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Time Series Regression
Idea:
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Time Series Regression
• We speak of time series regression if response and predictors 

are time series, i.e. if they were observed in a sequence.

• In principle, it is perfectly fine to apply the usual OLS setup

Be careful: this assumes that the errors are uncorrelated.

• With correlated errors, the estimates      are still unbiased, but 
more efficient estimators than OLS exist. The standard errors 
are wrong, often underestimated, causing spurious significance.

• The Generalized Least Squares procedure solves the issue! 
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Example 1: Global Temperature
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Example 1: Global Temperature
Temperature = Trend + Seasonality + Remainder

 Recordings from 1971 to 2005, 

 The remainder term is usually a stationary time series, 
thus it would not be surprising if the regression model
features correlated errors. 

 The applied question which is of importance here is
whether there is a significant trend, and a significant
seasonal variation

2 [ " "] 12 [ " "]0 1 1 ... 1 ,· month Feb mont Dect h tt EY          
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Example 2: Air Pollution
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Example 2: Air Pollution
Oxidant = Wind + Temperature + Error

 Recordings from 30 consecutive days, 

 The data are from the Los Angeles basin, USA

 The pollutant level is influence by both wind and tem-
perature, plus some more, unobserved variables.

 It is well conceivable that there is "day-to-day memory" 
in the pollutant levels, i.e. there are correlated errros.

0 1 1 2 2t t t tY x x E     
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Example 2: Air Pollution
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Finding Correlated Errors
1) Start by fitting an OLS regression and analyze residuals

-0.1 0.0 0.1 0.2 0.3 0.4 0.5

-0
.4

0.
0

0.
2

0.
4

Fitted values

R
es

id
ua

ls

Residuals vs Fitted
326

63 278

-3 -2 -1 0 1 2 3

-3
-1

0
1

2
3

4

Theoretical Quantiles

St
an

da
rd

iz
ed

 re
si

du
al

s

Normal Q-Q
326

63 278

-0.1 0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
5

1.
0

1.
5

Fitted values

St
an

da
rd

iz
ed

 re
si
du

al
s

Scale-Location
326

63 278

0.000 0.010 0.020 0.030

-2
0

2
4

Leverage

St
an

da
rd

iz
ed

 re
si

du
al

s

Cook's distance

Residuals vs Leverage
326

63

26



10Marcel Dettling, Zurich University of Applied Sciences

Applied Time Series Analysis
SS 2014 – Week 07

Finding Correlated Errors
2) Continue with a time series plot of OLS residuals
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Finding Correlated Errors
3) Also analyze ACF and PACF of OLS residuals
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Model for Correlated Errors
 It seems as if an AR(2) model provides an adequate

model for the correlation structure observed in the
residuals of the OLS regression model.

> fit.ar2 <- ar.burg(resid(fit.lm)); fit.ar2

Call: ar.burg.default(x = resid(fit.lm))

Coefficients:
1       2  

0.4945  0.3036  

Order selected 2  sigma^2 estimated as  0.00693

Residuals of this AR(2) model must look like white noise!
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Does the Model Fit?
5) Visualize a time series plot of the AR(2) residuals

0 100 200 300 400

-0
.3

-0
.1

0.
0

0.
1

0.
2

0.
3

Residuals of AR(2)

Index

fit
.a

r2
$r

es
id



14Marcel Dettling, Zurich University of Applied Sciences

Applied Time Series Analysis
SS 2014 – Week 07

Does the Model Fit?
5) ACF and PACF plots of AR(2) residuals
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Global Temperature: Conclusions
• The residuals from OLS regression are visibly correlated.

• An AR(2) model seems appropriate for this dependency.

• The AR(2) yields a good fit, because its residuals have
White Noise properties. We have thus understood the
dependency of the regression model errros.

We need to account for the correlated errors, else the
coefficient estimates will be unbiased but inefficient, and
the standard errors are wrong, preventing successful
inference for trend and seasonality
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Air Pollution: OLS Residuals
Time series plot: dependence present or not?
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Air Pollution: OLS Residuals
ACF and PACF suggest: there is AR(1) dependence
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Pollutant Example
> summary(erg.poll,corr=F)

Call: lm(formula = Oxidant ~ Wind + Temp, data = pollute)

Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept) -5.20334   11.11810  -0.468    0.644    

Wind        -0.42706    0.08645  -4.940 3.58e-05 ***

Temp         0.52035    0.10813   4.812 5.05e-05 ***

Residual standard error: 2.95 on 27 degrees of freedom

Multiple R-squared: 0.7773, Adjusted R-squared: 0.7608 

F-statistic: 47.12 on 2 and 27 DF,  p-value: 1.563e-09
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Pollutant Example
> summary(erg.poll,corr=F)
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Coefficients:
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Temp         0.52035    0.10813   4.812 5.05e-05 ***
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Durbin-Watson Test 
• The Durbin-Watson approach is a test for autocorrelated

errors in regression modeling based on the test statistic:

• This is implemented in R: dwtest() in library(lmtest). 
A p-value for the null of no autocorrelation is computed.

• This test does not detect all autocorrelation structures. If the
null is not rejected, the residuals may still be autocorrelated.

Never forget to check ACF/PACF of the residuals!
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Durbin-Watson Test 
Example 1: Global Temperature
> library(lmtest)

> dwtest(fit.lm)

data:  fit.lm

DW = 0.5785, p-value < 2.2e-16

alt. hypothesis: true autocorrelation is greater than 0

Example 2: Air Pollution
> dwtest(fit.lm)

data:  fit.lm

DW = 1.0619, p-value = 0.001675

alt. hypothesis: true autocorrelation is greater than 0
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Generalized Least Squares
 See the blackboard for full explanation

• OLS regression assumes a diagonal error covariance matrix, 
but there is a generalization to .  

• If we find             , the regression model can be rewritten as:

with

• One obtains the generalized least square estimates: 
with

2( )Var E  

1 1 1

* * *

y X E
S y S X S E
y X E






  

 
 
  * 2( )Var E I

1 1ˆ ( )T TX X X y     1 1 2ˆ( ) ( )TVar X X   

TSS 
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Generalized Least Squares
For using the GLS approach, i.e. for correcting the dependent
errors, we need an estimate of the error covariance matrix . 

The two major options for obtaining it are:

1) Cochrane-Orcutt (for AR(p) correlation structure only)
iterative approach: i)   ,   ii)    ,   iii) 

2) GLS (Generalized Least Squares, for ARMA(p,q))
simultaneous estimation of and

 Full explanation of the two different approaches is
provided on the blackboard!  










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GLS: Syntax
Package nlme has function gls(). It does only work if the
correlation structure of the errors is provided. This has to be
determined from the residuals of an OLS regression first.

> library(nlme)
> corStruct <- corARMA(form=~time, p=2)
> fit.gls <- gls(temp~time+season, data=dat,

correlation=corStruct)

The output contains the regression coefficients and their
standard errors, as well as the AR-coefficients plus some
further information about the model (Log-Likeli, AIC, ...).



25Marcel Dettling, Zurich University of Applied Sciences

Applied Time Series Analysis
SS 2014 – Week 07

GLS: Residual Analysis
The residuals from a GLS must look like coming from a time 
series process with the respective structure:
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GLS/OLS: Comparison of Results
 The trend in the global temperature is significant!

> coef(fit.lm)["time"]
time 

0.01822374 
> confint(fit.lm, "time")

2.5 %    97.5 %
time 0.01702668 0.0194208

> coef(fit.gls)["time"]
time 

0.02017553 
> confint(fit.gls, "time")

2.5 %     97.5 %
time 0.01562994 0.02472112

OLS

GLS
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GLS/OLS: Comparison of Results
 The seasonal effect is not significant!

> drop1(fit.lm, test="F")
temp ~ time + season

Df Sum of Sq RSS     AIC  F value  Pr(F)    
<none>               6.4654 -1727.0                    
time    1   14.2274 20.6928 -1240.4 895.6210 <2e-16 ***
season 11    0.1744  6.6398 -1737.8   0.9982 0.4472

> anova(fit.gls)
Denom. DF: 407 

numDF F-value p-value
(Intercept)     1 78.40801  <.0001
time            1 76.48005  <.0001
season         11  0.64371  0.7912

OLS

GLS
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Example 1: Global Temperature
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Air Pollution: Results
Both predictors are significant with both approaches...

> confint(fit.lm, c("Wind", "Temp"))
2.5 %     97.5 %

Wind -0.6044311 -0.2496841
Temp  0.2984794  0.7422260

> confint(fit.gls, c("Wind", "Temp"))
2.5 %     97.5 %

Wind -0.5447329 -0.2701709
Temp  0.2420436  0.7382426

 But still, it is important to use GLS with correlated errors!

OLS

GLS
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Simulation Study: Model
We want to study the effect of correlated errors on the quality of 
estimates when using the least squares approach:

where       is from an AR(1)-process with                  and            .

We generate 100 realizations from this model and estimate the 
regression coefficient and its standard error by:

1) LS
2) GLS

/ 50tx t
22t t t ty x x E  

0.65   0.1 tE
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Simulation Study: Series
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Simulation Study: ACF of the Error Term
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Simulation Study: Results
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Missing Input Variables
- (Auto-)correlated errors are often caused by the non-

presence of crucial input variables.

- In this case, it is much better to identify the not-yet-present -
variables and include them in the analysis.

- However, this isn‘t always possible.

 regression with correlated errors can be seen as a sort 
of emergency kit for the case where the non-present 
variables cannot be added.
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Example: Ski Sales
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Ski Sales: Residual Diagnostics
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Ski Sales: ACF/PACF of Residuals
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Ski Sales: Model with Seasonal Factor
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Residuals from Seasonal Factor Model

35 40 45 50 55

-3
-2

-1
0

1
2

3

Fitted values

R
es

id
ua

ls

Residuals vs Fitted
23

27

15

-2 -1 0 1 2

-2
-1

0
1

2

Theoretical Quantiles

St
an

da
rd

iz
ed

 re
si

du
al

s

Normal Q-Q
23

27

15

35 40 45 50 55

0.
0

0.
5

1.
0

1.
5

Fitted values

St
an

da
rd

iz
ed

 re
si

du
al

s

Scale-Location
23 27

15

0.00 0.02 0.04 0.06 0.08 0.10 0.12

-2
-1

0
1

2
3

Leverage

St
an

da
rd

iz
ed

 re
si

du
al

s

Cook's distance

Residuals vs Leverage

27

23

6



40Marcel Dettling, Zurich University of Applied Sciences

Applied Time Series Analysis
SS 2014 – Week 07

Residuals from Seasonal Factor Model
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Ski Sales: Summary
• the first model (sales vs. PDI) showed correlated errors

• the Durbin-Watson test failed to indicate this correlation

• this apparent correlation is caused by ommitting the season

• adding the season removes all error correlation!

 the emergency kit „time series regression“ is, 
after careful modeling, not even necessary in
this example. This is quite often the case!


