
Dr. M. Dettling Applied Time Series Analysis SS 2013

Series 2

1. Reconsider the dataset hstart (Series 1: Problem 4) and recall that this dataset contains monthly
data on the start of residential construction in the USA within the time frame of January 1966 to
January 1974. The data have undergone some transformation unknown to us (perhaps an index over
some baseline value has been calculated, or perhaps the data are to be read as x · 10? construction
permits). In our opinion, this makes these data a good didactic choice for illustrating the theory.

(Source: U. S. Bureau of the Census, Construction Reports.)

Importing the data (without header=T!) and preparing them:
> hstart <- read.table("http://stat.ethz.ch/Teaching/Datasets/WBL /hstart.dat)

> hstart <- ts(hstart[,1], start=1966, frequency=12)

a) Parametric Models
Decompose the time series into its components using a parametric model. Plot the time series,
including fitted values, and comment on any differences. Choose the order of the polynomial
according to how good it fits the real data. Compare the orders 3, 4 and 6.

R hint:

> Time <- 1:length(hstart)

> Months <- factor(rep(month.name, length(hstart)/12), levels=month.name)

> H.lm <- lm(hstart ~ Months + Time + I(Time^2) + I(Time^3) + ...)

> H.fit <- ts(fitted(H.lm), start=1966, freq=12)

> lines(H.fit, lty=3, col=2) # H.fit is added to the plot from part a)

If you want to compare the different polynomials you can either plot them and compare how
good they fit the real data or plot the residuals, hstart-H.fit versus Time and check if there is
still a structure. Moreover, compare your favorite parametric model with the STL-Decomposition
(Series 1: Problem 4.c) using the residuals vs. time plots.

b) The special filter

Yt =
1

24

(
Xt−6 + 2Xt−5 + . . . + 2Xt + . . . + 2Xt+5 + Xt+6

)
can be used for computing a trend estimate. Plot this, the STL trend and the data in a single
plot. What are the differences between this Fit and the previous ones? What is better, what is
worse?

R hint:
> plot(hstart,lty=3)

> H.filt <- filter(hstart, c(1,rep(2,11),1)/24 )

> trend <- H.stl$time.series[,2]

> lines(trend, col=3)

> lines(H.filt, lty=2, col=2)

Labelling:
> legend(1966, 235, legend=c("Time series","Filter","STL"),

+ col=c(1,2,3), lty=c(3,2,1))

2. The performance of a machine that analyses the creatine content of human muscular tissue is to be
investigated using 157 known samples. These samples are given to the machine one at a time for it
to determine their creatin content.

The data are from an investigation into the correct functioning of automated analysis machines. You
can find them in the dataset

http://stat.ethz.ch/Teaching/Datasets/WBL/kreatin.dat .
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In this exercise, we will focus on one of the variables in this dataset, namely gehalt (content).

a) Which stochastic model should this series of data follow if the machine is working correctly?

b) Use the time series plot, the autocorrelations and the partial autocorrelations to determine
whether or not these data fit the ideal model found in Part a).

R hints:
Converting the data frame (d.creatine) to a time series:

> t.creatine <- ts(d.creatine[, 2], start = 1, frequency = 1)

Plotting ACF and PACF:

> acf(t.creatine, plot = TRUE)

> acf(t.creatine, type = "partial", plot = TRUE)

3. In this exercise, we consider the AirPassengers dataset, a time series indicating the monthly numbers
of international airline passengers departing from the USA in the years 1949 to 1960. We use different
methods to decompose the time series into trend, seasonal effect and remainder (cf. Series 1, Exercise
4) and compare the remainders by looking at their correlogram.

a) The AirPassengers dataset is a sample time series provided by R ; you don’t have to read it in.
Look at a plot of the time series:

> plot(AirPassengers)

Why is the correlogram of this time series not meaningful? Explain in a few sentences.

b) Decompose the time series into trend, seasonal component and remainder using the R function
decompose(); plot the remainder and its correlogram. Interpret the plots in few sentences.

R hints:

> airpass.decomp <- decompose(AirPassengers, type = "multiplicative")

> plot(...)

> acf(..., na.action = na.pass, plot = TRUE)

See Series 1, Exercise 4.c for hints on extracting the remainder from the object airpass.decomp,
or use the R -help: ?decompose. The function uses a filter to estimate the trend; therefore,
the first and the last few entries of the decomposition are not defined (value NA in R). For this
reason we have to use the parameter na.action = na.pass, otherwise R complains about missing
values.

c) Decompose the log-transformed time series using the R function stl(). Estimate the seasonal
effect once by averaging (parameter s.window = "periodic") and once by choosing an appro-
priate smoothing window (parameter s.window = ..., where you have to choose an odd integer;
cf. Series 1, Exercise 4.c). To determine an appropriate smoothing window, you can look at the
monthplot() of the seasonal component.

For both estimation approaches (averaging and smoothing window), plot the remainder and its
correlogram, and comment on the plots.

R hints:

> airpass.stl <- stl(log(AirPassengers), s.window = ...)

> plot(...)

> acf(..., plot = TRUE)

d) Explain why you used the parameter type = "multiplicative" in Task b), and why you log-
transformed the time series before performing an stl() decomposition in Task c).

e) Use the differencing approach. Choose lag = 12 in order to get rid of the trend and period. Plot
the new timeseries and acf. Compare to the previous methods.


