Series 1

1. The data rain.txt contains quarterly rainfall data (in mm) from the year 1965 until 1977 an can be found at http://stat.ethz.ch/Teaching/Datasets/WBL/rain.txt.
a) Read in the data and define it correctly as a time series of class ts.

R-Hint: ts.d <- ts(data= ..., ...)
b) Plot the time series.
2. In this excercise we are dealing with daily rainfall data rainDay.txt. The data consists of the date (01.01.2000 until 31.12.2008) and the rainfall on that day in mm .
a) Read in the data rainDay.txt and tell R that the column DATE is a date. R-Hint: as.Date(..., format=...)
b) Define your data (without the DATE-column) correctly as a time series of class ts.
c) Use the R-Functions weekdays(), months() and quarters() to create these factors. Combine them together with the rainfall data and the date into one dataframe.
R-Hint: data.frame
d) Plot the boxplots of the rainfall data with weekday, month and quarter as grouping variables. Use the logst-transformation (from the package regr0) on the rain variable. This function automatically adds a small constant to zero values in order to apply the log transformation.
Remark: If you haven't installed the package regr0 yet you can to this with the command install.packages("regr0", repos="http://R-Forge.R-project.org") and then load it as usual with library (regr0).
e) Plot the part of the time series from 2006 to 2007.

R-Hint: window()
3. Here are some examples of time series. Decide on the frequency and deltat.
a) Sunshine duration per month in Basel from 1990 to 2000.
b) Number of newborn babies in the city of Zurich per year from 2000 to 2011.
c) Number of reservations in a restaurant for every night during 4 weeks.
d) Water runoff of a river. The data has been collected every day for four years.
e) Number of reservations in a restaurant for every night during 4 years.
4. Have a look at the set of time series on the next two pages. For every series, shortly answer the following questions (motivate your answers):

- Is the time series stationary?
- Is there a trend?
- Can you find some seasonal effect? If yes, what is the period?
a) US treasury bill contracts from the Chicago market for 100 consecutive trading days in 1981.

b) The underlying time series is the same as in Part a), the US treasury bill contracts from the Chicago market. Here, the data is plotted after taking differences to lag 1 of the logarithm of the time series.

c) Quarterly earnings per share of Johnson \& Johnson, an American manufacturer of pharmaceuticals and medical devices:

d) Monthly sales for a souvenir shop at a beach resort town in Queensland, Australia, for January 1987-December 1993 (original data from Wheelwright and Hyndman, 1998).

e) Again the "souvenir" time series of Part d), plotted after taking differences to lag 1 of the logarithm of the time series.

f) Yearly numbers of sunspots:

g) Widths of tree rings in the years from 1500 to 1979:

Exercise hour: Monday, February 17.

