
Dr. M. Dettling Applied Time Series Analysis SS 2014

Solution to Series 7

1. a) In some areas the variance is much smaller than in others. The “peak” in the middle indicates
that a logarithmic transformation must first be applied to the data. If we look at the correlogram,
we notice that the ordinary autocorrelations decay far too slowly. Even for large lags, they still
lie outside the confidence band:

> plot(d.varve)

> acf(d.varve)

> pacf(d.varve)
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Even the time series of logarithmic data cannot yet be regarded as stationary, since it exhibits
clear trends (first increasing, then decreasing), which can however be eliminated by taking first
differences:

> plot(log(d.varve))

> acf(log(d.varve))

> pacf(log(d.varve))
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The plot of first differences for the transformed series shows that stationarity can now be assumed:

> plot(diff(log(d.varve)))

> acf(diff(log(d.varve)))

> pacf(diff(log(d.varve)))
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b) The correlogram plotted in part a) indicates an ARIMA(1,1,1) process (or perhaps an ARIMA(0,1,1)
process). Fitting these two models, we see that the ARIMA(1,1,1) model is very good at describ-
ing the logarithmic data. In both fitted models, the algorithm converges; of the two models,
ARIMA(1,1,1) has a smaller AIC.

The estimated coefficients are β̂1 = −0.84 for the fitted ARIMA(0,1,1) model and α̂1 = 0.25,

β̂1 = −0.91 for the fitted ARIMA(1,1,1) model. For both models, the estimated mean is
µ̂ = −0.00127, which leads us to assume the data do not need correcting by their mean. Further-
more, the estimated error variances are 0.224 (for the ARIMA(0,1,1) model) and 0.2138 (for the
ARIMA(1,1,1) model).

Thus the ARIMA(0,1,1) model looks as follows:

Yt = Xt −Xt−1

Yt = Et − 0.84 · Et−1; σ2
Et

= 0.224

For the ARIMA(1,1,1) model, we similarly have

Yt = Xt −Xt−1

Yt = 0.25 · Yt−1 + Et − 0.91 · Et−1; σ2
Et

= 0.214

Residuals of the fitted ARIMA(0,1,1) process:
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The first ordinary (=first partial) autocorrelation clearly lies outside the confidence band. Thus
the residuals cannot be considered independent.
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Residuals of the fitted ARIMA(1,1,1) process:
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These residuals no longer exhibit any undesired structure.
R commands:
ARIMA(0,1,1) model:
> mean(diff(log(d.varve))) # -0.001271813

> r.varve.m1 <- arima(log(d.varve), order=c(0,1,1))

> r.varve.m1$code # Code = 0, i.e. convergence

> r.varve.m1

Result:
Call:

arima(x = log(d.varve), order = c(0, 1, 1))

Coefficients:

ma1

-0.8421

s.e. 0.0411

sigma^2 estimated as 0.224: log likelihood = -234.77, aic = 473.53

> plot(resid(r.varve.m1))

> acf(resid(r.varve.m1))

> pacf(resid(r.varve.m1))

ARIMA(1,1,1) model:
> r.varve.m2 <- arima(log(d.varve),order=c(1,1,1))

> r.varve.m2$code # Code = 0, i.e. convergence

> r.varve.m2

Result:
Call:

arima(x = log(d.varve), order = c(1, 1, 1))

Coefficients:

ar1 ma1

0.2461 -0.9140

s.e. 0.0590 0.0234

sigma^2 estimated as 0.2138: log likelihood = -226.65, aic = 459.3

> f.acf(resid(r.varve.m2)) > acf(resid(r.varve.m2))

> pacf(resid(r.varve.m2))

c) The correlation structure of the residuals has already been examined in part b). The residuals of
the ARIMA(1,1,1) process do look normally distributed:
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R commands:
> qqnorm(r.varve.m2$resid)

> qqline(r.varve.m2$resid)

2. a) > library(tseries)

> t.x <- read.table("http://stat.ethz.ch/Teaching/Datasets/WBL/GARCH.dat")

> t.x <- ts(t.x[,1])

> plot(t.x)
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> par(mfrow=c(2,1))

> acf(t.x)

> acf(t.x^2)
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The timeseries is not stationary, since the variance does not seem to be constant.
The ACF-plot shows no dependencies, the ACF-plot of the squared timeseries shows some kind of
exponential decay.

b) > mAIC <- matrix(rep(NA, 9), nrow=3)

> colnames(mAIC) <- c("ARCH0","ARCH1","ARCH2")

> rownames(mAIC) <- c("GARCH0","GARCH1","GARCH2")

> for (i in 0:2){ for (j in 0:2){

if(i!=0 |j!=0){

fit <- garch(t.x,order=c(i,j), trace=F)

mAIC[i+1,j+1] <- AIC(fit)

}}}

> mAIC

ARCH0 ARCH1 ARCH2

GARCH0 NA -1749.609 -1746.861

GARCH1 -1721.815 -1783.530 -1771.216

GARCH2 -1715.435 -1781.700 -1776.897

> min(mAIC, na.rm=T)

[1] -1783.53

The AIC suggests a GARCH(1,1).

c) > fit <- garch(t.x,order=c(1,1), trace=F)

> round(coef(fit),5)

a0 a1 b1

0.00006 0.10222 0.86595

3. • Timeseries 1: ARMA(2,1) with α1 = 0.8, α2 = −0.2, β1 = 0.7.

• Timeseries 2: ARMA(1,3) with α1 = −0.6, β1 = −0.7, β2 = 0.4, β3 = 0.6.

• Timeseries 3: ARIMA(2,1,0) with α1 = 0.4, α2 = −0.5.

The data has been simulated with the R-Code:

> set.seed(7)

> ts1 <- arima.sim(n=200, model=list(order=c(2, 0, 1), ar=c(0.8, -0.2),

ma=c(0.7)))

> ts2 <- arima.sim(n=200, model=list(order=c(1, 0, 3), ar=-0.6,

ma=c(-0.7,0.4,0.6)))

> ts3 <- arima.sim(n=199, model=list(order=c(2, 1, 0), ar=c(0.4, -0.5)))

In order to determine the appropriate order of the models one should check acf and pacf. Then one
should fit several models, that the acf and pacf suggest. The residuals and the AIC should be used
to decide, which model is best and the coefficients for this model estimated.
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4. a) AR(2) with α1 = 0.9 and α2 = −0.5:

The ordinary autocorrelations describe a dampened sine curve, and the partial autocorrelations
are cut off at lag k = 2. For the simulated model (set.seed(79)), the estimate of partial auto-
correlation at lag 2 is ρ̂part(2) = −0.45, which is a reasonably close to its theoretical counterpart,
ρpart(2) = α2 = −0.5.
Plot of theoretical ordinary and partial autocorrelations:
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Plots for a simulated time series of length n = 200:
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AR(2) with ar=c(0.9,-0.5)
Complete R code:
## Plotting theoretical ordinary autocorrelations

> plot(0:30, ARMAacf(ar=c(0.9,-0.5), lag.max=30), type="h", ylab="ACF")

# Plotting theoretical partial autocorrelations

> plot(1:30, ARMAacf(ar=c(0.9,-0.5), lag.max=30, pacf=T), type="h",

ylab="PACF")

## Simulation

> set.seed(79)

> r.sim1 <- arima.sim(n=200, model=list(ar=c(0.9,-0.5)))

## Plotting

> plot(r.sim1)

> acf(r.sim1, lag=30)

> acf(r.sim1, type="partial", lag=30)

> str(acf(r.sim1, type="partial"))

> acf(r.sim1, type="partial")$acf[2]

[1] -0.44574

## Estimate of 2nd partial autocorrelation: -0.44574

b) MA(3) with β1 = 0.8, β2 = −0.5 and β3 = −0.4:
The ordinary autocorrelations are cut off at lag k = 3.
Plot of theoretical ordinary and partial autocorrelations:
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Plots for a simulated time series of length n = 200:
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MA(3) with ma=c(0.8,-0.5,-0.4)

Complete R code:

> plot(0:30, ARMAacf(ma=c(0.8,-0.5,-0.4), lag.max=30), type="h",

ylab="ACF")

> plot(1:30, ARMAacf(ma=c(0.8,-0.5,-0.4), lag.max=30, pacf=T),

type="h", ylab="PACF")

> set.seed(79)

> r.sim2 <- arima.sim(n=200, model=list(ma=c(0.8,-0.5,-0.4)))

> plot(r.sim2)

> acf(r.sim2, lag=30)

> pacf(r.sim2, lag=30)

c) ARMA(1,2) with α1 = −0.75, β1 = −1 and β2 = 0.25:
The ordinary autocorrelations do not have a real cut-off point. Because of this, the MA(2) part of
the model is difficult to identify in the correlogram of ordinary autocorrelations in this example.

However, the autocorrelations do decay exponentially (in absolute terms – their signs alternate),
which indicates that an AR component is present. The partial autocorrelations of an ARMA(1,2)
process should behave like MA(2) for lags k > 1, and its ordinary autocorrelations like AR(1)
for lags k > 2. The partial autocorrelation present here might also allow for an AR(3) model to
describe the ARMA(1,2) model. (This goes into the topic of approximating ARMA by AR(∞)
models.

Plot of theoretical ordinary and partial autocorrelations:
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Plots for a time series of length n = 200:
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ARMA(1,2) with ar=c(-0.75), ma=c(1,-0.25)

(The R code is along the same lines as that of the previous parts.)


