
Dr. M. Dettling Applied Time Series Analysis SS 2013

Solution to Series 5

1. a) In some areas the variance is much smaller than in others. The “peak” in the middle indicates that a
logarithmic transformation must first be applied to the data. If we look at the correlogram, we notice
that the ordinary autocorrelations decay far too slowly. Even for large lags, they still lie outside the
confidence band:
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Even the time series of logarithmic data cannot yet be regarded as stationary, since it exhibits clear
trends (first increasing, then decreasing), which can however be eliminated by taking first differences:
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The plot of first differences for the transformed series shows that stationarity can now be assumed:
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R commands:
> f.acf(d.varve)

> f.acf(log(d.varve))

> f.acf(diff(log(d.varve)))

b) The correlogram plotted in part a) indicates an ARIMA(1,1,1) process (or perhaps an ARIMA(0,1,1)
process). Fitting these two models, we see that the ARIMA(1,1,1) model is very good at describing the
logarithmic data. In both fitted models, the algorithm converges; of the two models, ARIMA(1,1,1)
has a smaller AIC.

The estimated coefficients are β̂1 = −0.84 for the fitted ARIMA(0,1,1) model and α̂1 = 0.25, β̂1 =
−0.91 for the fitted ARIMA(1,1,1) model. For both models, the estimated mean is µ̂ = −0.00127,
which leads us to assume the data do not need correcting by their mean. Furthermore, the estimated
error variances are 0.224 (for the ARIMA(0,1,1) model) and 0.2138 (for the ARIMA(1,1,1) model).

Thus the ARIMA(0,1,1) model looks as follows:

Yt = Xt −Xt−1

Yt = Et − 0.84 · Et−1; σ2
Et

= 0.224

For the ARIMA(1,1,1) model, we similarly have

Yt = Xt −Xt−1

Yt = 0.25 · Yt−1 + Et − 0.91 · Et−1; σ2
Et

= 0.214

Residuals of the fitted ARIMA(0,1,1) process:
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The first ordinary (=first partial) autocorrelation clearly lies outside the confidence band. Thus the
residuals cannot be considered independent.
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Residuals of the fitted ARIMA(1,1,1) process:
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These residuals no longer exhibit any undesired structure.
R commands:
ARIMA(0,1,1) model:
> mean(diff(log(d.varve))) # -0.001271813

> r.varve.m1 <- arima(log(d.varve), order=c(0,1,1))

> r.varve.m1$code # Code = 0, i.e. convergence

> r.varve.m1

Result:
Call:

arima(x = log(d.varve), order = c(0, 1, 1))

Coefficients:

ma1

-0.8421

s.e. 0.0411

sigma^2 estimated as 0.224: log likelihood = -234.77, aic = 473.53

> f.acf(resid(r.varve.m1))

ARIMA(1,1,1) model:
> r.varve.m2 <- arima(log(d.varve),order=c(1,1,1))

> r.varve.m2$code # Code = 0, i.e. convergence

> r.varve.m2

Result:
Call:

arima(x = log(d.varve), order = c(1, 1, 1))

Coefficients:

ar1 ma1

0.2461 -0.9140

s.e. 0.0590 0.0234

sigma^2 estimated as 0.2138: log likelihood = -226.65, aic = 459.3

> f.acf(resid(r.varve.m2))
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c) The correlation structure of the residuals has already been examined in part b). The residuals of the
ARIMA(1,1,1) process do not look normally distributed:
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R commands:
> qqnorm(r.varve.m2$resid)

> qqline(r.varve.m2$resid)

2. a) The correlogram of the residuals shows that significant correlation is present. Consequently, all con-
fidence intervals and tests in the output of lm can be wildly inaccurate. It is thus impossible for
zoologists to conclude which explanatory variables are needed in the model.
> r.bel.lm <- lm(NURSING ., data=beluga)
> summary(r.bel.lm)

Call:

lm(formula = NURSING ~ ., data = d.beluga)

Residuals:

Min 1Q Median 3Q Max

-4.44568 -0.90180 -0.08505 1.09525 3.95477

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.5602842 0.5502170 1.018 0.31012

PERIOD 0.0001998 0.0031937 0.063 0.95020

BOUTS 0.8784967 0.3336237 2.633 0.00932 **

LOCKONS 2.3903512 0.2035042 11.746 < 2e-16 ***

DAYNIGHT -0.3416237 0.2510156 -1.361 0.17550

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 1.582 on 155 degrees of freedom

Multiple R-Squared: 0.842, Adjusted R-squared: 0.8379

F-statistic: 206.5 on 4 and 155 DF, p-value: < 2.2e-16

> d.resid <- ts(resid(r.bel.lm))

> f.acf(d.resid)
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b) Due to the partial autocorrelations present, an AR(2) model for the residuals makes sense. Note that
the ordinary autocorrelations make up a dampened sine curve, a property typical of AR processes. We
can use the Burg algorithm to estimate both AR parameters.

Executing

> r.burg <- ar(d.resid, method="burg", order.max=2, aic=F)

> str(r.burg)

in R, we obtain:

α1 = 0.284, α2 = 0.321.

Note: We can also use the AIC plot to determine the order of the process:
> r.aic <- ar(d.resid, method="burg")$aic

> plot(0:(length(r.aic)-1), r.aic, xlab="Order", type="b")
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It seems that p = 2 is a good order to take.

c) We have

Yt = β0 + β1 · t+ β2X2,t + β3X3,t + β4X4,t + Et (t = 1, . . . , 160)

with Et = α1Et−1 + α2Et−2 + Ut Ut i.i.d. , E[Ut] = 0, Var[Ut] = σ2 ,

where Yt = NURSING, X1,t = t = PERIOD, X2,t = BOUTS, X3,t = LOCKONS and X4,t = DAYNIGHT.
Computing Y ∗

t = Yt − α1Yt−1 − α2Yt−2:

Y ∗
t = Yt − α1Yt−1 − α2Yt−2

= β0 + β1 · t+ β2X2,t + β3X3,t + β4X4,t + Et

−α1

(
β0 + β1 · (t− 1) + β2X2,t−1 + β3X3,t−1 + β4X4,t−1 + Et−1

)
−α2

(
β0 + β1 · (t− 2) + β2X2,t−2 + β3X3,t−2 + β4X4,t−2 + Et−2

)
= β0(1− α1 − α2) + β1(t− α1(t− 1)− α2(t− 2))

+β2(X2,t − α1X2,t−1 − α2X2,t−2) + . . .+ Et − α1Et−1 − α2Et−2

= β∗
o + β1X

∗
1,t + β2X

∗
2,t + β3X

∗
3,t + β4X

∗
4,t + Ut
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The explanatory variables and the target must all be transformed as follows:

x∗t = xt − α̂1xt−1 − α̂2xt−2 = xt − 0.284 · xt−1 − 0.321 · xt−2

* This transformation, and the subsequent normal regression, can be performed in R using the following
code. Note that the residuals now no longer exhibit correlation.
> t.ar <- r.burg$ar

> ## Transform the entire multivariate time series

> d.beluga.tr <- d.beluga - t.ar[1]*lag(d.beluga,-1) - t.ar[2]*lag(d.beluga,-2)

> ## Set new (meaningful) colnames

> colnames(d.beluga.tr) <- paste(colnames(d.beluga),".tr",sep="")

[1] "PERIOD.tr" "BOUTS.tr" "NURSING.tr" "LOCKONS.tr" "DAYNIGHT.tr"

> t.intercept <- rep((1-t.ar[1]-t.ar[2]),nrow(d.beluga.tr))

> r.lm.tr <- lm(NURSING.tr ~ -1 + t.intercept + PERIOD.tr + BOUTS.tr +

+ LOCKONS.tr + DAYNIGHT.tr, data=d.beluga.tr)

> f.acf(r.lm.tr$resid)

d) The procedure gls() can be used for much more general models than those you have already seen.
The argument correlation can be used for specifying the correlation structure of the residuals. In
principle an AR(p) model is merely a special case of the so-called ARMA(p, q) model taking q = 0 (cf.
chap. 9). This explains the overly complex expression corARMA(value=c(...,...), p=2, q=0,

fixed=F). The AR coefficients computed in Part b) can be used as starting values by specifying them
in the argument value. Errors in different time periods can be specified as being correlated by means
of the argument form= ∼ PERIOD of corARMA. This is necessary, as the entries in the data matrix
can be arranged in any way.

R output from summary(r.bel.gls):

Generalized least squares fit by maximum likelihood

Model: NURSING ~ BOUTS + LOCKONS + DAYNIGHT + PERIOD

Data: d.beluga

AIC BIC logLik

560.396 584.9974 -272.198

Correlation Structure: ARMA(2,0)

Formula: ~PERIOD

Parameter estimate(s):

Phi1 Phi2

0.2739964 0.3653668

Coefficients:

Value Std.Error t-value p-value

(Intercept) 1.3218871 0.7678364 1.721574 0.0871

BOUTS 0.2961684 0.3370588 0.878685 0.3809

LOCKONS 2.5681923 0.1964012 13.076257 <.0001

DAYNIGHT -0.3080293 0.1549160 -1.988363 0.0485

PERIOD 0.0024982 0.0062754 0.398090 0.6911

Correlation:

(Intr) BOUTS LOCKON DAYNIG

BOUTS -0.303

LOCKONS -0.101 -0.811

DAYNIGHT -0.014 -0.135 0.067

PERIOD -0.607 -0.233 0.251 0.024

Standardized residuals:

Min Q1 Med Q3 Max

-2.80055625 -0.58763749 0.01738824 0.65602061 2.49854120

Residual standard error: 1.577031

Degrees of freedom: 160 total; 155 residual

These coefficient estimates differ markedly from those in Part a). We obtain α1 = 0.274 and α2 =
0.365, which can be found in the above R output at Parameter estimate(s) (here labelled as Phi1 and
Phi2). In particular note that the standard errors of the explanatory variables sometimes differ greatly
from those in the regression model.
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Residual analysis:
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There are only small differences to the model using ordinary regression. This is because residuals
denote the difference between observations and model-derived fitted values – and the least squares
estimates of coefficients do make sense here. It is merely the standard errors of the least squares
method that are wrong. The residuals form an AR(2) process; thus the chosen correlation structure
is correct.


