
Dr. M. Dettling Applied Time Series Analysis SS 2013

Solution to Series 1

1. a) Read in the data and define it correctly as a time series of class ts.
R-Hint: ts.d <- ts(data= ..., ...)

> dd <- read.table("http://stat.ethz.ch/Teaching/Datasets/WBL/rain.txt", header=T)

> ts.dd <- ts(dd, start=1965, frequency=4)

> ts.dd

Qtr1 Qtr2 Qtr3 Qtr4

1965 296.80 37.80 17.90 258.30

1966 372.30 32.90 10.45 300.20

1967 327.10 41.40 59.60 221.90

1968 436.50 18.50 39.20 289.20

1969 433.60 51.00 5.00 0.00

1970 39.60 65.00 75.00 173.70

1971 570.40 52.10 0.00 135.40

1972 518.70 34.00 50.20 281.30

1973 968.80 202.20 78.40 200.60

1974 690.20 85.00 143.60 80.50

1975 515.70 165.00 0.00 151.80

1976 494.30 75.60 108.95 96.80

1977 259.20 1.40 16.50 131.40

b) Plot the time series.

> plot(ts.dd, ylab="rain", main="Quarterly Rainfall")
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2. a) Sunshine duration per month in Basel from 1990 to 2000.
This is monthly data, so the frequency is 12 and deltat 1

12 .

b) Number of newborn babies in the city of Zurich per year from 2000 to 2011.
The frequency is 1, deltat is 1 as well.

c) Time Series with the number of reservations in a restaurant for every night during 4 weeks.
An obvious time unit would be one week, so frequency is 7 and deltat is 1

7 .

d) Time Series with the water runoff of a river. The data has been collected every day for four years.
The time unit here would be one year. Frequency is 365 and deltat is 1

365 .
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e) Time Series with the number of reservations in a restaurant for every night during 4 years.
It depends on whether we have a seasonal effect. If there are no obvious differences throughout the
year (Christmas, Summer Holidays), then we can say one week is one time unit. Otherwise it would
be one year. The crucial question is: ”How long does it take until I get similar data?”

3. a) The series is non-stationary. There is a nonlinear trend, mostly increasing. There is no seasonal
component. Log-transformation might be beneficial (see part b)).

b) The series seems to be stationary; the trend from before was removed by differencing. We achieved
an approximately constant variance by taking the logarithm. However it is known, that the Log-
Returns of financial time series are NOT stationary, since there are volatility clusters, e.g.V ar(Xt) 6=
V ar(Xt|Xt−1, Xt−2, ...), where Xt are the Log-Returns.

c) The series is non-stationary. There is an (exponentially) increasing trend and a (multiplicative) seasonal
component with period 1 year. Thus, we need to log-tranform the data in order to get the usual
additive components.

d) Dito, as in Task c).

e) The series is non-stationary. There is no trend, but a seasonal effect with period 1 year.

f) The series is probably stationary. There are no trend and seasonal effects, but a (non-seasonal!)
periodicity with a period of approximately 11 years. Maybe, the variance could be varying over time.
The data show some right-skewness and hence, a log-transformation is required.

g) The series is probably stationary. There is no clear trend (maybe a slight one), and no seasonal effect
visible.

4. a) > hstart <-read.table("ftp://stat.ethz.ch/Teaching/Datasets/WBL/hstart.dat")

> hstart <- ts(hstart[,1], start=1966, frequency=12)

> plot(hstart)
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The time series under investigation is non-stationary (see the plot for Part c). Its non-stationary
properties consist of a trend and deterministic seasonal fluctuations (by month).
We can decompose this time series into its trend, its seasonal fluctuations (month effects) and
the remainder:

Xt = mt + αi〈t〉 + Et

b) First we remove the seasonal fluctuations by computing Yt = Xt −Xt−12. In the next plot, we
then see that a trend nonetheless remains.
Taking first-order differences of Yt, i.e.

Zt = Yt − Yt−1 = (Xt −Xt−12)− (Xt−1 −Xt−13) ,

finally gives us a stationary series.
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> H.y <- diff(hstart,lag=12)

> H.z <- diff(H.y,lag=1)

> par(mfrow=c(2,1))

> plot(H.y, main="Time series plot after removing the seasonal effect")

> plot(H.z,

main="Time series plot after removing the seasonal effect and the trend")

Time series plot after removing the seasonal effect

Time

1968 1970 1972 1974

−
50

0
50

Time series plot after removing the seasonal effect and the trend

Time

1968 1970 1972 1974

−
40

0
20

c) The non-parametric model STL fits the data better than the parametric one does.

> H.stl <- stl(hstart, s.window="periodic")

> remainder <- H.stl$time.series[,3]

> plot(hstart)

> H.np <- hstart - remainder

> lines(H.np, col=2, lty=2)

> legend("topleft",legend=c("Data","STL"),col=c(1,2),lty=c(1,2))
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In the residual time series plot is shown below. No systematic behavior is visible and hence it
could be concluded that the combination of the estimated trend and the seasonal effect fits the
data resonably well.

> plot(ts(remainder, start=1966, freq=12), lty=3, col=2,

ylab="Residuals",main="Residual plot")

> abline(h=0)
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Residual plot
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