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Spectral Analysis
Idea: Time series are interpreted as a combination of 

cyclic components, and thus, a linear combination
of harmonic oscillations.

Why: As a descriptive means, showing the character and
the dependency structure within the series. 

What: It is in spirit, but also mathematically, closely related
to the correlogram

Where:- engineering
- economics
- biology/medicine
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Lynx Data
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Ocean Wave Data
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2-Component-Mixture Data
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Harmonic Oscillations
The most simple periodic functions are sine and cosine, which 
we will use as the basis of our analysis.

A harmonic oscillation has the following form:

For the derivation, see the blackboard…

• In discrete time, we have aliasing, i.e. some frequencies
cannot be distinguished ( see next slide).

• The periodic analysis is limited to frequencies between 
0 and 0.5, i.e. things we observe at least twice.

( ) cos(2 ) sin(2 )y t t t    
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Aliasing
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Regression Model & Periodogram
We try to write a time series with a regression equation 
containing sine and cosine terms at the fourier frequencies.

 see the blackboard

The most important frequencies within the series, which when 
omitted, lead to pronounced increase in goodness-of-fit.

• This idea is used as a proxy for the periodogram,
 see the blackboard…

• However, if the „true“ frequency is not a fourier 
frequency, we have leakage ( see next 2 slides).
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Periodogram of a Simulated Series
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Periodogram of the Shortened Series
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Properties of the Periodogram
Periodogram and correlogram are mathematically equivalent, 
the former is the fourier transform of the latter.

 see the blackboard for the derivation

Note: this is a reason why we divided by 1/n in the ACV.

• or                  are plotted against

• Estimates seem rather instable and noisy

• On the log-scale, most frequencies are present

• It seems as if smoothing is required for interpretation.

( )kI  log( ( ))kI  k
n
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Periodogram of the Log Lynx Data
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Periodogram of the Ocean Wave Data
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Periodogram of the 2-Component-Mixture
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The Spectrum
Observed time series  Stochastic process

Empirical ACF  Theoretical ACF

Periodogram  Spectrum

There is a link between ACF and periodogram/spectrum

and

respectively. The spectrum is thus the Fourier transformation of 
the ACV.

( ) ( ) cos(2 )
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What‘s the Spectrum Good For?
Theorem:  Cramer Representation

Every stationary process can be written as the limit of a linear 
combination consisting of harmonic oscillations with random, 
uncorrelated amplitudes.

• The spectrum characterizes the variance of all these random
amplitudes.

• Or vice versa:                  is the variance between the
frequencies that make the integration limits.

• The spectrum takes only positive values. Thus, not every ACF 
sequence defines a stationary series.
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A Few Particular Spectra
• White noise

 the spectrum is constant over all frequencies.

• AR(1), see next slide
 already quite a complicated function 

• ARMA (p,q)
 the characteristic polynoms determine the spectrum

• Note: to generate maxima in the spectrum, we require 
an AR-model, where the order is at least .
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Spectrum of AR(1)-Processes
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Simulated AR(2)-Process
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ACF/Spectrum of Simulated AR(2)-Process
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Spectral Analysis
• Spectral analysis is a descriptive technique, where the 

time series is interpreted as a linear combination of 
harmonic oscillations.

• The periodogram shows empirically, which frequencies 
are „important“, i.e. lead to a substantial increase in RSS 
when ommitted from the linear combination.

• The spectrum is the theoretical counterpart to the 
periodogram. It can also be seen as the Fourier 
transformation of the theoretical autocovariances.

• The periodogram is a poor estimator for the spectrum: 
it‘s not smooth and inconsistent.
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Improving the Raw Periodogram
1) Smoothing with a running mean

+ simple approach
- choice of the bandwith

2) Smoothing with a weighted running mean
+ choice of the bandwith is less critical
- difficulties shift to the choice of weights

3) Weighted plug-in estimation
+ weighted Fourier trsf. of estimated autocovariances
- choice of weights

4) Piecewise periodogram estimation with averaging
+ can serve as a check for stationarity, too 
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Improving the Raw Periodogram
5) Spectrum of an estimated model 

+ fundamentally different from 1)-4)
- only works for „small“ orders p

6) Tapering
+ further modification of periodogram estimation
+ reduces the bias in the periodogram
+ should always be applied

7) Prewhitening and Rescoloring
+ model fit and periodogram estimation on residuals
+ the effect of the model will be added again
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Modified Periodogram of log(Lynx) Data
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Modified Periodogram of log(Lynx) Data
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