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Forecasting with Time Series
Goal: Prediction of future observations with a measure of 

uncertainty (confidence interval)

Note: - will be based on a stochastic model
- builds on the dependency structure and past data
- is an extrapolation, thus to take with a grain of salt
- similar to driving a car by using the rear window mirror
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Forecasting, More Technical
Past                                    Future

|      |      |    …                |      |      |      |    …          |

x1 x2 x3 xn-1 xn Xn+1 Xn+2 Xn+k

observed                                 forecast

observations                            estimates             

 1 1, , n
nx x X  1,1: ,1:

ˆ ˆ, ,n n n k nX X 
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Sources of Uncertainty in Forecasting
There are 4 main sources of uncertainty:

1) Does the data generating model from the past 
also apply in the future? Or are there any breaks?

2) Is the AR(p)-model we fitted to the data
correctly chosen? What is the “true” order?

3) Are the parameters              ,       and accurately
estimated? How much do they differ from the “truth”?

4) The stochastic variability coming from the innovation

 we will here restrict to short-term forecasting!

 1, , nx x

1,..., p  2
E 

tE
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How to Forecast?
Probabilistic principle for point forecasts:

 we forecast the expected value, given our observations

Probabilistic principle for prediction intervals:

 we use the conditional variance

, 1
ˆ | n

n k n n kX E X X    

 1| n
n kVar X X
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How to Apply the Principles?
• The principles provide a nice setup, but are only useful and 

practicable under additional assumptions.

• For stationary AR(1)-processes with normally distributed 
innovations, we can apply the principles and derive formulae

 see blackboard for the derivation!
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AR(1): 1-Step Forecast
The 1-step forecast for a shifted AR(1) process with mean is:

with prognosis interval

Note that when are plugged-in, this adds additional 
uncertainty which is not accounted for in the prognosis interval, i.e. 

1,
ˆ 1.96n n EX   

1, 1
ˆ ( )n n nX x m m   

1 1 1
ˆ( ) ( | )n

n nVar X Var X X 

1ˆ ˆ ˆ, , E  

m
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Simulation Study
We have seen that the usual prognosis interval is too small. But by
how much? A simulation study yields some insight:

Generated are 10‘000 1-step forecasts on a time series that was 
generated from an AR(1) process with . The series length
was variable.

The 95%-prognosis interval was determined and it was checked
whether it included the true value or not. The empirically estimated
confidence levels were:

n=20 n=50       n=100 n=200
91.01% 93.18%   94.48%     94.73%

0.5 
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AR(1): k-Step Forecast
The k-step forecast for an AR(1) process is:

with prognosis interval based on

It is important to note that for           , the expected value and the 
variance from above go to      and       respectively.  

1
2 2

, 1
1

( | ) 1
k

n j
n k n E

j
Var X X  






 
   
 



, 1
ˆ ( )k

n k n nX x m m   

 2
X

k 
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Forecasting the Beaver Data
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Forecasting AR(p)
The principle is the same, forecast and prognosis interval are:

and

The computations are more complicated, but do not yield any
further insight. We are thus doing without.

1-step-forecast:

k-step-forecast:

If an observed value is available, we plug it in. Else, the forecast is
determined in a recursive manner.

1[ | ]n
n kE X X 1( | )n

n kVar X X

1,1: 1 1
ˆ ( ) ... ( )n n n p n pX x m x m m        

,1: 1 1,1: ,1:
ˆ ˆ ˆ( ) ... ( )n k n n k n p n k p nX X m X m m          
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Forecasting the Lynx Data
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Forecasting log(Lynx) Data
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Forecasting: Remarks
• AR(p) processes have a Markov property. Given the model 

parameters, we only need the last     observations to compute 
the forecast.

• The prognosis intervals are not simultaneous prognosis
intervals, and they are generally too small. However, 
simulation studies show that this is not excessively so. 

• Retaining the final part of the series, and predicting it with 
several competing models may give hints which one yields 
the best forecasts. This can be an alternative approach for 
choosing the model order   .

p

p
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Sources of Uncertainty in Forecasting
There are 4 main sources of uncertainty:

1) Does the data generating model from the past 
also apply in the future? Or are there any breaks?

2) Is the ARMA(p,q)-model we fitted to the data
correctly chosen? What is the “true” order?

3) Are the parameters        ,       and accurately
estimated? How much do they differ from the “truth”?

4) The stochastic variability coming from the innovation

 we will here restrict to short-term forecasting!

 1, , nx x

,  2
E 

tE
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How to Forecast?
Probabilistic principle for point forecasts:

 we forecast the expected value, given our observations

Probabilistic principle for prediction intervals:

 we use the conditional variance

, 1
ˆ | n

n k n n kX E X X    

 1| n
n kVar X X
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How to Apply the Principles?
• The principles provide a nice setup, but are only useful and 

practicable under additional assumptions.

• Whereas for AR(p), knowing the last p observations is 
sufficient for coming up with a forecast, ARMA(p,q) models 
require knowledge about the infinite past.

• In practice, one is using recursive formulae

 see blackboard for the derivation in the MA(1) case!
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MA(1) Forecasting: Summary
• We have seen that for an MA(1)-process, the k-step 

forecast for k>1 is equal to    . 

• In case of k=1, we obtain for the MA(1)-forecast:

The conditional expectation is (too) difficult to compute

• As a trick, we not only condition on observations 1,…,n, 
but on the infinite past:



1, 1 1
ˆ [ | ]n

n n nX E E X    

: [ | ]n
n ne E E X 
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MA(1) Forecasting: Summary
• We then write the MA(1) as an AR(∞) and solve the model 

equation for      :

• In practice, we plug-in the time series observations
where available. For the „early“ times, where we don‘t 
have observations, we plug-in     . 

• This is of course only an approximation to the true MA(1)-
forecast, but it works well in practice, because of:

nE

1
0

( ) ( )j
n n j

j

E X m





   

1| | 1 

n jx 

m̂
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ARMA(p,q) Forecasting
As with MA(1)/MA(q) forecasting, we face problems with

which is difficult to compute. We use the same tricks as for 
MA(1) and obtain

where …

1[ | ]n
n jE E X  

,
1

ˆ ( [ | ] )
p

n
n k n i n k i

i

X E X X     


  

1

[ | ] [ | ]
q

n n
n k j n k j

j

E E X E E X    

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ARMA(p,q) Forecasting
…where

if t≤n

if t>n

and

if t≤n

0 if t>n 

with

[ | ]n
tE X X  

tx

,
ˆ

t nX

[ | ]n
tE E X  

te

1 1
( )

p q

t t i t i j t j
i j

e x x e    
 

     
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ARMA(p,q) Forecasting: Douglas Fir
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ARMA(p,q) Forecasting: Example

Time

0 20 40 60 80 100

-0
.2

-0
.1

0.
0

0.
1

0.
2

Forecasting the Differenced Douglas Fir Series
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Forecasting with SARIMA
Time series with a trend and/or seasonal effect can either be
predicted after decomposing or with exponential smoothing. It
is also very easy and quick to predict from a SARIMA model.

• The SARIMA model is fitted in R as usual. Then, we can
simply employ the predict() command and obtain the
forecast plus a prediction interval.

• Technically, the forecast comes from the non-stationary
ARMA(p,q)-formulation of the SARIMA model.

• The disadvantage of working with SARIMA forecasts is that it
has somewhat the touch of a black box approach.
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Forecasting with SARIMA: Example
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Forecast of log(AP) with SARIMA(0,1,1)(0,1,1)
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