
Dr. M. Dettling Applied Time Series Analysis SS 2014

Solution to Series 2

1. a) > hstart <-read.table("http://stat.ethz.ch/Teaching/Datasets/WBL/hstart.dat")

> hstart <- ts(hstart[,1], start=1966, frequency=12)

> plot(hstart)

The time series under investigation is non-stationary (see the plot for Part c). Its non-stationary
properties consist of a trend and deterministic seasonal fluctuations (by month).
We can decompose this time series into its trend, its seasonal fluctuations (month effects) and
the remainder:

Xt = mt + αi〈t〉 + Et

If the trend can be described by a polynomial of degree k, we then have

mt = β0 + β1 · t+ β2 · t2 + . . .+ βk · tk

b) Parametric model:

Xt = β0 + β1 · t+ β2 · t2 + . . .+ β6 · t6 + αi〈t〉 + Et,

where t = 1, . . . , 108 = 12 · 9, i〈t〉 ∈ {1, . . . , 12}.
We model the trend using a polynomial of order 6 and the monthly effects using a factor (see the
plot below). The local maximum of the parametric model in the years 1970-1 is not fit well by
the parametric model. In some other cases this lack of fit at maxima and minima also appears.
However, the lower-order polynomials are even worse at fitting the trend.

> Time <- 1:length(hstart)

> Time2 <- Time/12+1966

> Months <- factor(rep(month.name, length(hstart)/12), levels=month.name)

> H.lm6 <- lm(hstart ~ Months + Time + I(Time^2) + I(Time^3)+

I(Time^4) + I(Time^5) + I(Time^6))

> H.lm3 <- lm(hstart ~ Months + Time + I(Time^2) + I(Time^3))

> H.lm4 <- lm(hstart ~ Months + Time + I(Time^2) + I(Time^3)+I(Time^4))

> H.fit6 <- ts(fitted(H.lm6), start=1966, freq=12)

> H.fit3 <- ts(fitted(H.lm3), start=1966, freq=12)

> H.fit4 <- ts(fitted(H.lm4), start=1966, freq=12)
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c) The non-parametric model STL fits the data better than the parametric one does.
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> H.stl <- stl(hstart, s.window="periodic")

> remainder <- H.stl$time.series[,3]

> plot(hstart)

> H.np <- hstart - remainder

> lines(H.np, col=2, lty=2)
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In the residual time series plot shown below, the discrepancies between the two models are quite
visible. Over certain intervals of time, the residuals of the parametric model differ from zero in
a systematic way.
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R commands for creating the residual plots:

> plot(ts(resid(H.lm6), start=1966, freq=12), lty=3, col=2, ylab="Residuals")

> lines(remainder)

> abline(h=0)

> legend(1966, -22, legend=c("Parametric model","STL"), col=c(2,1), lty=c(3,1))

d) In the following plot, we have the original data, additive seasonal effects, the trend curve and the
residuals (remainder) of the STL decomposition, drawn in order from top to bottom.
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Furthermore, in the“monthplot”of seasonal.var (next figure, right side) we see how the monthly
effects of May to August increase with the years, while the effects of January, September and
December decrease.
So it seems reasonable to take seasonal effects that vary instead of fixed ones. When we remember
the data we are dealing with, I think it is plausible that seasonal effects of starts of residential
construction should vary over time.
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e) The trend line from the special filter is somewhat less smooth than the trend line stemming from
the STL decomposition. However, the smoothness of the STL trend line can be steered by the
smoothness parameter t.window of the procedure stl, e.g. setting this parameter to 25 (cf. R
hint for Part c).
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f) First we remove the seasonal fluctuations by computing Yt = Xt −Xt−12. In the next plot, we
then see that a trend nonetheless remains.
Taking first-order differences of Yt, i.e.

Zt = Yt − Yt−1 = (Xt −Xt−12)− (Xt−1 −Xt−13) ,

finally gives us a stationary series.
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2. a) In the plot below (Part c), the seasonally adjusted time series is shown by a dotted line.

b) See the R hints on the problem sheet.

c) At any given time, both filters use an arithmetic mean of the same observations (±4 time steps).
Their difference lies in the weights assigned to these observations: filter 3 uses smaller weights
for more distant observations – unlike filter 4, which weights them all equally. Thus filter 3 is
better able to track local minima and maxima.

Time

hs
ta

rt

1966 1967 1968 1969 1970 1971 1972 1973 1974 1975

70
90

11
0

13
0

15
0

17
0

19
0

21
0

Time series
Filter 3
Filter 4



5

Time

hs
ta

rt

1966 1967 1968 1969 1970 1971 1972 1973 1974 1975

70
90

11
0

13
0

15
0

17
0

19
0

21
0

Time series
Filter 1
Filter 2

d) Filter 2 and 3 are in fact identical. This is even more evident in the following plot that shows
only them: here the solid and dashed lines are the same.
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A filter with a wide window and weights decreasing away from the centre (such as filter 3) can
thus be written as a multiple application of a filter with constant weights (such as filter 2). This
is a commonly used method of avoiding the use of weights, instead only requiring a choice of
window sizes for the filters used. You will encounter this technique later when smoothing the
periodogram (spectral analysis).

3. The computations of moments and sketches of proofs given here are mainly aimed at those students
with a particular mathematical interest. Subsequent theory will partially revisit this topic. Often
the stationarity (or lack thereof) of a time series is evident from the standard time series plot. The
following plot helps us guess the correct answers for the series we have been given.
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a) Yt = Et − 0.5 · Et−1 is a stationary time series (cf. the plot shown); to be precise, an MA(1)
process (Time Series II). We have

E[Yt] = E[Et]− 0.5 · E[Et−1] = 0 ( = const.)

Cov(Yt, Yt+h) =


−0.5 ·Var(Et−1) = −0.5 h = −1
Var(Et) + 0.52 ·Var(Et−1) = 1.25 h = 0
−0.5 ·Var(Et) = −0.5 h = 1
0 otherwise

(1)

Thus Cov(Yt, Yt+h) is independent of t. For those who are interested, here is a quick sketch of
the proof of Equation (1):

Cov(Yt, Yt−1) = Cov(Et − 0.5 · Et−1, Et−1 − 0.5 · Et−2)

= Cov(Et, Et−1)− 0.5 · Cov(Et, Et−2)

−0.5 · Cov(Et−1, Et−1) + 0.52 · Cov(Et−1, Et−2)

= 0− 0− 0.5 ·Var(Et−1) + 0 = −0.5

etc.

b) Yt = Yt−1 + Et is not stationary (cf. the above plot). We have

E[Yt] = E[Yt−1] + E[Et] = E[Yt−1] = 0 for Y0 = 0

Var(Yt) = Var(Yt−1) + Var(Et) = Var(Yt−1) + 1

=⇒ Var(Yt) is not constant.

(The variance decreases by 1 at every time step)

As a consequence, Cov(Yt, Yt+h) is not constant in t (Take e.g. h = 0).

Note:

• Yt−1 and Et are uncorrelated random variables, since

Cov(Yt−1, Et) = . . . = Cov(Y0, Et) = 0
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• The time series Xt := Yt − Yt−1 of first-order differences is stationary. We obtain Xt = Et.
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Commands for drawing this plot:
> zeitsim <- ts(zeitsim)

> X2 <- diff(zeitsim[,2], lag=1)

> par(mfrow=c(2,1))

> plot(zeitsim[,2],ylab=" ",xlab="Time series Y2")

> plot(X2,ylab=" ",xlab="Time series of first-order differences")

c) Yt = 1
2 · Yt−1 + Et is stationary (an AR(1) process – cf. Chapter 5.1). We have

E[Yt] =
1

2
· E[Yt−1] = 0 for Y0 = 0

Var(Yt) = (
1

2
)2 ·Var(Yt−1) + 1 = 1 +

1

4
+

1

16
+ ... =

∞∑
i=0

(
1

4
)i

=
1

1− 1
4

=
4

3
= const.

(Sum of a geometric series)

With some computational effort, we can show that Cov(Yt, Yt+h) = . . . = 0.5|h| · Var(Yt). Thus
Cov(Yt, Yt+h) = 0.5|h| · 43 , and Cov(Yt, Yt+h) is independent of t.

d) Yt = Yt−1 · Et is not stationary, as Var(Yt) is not constant. It is not easy to show this mathe-
matically, but it is evident from the time series plot.
For this process, new values are about the same as the old ones ±5%.
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Note:

• Y ∗t = Yt/Yt−1 is stationary, and Y ∗t = Et.

• Y ∗∗t = log(Yt)− log(Yt−1) = log(Y ∗t ) is also stationary.
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Note that the plots of Y ∗t and Y ∗∗t differ only in terms of scale.
R commands for the plots above:
> par(mfrow=c(3,1))

> plot(zeitsim[,4],ylab=" ",xlab="Time series Y4")

> Y4 <- zeitsim[,4]

> ts(X4 <- Y4[-1] / Y4[-100])

> plot(X4,ylab=" ",xlab="Ratio time series")

> X <- log(zeitsim[,4])

> X5 <- diff(X, lag=1)

> plot(X5, ylab=" ", xlab="log-ratio time series")

Appendix for R enthusiasts: We can create, and form a matrix out of, the 4 time series in the
following way:

> e1 <- rnorm(100)

> y1 <- filter(e1, c(1, -.5), side = 1)

> y1[1] <- e1[1]

> e2 <- c(0,rnorm(99)) # Y0 must be 0

> y2 <- cumsum(e2)

> e3 <- rnorm(99)

> y3 <- c(0, filter(e3, 0.5, "recursive"))

> e4 <- c(1,runif(n=99, min=0.95, max=1.05))

> y4 <- cumprod(e4)

> zeitsim <- cbind(ts(y1), ts(y2), ts(y3), ts(y4))

(Of course there are also other methods, some of them probably more efficient than this one.)


