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Solution to Series 3

1. a) Plotting and calculating the mean:

> mu <- mean(t.yields)

> plot(t.yields)

> abline(h = mu, lty=3)
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We can regard this time series as being stationary.

b) Plotting the ACF:

> acf(t.yields, plot = TRUE)
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The correlogram shows us that for lags k ≥ 3, the estimated autocorrelations ρ̂〈k 〉 do not differ
significantly from 0. The first of these autocorrelations is negative; as the time series oscillates very
noticeably, this negativity is not at all surprising.

Looking at lagged scatterplots:

> lag.plot(t.yields, lag = 6, layout = c(2, 3), do.lines = FALSE)
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In the lagged scatterplot with lag 1 the pairs [xt, xt+1] show the negative linear relationship we
expected from the correlogram. For lag 2, however, the lagged scatterplot shows up a positive linear
relationship, and for lag k ≥ 4 we see no further correlation. The pairs [xt, xt+3] (lagged scatterplot
at lag 3) still have a slightly negative connection, but the correlogram tells us that we can assume
ρ̂〈3〉 = 0.
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c) The variance of the arithmetic mean µ̂ is

Var(µ̂) =
1

n2
γ(0)

(
n+ 2

n−1∑
k=1

(n− k) ρ(k)

)
.

From the correlogram in Part b) we see that the estimated autocorrelations ρ̂〈k 〉 do not differ
significantly from 0 for lags k ≥ 3. Thus we can set all the autocorrelations ρ(k) for k ≥ 3 to 0. We
obtain

Var(µ̂) =
1

n2
γ(0)

(
n+ 2(n− 1)ρ(1) + 2(n− 2)ρ(2)

)
.

To estimate the variance of µ̂, we replace γ(0), ρ(1) and ρ(2) by their estimates.

R code:

> n <- length(t.yields)

> gamma0 <- var(t.yields) * (n - 1)/n

> rho <- acf(t.yields, plot=F)$acf

> Var.mu <- n^(-2) * gamma0 * (n + 2*sum((n - 1:2)*rho[2:3]))

This yields an estimated variance of V̂ar(µ̂) = 1.643.

The bounds of an approximate 95% confidence interval for the mean yield are then given by

µ̂± 1.96 · se(µ̂) = µ̂± 1.96 ·
√
V̂ar(µ̂) .

In our case, we get a confidence interval of [48.62, 53.64].

If we assume independence, the variance of µ̂ is estimated as

V̂ar(µ̂) =
1

n2

n∑
s=1

V̂ar(Xs) =
γ̂(0)

n
= 1.997 .

Under this independence assumption, therefore, an approximate 95% confidence interval for the mean
yield is given by

[µ̂− 1.96 · se(µ̂), µ̂+ 1.96 · se(µ̂)] = [48.36, 53.90] .

Thus the correct specification of the independence structure here leads to a confidence interval which
is 10% narrower.

d) Only the first partial autocorrelation is significantly different from zero. Thus we can assume that our
time series is an AR(1) process.
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e) For an AR(1) model, the Yule-Walker equations simplify to

ρ̂(1) = α̂ · ρ̂(0), ρ̂(0) = 1

σ2 can be estimated by σ̂2 = σ̂2
X · (1− α̂2). Here, we get α̂ = ρ̂(1) = −0.390 and σ̂2 = 120.266.

Determining parameters with the help of R:

> r.yw <- ar(t.yields, method = "yw", order.max = 1)

> r.yw$ar

[1] -0.3898783

> r.yw$var.pred

[1] 122.0345
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2. a) The experimental setup leads us to expect a period of 2 seconds. Since our measurements are spaced
apart by 0.15 seconds, each 2-second period covers 2/0.15 = 13.3 measurements. This period,
however, is subject to fluctuations, which are visible in both the time series plot and the correlogram
of ordinary autocorrelations:
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b) The PACF (see Part a)) is clearly significant for lags up to 6; also lags 9, 10 and 17 are slightly
significant. We could therefore use an AR model of order 6, 9 or 17. Order 17 seems quite high
(and hence difficult to interpret), so orders 6 or 9 would be preferred. However, we cannot see by eye
whether order 6 or 9 is really sufficient; this can be done with a residual analysis, see Part c).

The AIC plot yields similar proposes:

0 5 10 15 20

0
20

0
40

0
60

0

Order

A
IC

MLE
Yule−Walker
Burg

There is a big jump of the AIC at order 6, and a smaller one at order 9; hence one of these orders
would be plausible to fit the given time series. However, the minimum of the AIC is attained at order
p = 10 (MLE), p = 17 (Yule-Walker) or p = 17 (Burg), respectively.

c) Fitting the AR model:

> p <- 9

> ar.force <- arima(ts.forceA, order = c(p, 0, 0), method = "ML")

The residuals of this model look as follows:

> par(mfrow = c(2, 2), mar = c(3, 3, 2, 0.1))

> plot(ar.force$residuals, ylab = "residuals")

> acf(ar.force$residuals, type = "partial", plot = TRUE, main = "")

> plot(ts.forceA - ar.force$residuals, ar.force$residuals, xlab = "fitted values",

ylab = "residuals", main = "Tukey-Anscombe plot")

> qqnorm(ar.force$residuals)

> qqline(ar.force$residuals)
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The model with order 9 is acceptable. Its residuals are normally distributed, they have constant
variance, and the correlogram as well as the Tukey-Anscombe plot do not indicate any dependence.

If we take order p = 6 instead of order p = 9, the residuals look different. They still show some
(weak) correlation, indicating that the order is not sufficient for this time series:
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d) > force.pred <- predict(ar.force, n.ahead = 40)

> plot(window(ts.force, start = 250), ylab = "")

> lines(force.pred$pred, lty = 2)
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> lines(force.pred$pred + 1.96*force.pred$se, lty = 3)

> lines(force.pred$pred - 1.96*force.pred$se, lty = 3)
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