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Solution to Series 10

1. a) i) Xt = t+ Et is not stationary, since the expected value E[Xt] = E[t+ Et] = t is not constant.

ii) For the series Yt = Xt −Xt−1 holds

Yt = Xt −Xt−1 = t+ Et − (t− 1 + Et−1) = 1 + Et − Et−1 ,

this means Yt is an MA(1)-process with µ = 1 and β1 = −1, that is stationary.

iii) The series Zt = Xt − t is stationary, since Zt = Xt − t = t+ Et − t = Et .

b) Series Yt: We can calculate the autocovariances:

γ11(k) = Cov(Yt, Yt+k) = Cov(1 + Et − Et−1, 1 + Et+k − Et+k−1)

= Cov(Et, Et+k)− Cov(Et, Et+k−1)− Cov(Et−1, Et+k) + Cov(Et−1, Et+k−1)

=

 2σ2 k = 0
−σ2 k = ±1
0 |k| > 1

Thus we get the autocorrelations:

ρ11(0) = 1 ,

ρ11(±1) =
γ11(1)

γ11(0)
= −1

2
,

ρ11(k) = 0 , for |k| > 1 .

Series Zt: Since Zt = Et is white noise the following holds:
γ22(0) = σ2 und γ22(k) = 0 , für |k| ≥ 1,
Thus ρ22(0) = 1 und ρ22(k) = 0 , für |k| ≥ 1 .

Crosscorrelation between Yt and Zt:
The crosscovariances:

γ12(k) = Cov(Yt+k, Zt) = Cov(1 + Et+k − Et+k−1, Et)

= Cov(Et+k, Et)− Cov(Et+k−1, Et)

=

 σ2 k = 0
−σ2 k = 1
0 else

Thus, the crosscorrelations are given by

ρ12(k) =
γ12(k)√

γ11(0)γ22(0)
=

 1/
√
2 = 0.71 k = 0

−1/
√
2 = −0.71 k = 1

0 else

In this example the crosscorrelation ρ12(k) describes the relation between Yt+k (MA(1)-model) and
Et (white noise). The crosscorrelation is always zero, except for lag 0 and lag 1.

c) Simulation with R:

> t.E <- ts(rnorm(201))

> t.X <- (1:201) + t.E

> t.Y <- diff(t.X)

> t.Z <- t.E

> acf(ts.intersect(t.Y,t.Z), ylim=c(-1,1))
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> ccf(t.Y,t.Z)
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The simulated processes Yt and Zt behave as expected from theory.

2. a) The plots clearly show that the time series are not stationary:

> ts.plot(ts.sales, ts.advert, lty = 1:2)

> legend(c(1950,1950), c(7.1,8.1), legend = c("sales","advert"), lty=1:2, bty="n")
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b) We first remove the missing values (last entry of the time series) and then calculate the first differences:

> ts.adv.d1 <- diff(ts.advert[!is.na(ts.advert)])

> ts.sal.d1 <- diff(ts.sales[!is.na(ts.sales)])

By differencing we can achieve stationarity as the following plots show (more or less):

> source("ftp://stat.ethz.ch/WBL/Source-WBL-2/R/f.acf.R")

> f.acf(ts.adv.d1, main="Advertising: first differences")
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> f.acf(ts.sal.d1, main="Sales: first differences")

Sales: first differences

Time

se
rie

s

0 10 20 30 40 50

−
0.

3
−

0.
1

0.
1

0.
3

0.
0

Lag k

A
ut

o−
K

or
r.

0 5 10 15

−
0.

4
0.

4

Lag k

pa
rt

. A
ut

ok
or

r

1 5 10 15

c) The transfer function model

Y2,t =

∞∑
j=0

νjY1,t−j + Et

makes the assumption that a change in the advertising expenditures (Y1,t) causes a change in the
(future) sales (Y2,t), but not vice versa.

d) • From the correlogram of d.adv.d1 we see that the input series Y1,t = X1,t − X1,t−1 can be
described as an AR(2) model. We fit it as follows:

> (r.fit.adv <- arima(ts.adv.d1, order = c(2, 0, 0)))

Call:

arima(x = ts.adv.d1, order = c(2, 0, 0))
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Coefficients:

ar1 ar2 intercept

-0.0066 -0.2875 -0.0003

s.e. 0.1331 0.1314 0.0244

sigma^2 estimated as 0.05171: log likelihood = 3.21, aic = 1.59

Hence we get the model

Y1,t = −0.0066 · Y1,t−1 − 0.2875 · Y1,t−2 +Dt ,

where Dt is a white noise with variance σ̂2
D = 0.052 (see component r.fit.adv$sigma2). The

mean of the time series can be regarded as zero (one gets an estimate of −0.0014).
Remark: One could also fit the AR(2) model of the first differences with the function ar.burg()

or ar.yw(), resp. The estimates of the coefficients are quite similar, though.

• We apply the transformation as in the lecture:

> ts.D <- resid(r.fit.adv)

> ts.Z <- filter(ts.sal.d1, c(1, -r.fit.adv$model$phi), sides = 1)

• In the transformed model

Zt =

∞∑
j=0

νjDt−j + Ut ,

the coefficients are the same as in the original transfer function model of part c). However, the
time series Dt is uncorrelated here. Hence we can estimate the coefficients νj by

ν̂k =
γ̂21(k)

σ̂2
D

, k ≥ 0

where ρ̂21(k) denotes the empirical cross correlations of Dt and Zt. The estimated coefficients ν̂k
are hence proportional to the empirical cross correlations ρ̂21(k) shown in the following plot.

> ts.trans <- ts.intersect(ts.Z, ts.D)

> acf(ts.trans, ylim = c(-1, 1), plot = TRUE, na.action = na.pass)
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We see that ρ̂21(0) has the largest value. We find another large value at lag k = −1. This
shows that, contrary to our assumption in part c), there is an influence of Y2,t on Y1,t. Hence the
modeling approach is not allowed since the prerequisites are not fulfilled. However, our analysis
shows that there is a mutual influence between Y2,t and Y1,t.
A change in the sales hence also causes a change in the advertising expenditures. This seems to
be plausible in practice: the budget for advertising is usually established based on past sales, e.g.
as a percentage of last year’s sales.

• Estimation of the coefficients νj in R :

> gamma21 <- acf(ts.trans, plot = FALSE, type = "covariance",

na.action = na.pass)$acf[, 1, 2]

> round(gamma21/r.fit.adv$sigma2, 2)[1:6]

[1] 0.33 0.20 0.01 0.04 0.02 -0.11


