Dr. M. Dettling

Series 12

- 1. In this exercise we are going to study state space models and kalman filtering for an MA(1) process which is superposed with some additional noise.
 - a) First simulate the "observed" time series Y_t of length 100, which is the MA(1) process $Z_t = E_t + 0.4E_{t-1}$ superposed with some additional noise V_t (i.e. $Y_t = Z_t + V_t$). Assume that the innovations E_t of the MA(1) process are i.i.d. $\mathcal{N}(0, 0.2)$ distributed and the additional noise V_t i.i.d. $\mathcal{N}(0, 0.3)$.
 - b) Make a plot of the original MA(1) process Z_t and draw the actually "observed" additional noise process Y_t on top of it.
 - c) Find a state space formulation of this model, i.e. find matrices/vectors G_t , W_t (resp. w_t^2), F_t , v_t^2 such that

$$X_t = G_t X_{t-1} + W_t \text{ with } W_t \sim \mathcal{N}\left(0, w_t^2\right)$$
$$Y_t = F_t X_t + V_t \text{ with } V_t \sim \mathcal{N}\left(0, v_t^2\right)$$

Hint: The initial state X_t is

$$X_t = \begin{pmatrix} Z_t \\ E_t \end{pmatrix}$$

d) Estimate the model with the Kalman-Filtering in R. R-Hint:

For the SS-Function the following matrices from the state space model have to be given:

- Fmat: F_t^{\top} (the transpose of the matrix F_t)
- Gmat: the matrix G_t
- Vmat: v_t^2 (the covariance matrix of V_t)
- Wmat: w_t^2 (the covariance matrix of W_t)
- m0: the initial state (i.e. $\mathbf{E}[X_t] = \mathbf{E}[(Z_t, E_t)])$
- C0: The covariance matrix of the initial state (i.e. $Cov(X_t)$)
- 2. In this exercise we will fit a dynamic linear model. We here consider a regression problem where time-varying coefficients may be necessary. The description of the practical situation is as follows: In April 1979 the Albuquerque Police Department began a special enforcement program aimed at countering driving while intoxicated accidents. The program was composed of a squad of police officers, breath alcohol testing (BAT) devices, and a van named batmobile, which housed a BAT device and was used as a mobile station. The data were collected by the Division of Governmental Research of the University of New Mexico under a contract with the National Highway Traffic Safety

Administration of the Department of Transportation to evaluate the batmobile program. (Source: *http://lib.stat.cmu.edu/DASL/Datafiles/batdat.html*)

The data comprise of quarterly figures of traffic accidents and the fuel consumption in the Albuquerque area as a proxy of the driven mileage. The first 29 quarters are the control period, and observations 30 to 52 were recorded during the experimental (batmobile) period. We would naturally assume a time series regression model for the number of accidents:

$$ACC_t = \mu + \alpha \cdot FUEL_t + \beta_{season,t} + E_t$$

The accidents depend on the mileage driven and there is a seasonal effect. In the above model the intercept is assumed to be constant. In the light of the BAT program, we might well replace it by $\mu_t = \mu_{t-1} + \Delta \mu_t$, with $\operatorname{Var}(\Delta \mu_t) = 10$, i.e. some general level of accidents that is time-dependent.

a) Read in the data and plot it.

- > dat <- ts(batmobile, start=1, freq=4)
- b) Before looking at the dynamic linear model with the time-dependent μ_t state the "normal" time series regression model for the number of accidents (without time-varying coefficients).
- c) Fit your model in R.

R-Hint: Prepare the data for the regression:

```
> regdat <- cbind(batmobile, season=factor(cycle(dat), lab=c("Q1","Q2","Q3","Q4")))</pre>
```

- d) Check the residuals of your model. Fit also loess-smoother on the residuals. R-Help:
 - > times <- 1:52

> fit.loess <- loess(resid(fit) ~ times, span=0.65, degree=2)</pre>

e) Now, correct ACC for the effect of FUEL estimated with your simple linear model and plot the corrected time series (with a loess smoother).

R-Help:

> newacc <- ts(batmobile\$ACC-coef(...)[2]*batmobile\$FUEL, ...)</pre>

- f) Do an STL-analysis of the corrected time series, plot it and look at the acf of the remainder.
- g) Perform Exponential Smoothing for the new time series and plot the fitted values.
- h) The effect of fuel is removed of the corrected data newacc. But still there is a seasonal effect. This we now want to model with a dynamic linear model, where the intercept is time-dependent:

$$ACC_t = \mu_t + \beta_{season,t} + E_t$$

with $\mu_t = \mu_{t-1} + \triangle \mu_t$, with $\operatorname{Var}(\triangle \mu_t) = 10$.

State the state space formulation of this regression model.

- i) Fit the state space model (with kalman-filtering) for the (corrected) time series.
 R-Hint: Fit a regression model ACC ~ season to get estimates for the unknown parameters and variances you need in the different matrices of the state space model.
- **j**) Fit a state space model (with kalman-filtering) for the original data. **Hint:** Proceed similar as in i).

Exercise hour: Monday, May 19.