
Dr. M. Dettling Applied Time Series Analysis SS 2014

Solution to Series 5

1. a) > yields <- read.table("http://stat.ethz.ch/Teaching/Datasets/WBL/yields.dat",

header = FALSE)

> t.yields <- ts(yields[, 1])

> plot(t.yields)
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The series looks stationary, but the mean is different from 0, it must therefore be a shifted AR-process.
To see whether the data really is generated from a (shifted) AR-process, we look at the autocorrelation
plots:

> par(mfrow=c(1,2))

> acf(t.yields, ylim=c(-1,1))

> pacf(t.yields, yli=c(-1,1))
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The exponential decay of the magnitude of the coefficients in the acf plot, tells us that data really could
be generated from an AR-process, the pacf plot tells us that its oder p must have been 1. Overall, we
conclude that the underlying model could be an AR(1)-process. The general AR(1) process is

Xt − µ = α(Xt−1 − µ) + Et

Et i.i.d. , E [Et] = 0, Var[Et] = σ2, Et causal

b) Computing the parameters using the Yule-Walker equations:

• The first estimated autocorrelation is given by ρ̂ (1) = −0.390 (R-Code: acf(t.yields, plot=F)).
To fit an AR(1) model, the Yule-Walker equations gives us the following:

ρ̂ (1) = α̂1 · ρ̂ (0) , ρ̂ (0) = 1 =⇒ α̂1 = ρ̂ (1) = −0.390

All the others αi = 0 for i 6= 1, since we fitted an AR(1) process.

• We estimate µ to be µ̂X = 1
n

∑n
t=1Xt = 51.129
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• We estimate σ2 to be σ̂2 = σ̂2
X · (1− α̂2) (This follows from taking variances on both sides of the

equation Xt = α1 ·Xt−1 + Et and then solving for σ2.)

Thus we write the fitted model as

Xt − 51.129 = −0.390(Xt−1 − 51.129) + Et or

Xt = 71.069− 0.390 ·Xt−1 + Et

Computing the parameters using R:

> r.yw <- ar(t.yields, method="yw", order.max=1)

By calling str(r.yw), we can see all the elements of the object“r.yw”, including r.yw$ar = -0.39,
r.yw$x.mean = 51.1 and r.yw$var.pred = 122.

c) Burg algorithm:

> r.burg <- ar(t.yields, method="burg", order.max=1)

When we look at the structure of r.burg we see: r.burg$ar = -0.407, r.burg$x.mean = 51.1

and r.burg$var.pred = 117 for the estimated variance of innovations.

Analysis of residuals:
> plot(r.burg$resid)
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> par(mfrow=c(1,2))

> acf(r.burg$resid, na.action=na.omit)

> pacf(r.burg$resid, na.action=na.omit)

0 5 10 15

−
0.

2
0.

2
0.

6
1.

0

Lag

A
C

F

5 10 15

−
0.

2
0.

0
0.

1
0.

2

Lag

P
ar

tia
l A

C
F

> qqnorm(as.numeric(r.burg$resid), main="Residual normal plot")

> qqline(as.numeric(r.burg$resid))
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The residual plots exhibit stationarity and no longer show any dependence. All autocorrelations lie
inside the confidence band.

The residuals are not perfectly normally distributed, but this is not a big problems, since this is not
really an assumption. The main idea, why we would like to have normally distributed innovations is
because we know that all methods perform best on data which are approximately Gaussian.

d) Maximum-Likelihood method:
Using str(r.mle <- ar(yields, method="mle", order.max=1)), we obtain the parameters α̂ =

−0.419, µ̂ = 51.3 and σ̂2 = 117. However, we do not see whether or not the algorithm actually
converges. It is thus advisable to compute the ML estimates using the procedure arima():
> r.mle <- arima(yields, order=c(1,0,0), include.mean=T)

Then we can call r.mle$code to establish whether or not the algorithm converged (code=0 means
that convergence has occurred, cf. the R help file on the procedure arima()).

R output:

> r.mle <- arima(yields, order=c(1,0,0), include.mean=T)

> r.mle

Call:

arima(x = yields, order = c(1, 0, 0), include.mean = T)

Coefficients:

ar1 intercept

-0.4191 51.2658

s.e. 0.1129 0.9137

sigma^2 estimated as 116.6: log likelihood = -265.98, aic = 537.96

We can now use the estimated standard deviation of intercept to compute a confidence interval for
µ. Incidentally, r.mle$var.coef returns the full estimated covariance matrix of the coefficients:

ar1 intercept

ar1 0.012735551 -0.002962835

intercept -0.002962835 0.834897093

So the variance of the MLE for µ is estimated at 0.835 (giving us a standard error of 0.9137, cf.
above). This now leads to a confidence interval for µ:

[51.259− 1.96
√
0.835, 51.259 + 1.96

√
0.835] = [49.47, 53.05]

This interval can also be computed directly using the following command in R:

> r.mle$coef["intercept"] + c(-1.96,1.96)* sqrt(r.mle$var.coef["intercept", "intercept"])

[1] 49.47491 53.05672

> ## or easier

> confint(r.mle)
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2.5 % 97.5 %

ar1 -0.6402648 -0.1978935

intercept 49.4749458 53.0566899

In summary, these three methods lead to the following estimates of coefficients:
Method α̂ µ̂ σ̂2

Yule-Walker -0.390 51.129 122.0
Burg -0.407 51.129 116.7
Maximum Likelihood -0.419 51.266 116.6

e) Taking the AR(1) structure of the time series into account, the estimated variance of µ satisfies the
following relation:

V̂ar(µ̂) =
1

n2
· γ(0) ·

(
n+ 2 ·

n−1∑
k=1

(n− k)ρ(k)

)

=
1

702
· γ(0) ·

(
70 + 2 ·

69∑
k=1

(70− k)α̂1
k

)

The Burg algorithm gives us V̂ar(µ̂) = 0.854. Thus we have a 95% confidence interval for µ:

µ̂± 1.96 · se(µ̂) = 51.129± 1.96 ·
√
0.854 = [ 49.32 , 52.94 ]

This confidence interval is shorter than the interval [48.36, 53.90] that we obtained in Problem 3 of
Sheet 4. The MLE confidence interval in part c) has about the same length, but is shifted somewhat.

Note:
We can specifically compute V̂ar(µ̂) with R as follows:

> n <- 70

> gamma0 <- r.burg$var.pred / (1 - r.burg$ar^2)

> ## or

> gamma0 <- 69/70 * var(t.yields) # to get the "biased" variance

> alpha.est <- r.burg$ar

> tmp <- ((n-1):1)*(alpha.est^(1:(n-1)))

> var.est <- 1 / (n^2) * gamma0 * (n + 2 * sum(tmp))

> var.est

[1] 0.8540978

> 51.129 + c(-1,1) * 1.96 * sqrt(var.est)

[1] 49.31762 52.94038

2. a) The experimental setup leads us to expect a period of 2 seconds. Since our measurements are spaced
apart by 0.15 seconds, each 2-second period covers 2/0.15 = 13.3 measurements. This period,
however, is subject to fluctuations, which are visible in both the time series plot and the correlogram
of ordinary autocorrelations:
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b) The PACF (see Part a)) is clearly significant for lags up to 6; also lags 9, 10 and 17 are slightly
significant. We could therefore use an AR model of order 6, 9 or 17. Order 17 seems quite high
(and hence difficult to interpret), so orders 6 or 9 would be preferred. However, we cannot see by eye
whether order 6 or 9 is really sufficient; this can be done with a residual analysis, see Part c).

The AIC plot yields similar proposes:
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There is a big jump of the AIC at order 6, and a smaller one at order 9; hence one of these orders
would be plausible to fit the given time series. However, the minimum of the AIC is attained at order
p = 10 (MLE), p = 17 (Yule-Walker) or p = 17 (Burg), respectively.

c) Fitting the AR model (with order p = 9):

> p <- 9

> ar.force <- arima(ts.forceA, order = c(p, 0, 0), method = "ML")

The residuals of this model look as follows:

> par(mfrow = c(2, 2), mar = c(3, 3, 2, 0.1))

> plot(ar.force$residuals, ylab = "residuals")

> acf(ar.force$residuals, type = "partial", plot = TRUE, main = "")

> plot(ts.forceA - ar.force$residuals, ar.force$residuals, xlab = "fitted values",

ylab = "residuals", main = "Tukey-Anscombe plot")

> qqnorm(ar.force$residuals)

> qqline(ar.force$residuals)
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The model with order 9 is acceptable. Its residuals are normally distributed, they have constant
variance, and the correlogram as well as the Tukey-Anscombe plot do not indicate any dependence.
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If we take order p = 6 instead of order p = 9, the residuals look different. They still show some
(weak) correlation, indicating that the order is not sufficient for this time series:
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d) > force.pred <- predict(ar.force, n.ahead = 40)

> plot(window(ts.force, start = 250), ylab = "")

> lines(force.pred$pred, lty = 2)

> lines(force.pred$pred + 1.96*force.pred$se, lty = 3)

> lines(force.pred$pred - 1.96*force.pred$se, lty = 3)
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