
Dr. M. Dettling Applied Time Series Analysis SS 2014

Series 2

1. We would like to illustrate various methods for descriptive decomposition and elimination of trends
using the data hstart.

This data contains monthly data on the start of residential construction in the USA within the time
frame of January 1966 to January 1974. The data have undergone some transformation unknown to
us (perhaps an index over some baseline value has been calculated, or perhaps the data are to be
read as x · 10? construction permits). In our opinion, this makes these data a good didactic choice for
illustrating the theory.

(Source: U. S. Bureau of the Census, Construction Reports.)

Importing the data (without header=T!) and preparing them:
> hstart <- read.table("http://stat.ethz.ch/Teaching/Datasets/WBL/hstart.dat")

> hstart <- ts(hstart[,1], start=1966, frequency=12)

a) Make a time series plot. Is this a stationary time series? If not, what kind of non-stationarity is
evident? Into which components might this time series be decomposed sensibly?

b) Modelling
Decompose the time series into the components specified in a) using a parametric model. Plot
the time series, including fitted values, and comment on any differences. Choose the order of the
polynomial according to how good it fits the real data. Compare the orders 3, 4 and 6.

R-Hint:

> Time <- 1:length(hstart)

> Months <- factor(rep(month.name, length(hstart)/12), levels=month.name)

> H.lm <- lm(hstart ~ Months + Time + I(Time^2) + I(Time^3) + ...)

> H.fit <- ts(fitted(H.lm), start=1966, freq=12)

> lines(H.fit, lty=3, col=2) # H.fit is added to the plot from part a)

If you want to compare the different polynomials you can either plot them and compare how
good they fit the real data or plot the residuals, hstart-H.fit versus Time and check if there is
still a structure.

c) STL decomposition
Decompose the time series in trend, seasonal component and remainder using the non-parametric
STL method, and add data from this decomposition to the plot from part a).

R-Hint:
The decomposition is made using H.stl <- stl(hstart, s.window="periodic")

Note: The smoothing parameter for the seasonal effect is chosen by means of s.window. If
s.window="periodic", the seasonal effect is estimated by averaging. It is also possible to specify
a value for the smoothing parameter (an odd number). Try e.g. H.stl.var <- stl(hstart,

s.window = 15), and compare the result of this to H.stl. Incidentally, summary() can be used
for displaying the values of window.
The trend estimation parameter can be set using t.window. Unlike s.window, this argument
does have a default value (cf. the help file). Perhaps you could try to vary this parameter as well.
The documentation for R and the help files give more details.
Trend, seasonal component and remainder of the STL are stored in
H.st$time.series[,"trend"]

H.st$time.series[,"seasonal"]

H.st$time.series[,"remainder"]

Have a look at the output of str(H.stl) for more details.
Plot (in the same plot) the residuals from your favorite model in b) and the remainder from the
STL-Decomposition vs. time.
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d) Plot the components of the STL decomposition and its estimates of monthly effects. Compare
the monthly effects of the original decomposition H.stl to that of the decomposition with chosen
smoothing parameter H.stl.var. What is better, constant or variable seasonal effects?

R-Hint:
> plot(H.stl) # STL decomposition

> seasonal <- H.stl$time.series[,1]

> seasonal.var <- H.stl.var$time.series[,1]

# Alternative, cf. comment in the R hints for part c)

> monthplot(seasonal) # Monthly effects estimated by averages

> monthplot(seasonal.var)

e) The special filter

Yt =
1

24

(
Xt−6 + 2Xt−5 + . . . + 2Xt + . . . + 2Xt+5 + Xt+6

)
can be used for computing a trend estimate. Plot this, the STL trend and the data in a single
plot. What are the differences between this fit and the previous ones? What is better, what is
worse?

R-Hint:
> plot(hstart,lty=3)

> H.filt <- filter(hstart, c(1,rep(2,11),1)/24 )

> trend <- H.stl$time.series[,2]

> lines(trend, col=3)

> lines(H.filt, lty=2, col=2)

Labelling:
> legend(1966, 235, legend=c("Time series","Filter","STL"),

+ col=c(1,2,3), lty=c(3,2,1))

f) Differences (optional)
Try to remove the trend and seasonal effects by computing differences. After removing seasonal
effects, choose some linear trend elimination method from the course notes and plot the outcome.

R-Hint:
> H.y <- diff(hstart, lag=12) # time series differences Yt = Xt −Xt−k, lag = k

> H.z <- diff(H.y, lag=...)

> par(mfrow=c(2,1))

> plot(H.y)

> plot(H.z)

2. In this exercise, we shall investigate the properties of various filters (running weighted means). To this
end, we look at the seasonally adjusted times series from Problem 1, which we obtain by subtracting
the estimated monthly effects (which sum to zero) from the original time series.

a) Plot the seasonally adjusted time series.

R-Hint:
> seasonal <- H.stl$time.series[,1] # STL decomposition, cf. Problem 1

> hstart.ds <- hstart - seasonal

> plot(hstart.ds)

b) Compute the following 4 filters (Xt is the seasonally adjusted time series) .

1. Yt = 1
5Xt−2 + 1

5Xt−1 + 1
5Xt + 1

5Xt+1 + 1
5Xt+2

2. Zt = 1
5Yt−2 + 1

5Yt−1 + 1
5Yt + 1

5Yt+1 + 1
5Yt+2

3. At = 1
25

(
Xt−4 + 2Xt−3 + 3Xt−2 + 4Xt−1 + 5Xt + 4Xt+1 + 3Xt+2 + 2Xt+3 + Xt+4

)
4. Bt = 1

9

(
Xt−4 + Xt−3 + Xt−2 + Xt−1 + Xt + Xt+1 + Xt+2 + Xt+3 + Xt+4

)
R-Hint:
> hstart.fil1 <- filter(hstart.ds, rep(1,5)/5)

> hstart.fil2 <- filter(hstart.fil1, rep(1,5)/5)

> hstart.fil3 <- filter(hstart.ds, c(1:4,5,4:1)/25)

> hstart.fil4 <- filter(hstart.ds, rep(1,9)/9)
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c) Plot the seasonally adjusted data and the results from filters 3 and 4 on top of each other.

R-Hint:
> plot(hstart.ds, lty=3)

> lines(hstart.fil3, lty=1)

> lines(hstart.fil4, lty=2)

Labelling:
> legend(1966, 210, legend=c("Time series","Filter 3","Filter 4"), lty=c(3,1,2))

d) Repeat part c) with filters 2 and 3. Comments?
R-Hint:

> plot(hstart.ds, lty=3)

> lines(hstart.fil2, lty=1)

> lines(hstart.fil3, lty=2)

Labelling:
> legend(1966,210,legend=c("Time series","Filter 2","Filter 3"),lty=c(3,1,2))

3. The dataset http://stat.ethz.ch/Teaching/Datasets/WBL/zeitsim.dat contains the following
four simulated time series.

Y1: Yt = Et − 0.5 · Et−1, Et ∼ N (0, 1) i.i.d., E0 = 0
Y2: Yt = Yt−1 + Et, Et ∼ N (0, 1) i.i.d., Y0 = 0
Y3: Yt = 0.5 · Yt−1 + Et, Et ∼ N (0, 1) i.i.d., Y0 = 0
Y4: Yt = Yt−1 · Et, Et ∼ U(0.95, 1.05) i.i.d., Y0 = 1

Use computations or a time series plot to decide whether or not these processes are stationary.
If a process is not stationary, suggest a simple method to make it stationary, and try this method out
in R .

R-Hint:
zeitsim[,1] is the first time series, Y1.

Note:
The solution sheet contains the relevant commands for simulation using R. For those interested in the
mathematical details, there are also some theoretical remarks on these 4 processes to be found there.

Exercise hour: Monday, February 24.


