values using second half, based on selected variables

; avoids (because of sample splitting) over-optmistic
p-values, but potentially suffers in terms of power



Some further remarks on multiple sample splitting

I if the (generalized linear) model is correct:
it “works” for fixed and random design

I in misspecified models:
it “works” for random design for the “best projected
parameter” (see later)

the theoretical justification assumes the variable screening
property:

Ŝ︸︷︷︸
based on 1st half-sample

⊇ S0

(or a slightly relaxed form (PB and Mandozzi, 2014))
; not nice...

but: the method performs rather well in broad simulation study
(Dezeure, PB, Meier and Meinshausen, 2014)



... the method performs rather well in broad simulation study
the heuristic reason:

I B sample splits: p-values P(1)
j , . . . ,P(B)

j for H0,j : β0
j = 0

P(b)
j =

{
1 if j /∈ Ŝ(b)

p-val from t-test on 2nd half-sample if j ∈ Ŝ(b).

I
need to aggregate these
dependent p-values

Leo Breiman

a simple rule (Meinshausen, Meier and PB, 2009)

P(aggr)
j = sample-median(2P(1)

j , . . . ,2P(B)
j )

Paggr
j < 1 ⇐⇒ variable j has been selected in

> 50% of the B sample splits
; an important stability property

the method is conservative



First real data results
where we have collaborated in joint projects

I Motif regression (computational biology)
n = 143, p = 196

with desparsified Lasso and multiple sample splitting:
one significant single variable at 5% level with FWER
multiple testing adjustment

I Riboflavin production with Bacillus Subtilis (genomics)
n = 71, p = 4096

with desparsified Lasso and multiple sample splitting:
one significant single variable at 5% level with FWER
multiple testing adjustment

surprising?
remember the meaning of β0

j :
it measures effect which is adjusted for by all other variables...



Behavioral economics and genetics (with Ernst Fehr, U. Zurich)
n = 1′525, p ≈ 0.5 · 106

(and 79 response variables, measuring “behavior”)

; cannot detect any single variable as significant after
standard multiple testing correction



Hierarchical inference
there is structure!

I 79 response experiments
I 23 chromosomes per response experiment
I groups from hierarchical clustering per chromosome
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do hierarchical FWER adjustment (Meinshausen, 2008)

.  .  .

.. . . . . . . . . . . . .

. . . . . . . . . . . . . . . . .

1 2

1

23 1 23

global

79

significant not significant

1. test global hypothesis
2. if significant: test all single response hypotheses
3. for the significant responses: test all single chromosome hyp.
4. for the significant chromosomes:

test finer groups from hierarchical clustering

; powerful multiple testing with
data dependent adaptation of the resolution level



input:
I a hierarchy of groups/clusters G ⊆ {1, . . . ,p}
I valid p-values for

H0,G : β0
j = 0 ∀j ∈ G vs. HA,G : β0

j 6= 0 for some j ∈ G

output:
p-values for groups/clusters which control the familyw. err. rate
(FWER = P[at least one false positive/rejection])
with hierarchical constraints:

if H0,G is not rejected
=⇒ H0,G̃ not rejected for G̃ lower in the hierarchy/tree

see Meinshausen (2008)
and for general sequential testing principle (Goeman and Solari,
2010)



the essential operation is very simple:

PG;adj = PG ·
p
|G|

, PG = p-value for H0,G

PG;hier−adj = max
D∈T ;G⊆D

PG;adj (“stop when not rejecting at a node”)

I root node: tested at level α
I next two nodes: tested at level ≈ (αf1, αf2) where
|G1| = f1p, |G2| = f2p

I at a certain depth in the tree: the sum of the levels ≈ α
on each level of depth: ≈ Bonferroni correction

if the p-values PG are valid, the FWER is controlled
(Meinshausen, 2008)

reject H0,G if PG;hier−adj ≤ α
=⇒ P[at least one false rejection] ≤ α



optimized procedure:
I using Shaffer’s improvement

exploiting logical relations among hypotheses:
if H0,G is true, all H0,G′ are true for G′ ⊆ G

I using additional sequential-type testing principles
(aka Bonferroni-Holm instead of Bonferroni)

Bonferroni-Holm

Hypotheses to be tested: {1} {2}

1st step:
adjusted p-values : 2P{1} 2P{2}

FWER control (no false rejection at all): α/2 + α/2 = α

If one null hypothesis (e.g. H{1}) is rejected:
do 2nd step with improved multiplicity: P{2}
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α-weight distribution with inheritance procedure
(Goeman and Finos, 2012)
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the main benefit is not primarily the “efficient” multiple testing
adjustment

it is the fact that we automatically (data-driven) adapt to an
appropriate resolution level of the groups

single variable method
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and avoid to test all possible subset of groups...!!!
which would be a disaster from a computational and multiple
testing adjustment point of view



Does this work?
Mandozzi and PB (2014, 2015) provide some theory,
implementation and empirical results for simulation study

when using the multiple sample splitting method
(using the desparsified Lasso is more straightforward)

I fairly reliable type I error control
I reasonable power (and clearly better than single variable

testing method)
single variable method
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an illustration

1 2 345 67 89 1011 1213141516 17 18 1920 2122 2324 252627 28 29 30

S0 = {5,29,11,18,3} , one STD: {11} ,
one GTD of cardinality 3: {23,3,19}

still OK, potential GTD , false detection!
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A “real” test: GWAS (Buzdugan, Kalisch, Schunk, Fehr and PB, 201x)

motivation: find significant associations in the behavioral
economy data

next step: validate the hierarchical inference methodology on a
much better studied problem
The Wellcome Trust Case Control Consortium (2007)

I 7 major diseases
I after missing data handling:

2934 control cases
about 1700–1800 diseased cases (depend. on disease)
approx. 380’000 SNPs per individuum



Crohn’s disease

small groups

SNP group size chrom. gene p-value hit
7 1 IL23R 0.018 yes
1 2 ATG16L1 7 · 10−6 yes

44 5 intergenic 0.009 yes
6 10 LINC01475 0.042 yes
3 10 ZNF365 0.030 yes
1 16 NOD2 2 · 10−4 yes
1 18 intergenic 0.040 yes

some single SNPs are found as significant!

“hit”: SNP (in the group) is found by WTCCC or by WTCCC
replication studies



large groups

SNP group size chrom. p-value
3622 1 0.036
7571 2 0.003

18161 3 0.001
6948 4 0.028

16144 5 0.007
8077 6 0.005

12624 6 0.019
13899 7 0.027
15434 8 0.031
18238 9 0.003

4972 10 0.036
14419 11 0.013
11900 14 0.006

2965 19 0.037
9852 20 0.032
4879 21 0.009

most chromosomes
exhibit
signific. associations

no further resolution
to finer groups



Bipolar disease

only large groups/clusters are found as significant
; that’s “OK”...



Behavioral economics and genomewide association

with Ernst Fehr, University of Zurich

I n = 1525 probands (all students!)
I m = 79 response variables measuring various behavioral

characteristics (e.g. risk aversion) from well-designed
experiments

I p ≈ 0.5 · 106 SNPs (the same SNPs per response)

model: multivariate linear model

Yn×m︸ ︷︷ ︸
responses

= Xn×p︸ ︷︷ ︸
SNP data

βp×m + εn×m︸ ︷︷ ︸
error

; perform hierarchical inference (of course...)



number of significant SNP parameters per response
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response 40 has most significant groups of SNPs

I cannot tell more at the moment...



Software

R-package hdi (Meier, 2013)

contains
I de-sparsified Lasso, Ridge projection method,

multiple sample splitting, stability selection
I hierarchical inference



Conclusions

key concepts for high-dimensional statistics:
I sparsity of the underlying regression vector
• sparse estimator is optimal for prediction/estimation
• non-sparse estimators are optimal for uncertainty

quantification
due to near collinearity of a few covariables (which is to be
expected with p � n)
; inference for single variables is often ill-posed

hierarchical inference is a good way to address these issues



in view of (yet) uncheckable assumptions
;

confirmatory high-dimensional inference
remains an interesting challenge



Thank you!
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I Bühlmann, P. and van de Geer, S. (2011). Statistics for

High-Dimensional Data: Methodology, Theory and Applications.
Springer.

I Meinshausen, N., Meier, L. and Bühlmann, P. (2009). P-values for
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I Bühlmann, P. (2013). Statistical significance in high-dimensional linear
models. Bernoulli 19, 1212-1242.
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I Dezeure, R., Bühlmann, P., Meier, L. and Meinshausen, N. (2014).
High-dimensional inference: confidence intervals, p-values and
R-software hdi. Preprint arXiv:1408.4026


