Dr. M. Dettling Applied Time Series Analysis SS 2013

Solution to Series 3

1. a) Plotting and calculating the mean:
> mu <- mean(t.yields)
> plot(t.yields)
> abline(h = mu, lty=3)
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We can regard this time series as being stationary.
b) Plotting the ACF:
> acf(t.yields, plot = TRUE)
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The correlogram shows us that for lags k& > 3, the estimated autocorrelations p(k) do not differ
significantly from 0. The first of these autocorrelations is negative; as the time series oscillates very
noticeably, this negativity is not at all surprising.

Looking at lagged scatterplots:

> lag.plot(t.yields, lag = 6, layout = c(2, 3), do.lines = FALSE)
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In the lagged scatterplot with lag 1 the pairs |24, z;11] show the negative linear relationship we
expected from the correlogram. For lag 2, however, the lagged scatterplot shows up a positive linear
relationship, and for lag k > 4 we see no further correlation. The pairs [x¢, z:13] (lagged scatterplot
at lag 3) still have a slightly negative connection, but the correlogram tells us that we can assume

7(3) = 0.



¢) The variance of the arithmetic mean [ is

d)
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From the correlogram in Part b) we see that the estimated autocorrelations p(k) do not differ
significantly from 0 for lags k > 3. Thus we can set all the autocorrelations p(k) for kK > 3 to 0. We
obtain

Var(@) = 5 7(0) (0 + 201~ 1)p(1) +2(n — 2)0(2)).

To estimate the variance of [i, we replace v(0), p(1) and p(2) by their estimates.

R code:

> n <- length(t.yields)

> gamma0O <- var(t.yields) * (n - 1)/n

> rho <- acf(t.yields, plot=F)$acf

> Var.mu <- n~(-2) * gammaO * (n + 2*sum((n - 1:2)*rho[2:3]))

This yields an estimated variance of \//a\r(ﬁ) = 1.643.

The bounds of an approximate 95% confidence interval for the mean yield are then given by

£ 1.96 - se(fi) = fi + 1.96 - \/ Var(7) .

In our case, we get a confidence interval of [48.62, 53.64].
If we assume independence, the variance of [i is estimated as

P ~7(0)
s=1

Under this independence assumption, therefore, an approximate 95% confidence interval for the mean
yield is given by
[L—1.96 - se(f1), i + 1.96 - se(f1)] = [48.36,53.90] .

Thus the correct specification of the independence structure here leads to a confidence interval which
is 10% narrower.

Only the first partial autocorrelation is significantly different from zero. Thus we can assume that our
time series is an AR(1) process.
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For an AR(1) model, the Yule-Walker equations simplify to
p(1) =a-p(0), p(0)=1
02 can be estimated by 5% = 5% - (1 — @?). Here, we get @ = p(1) = —0.390 and 52 = 120.266.

Determining parameters with the help of R:

> r.yw <- ar(t.yields, method = "yw", order.max = 1)
> r.yw$ar

[1] -0.3898783
> r.yw$var.pred
[1] 122.0345



2.

a) The experimental setup leads us to expect a period of 2 seconds. Since our measurements are spaced

apart by 0.15 seconds, each 2-second period covers 2/0.15 = 13.3 measurements. This period,
however, is subject to fluctuations, which are visible in both the time series plot and the correlogram
of ordinary autocorrelations:
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b) The PACF (see Part a)) is clearly significant for lags up to 6; also lags 9, 10 and 17 are slightly

significant. We could therefore use an AR model of order 6, 9 or 17. Order 17 seems quite high
(and hence difficult to interpret), so orders 6 or 9 would be preferred. However, we cannot see by eye
whether order 6 or 9 is really sufficient; this can be done with a residual analysis, see Part c).

The AIC plot yields similar proposes:
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There is a big jump of the AIC at order 6, and a smaller one at order 9; hence one of these orders
would be plausible to fit the given time series. However, the minimum of the AIC is attained at order
p =10 (MLE), p = 17 (Yule-Walker) or p = 17 (Burg), respectively.

Fitting the AR model:

>p<-9

> ar.force <- arima(ts.forceA, order = c(p, 0, 0), method = "ML")

The residuals of this model look as follows:

> par(mfrow = c(2, 2), mar = c(3, 3, 2, 0.1))

> plot(ar.force$residuals, ylab = "residuals")

> acf(ar.force$residuals, type = "partial", plot = TRUE, main = "")

> plot(ts.forceA - ar.force$residuals, ar.force$residuals, xlab = "fitted values",
ylab = "residuals", main = "Tukey-Anscombe plot")

ggnorm(ar.force$residuals)

qqline(ar.force$residuals)
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The model with order 9 is acceptable. Its residuals are normally distributed, they have constant
variance, and the correlogram as well as the Tukey-Anscombe plot do not indicate any dependence.
If we take order p = 6 instead of order p = 9, the residuals look different. They still show some
(weak) correlation, indicating that the order is not sufficient for this time series:
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d) > force.pred <- predict(ar.force, n.ahead = 40)
> plot(window(ts.force, start = 250), ylab = "")
> lines(force.pred$pred, 1ty = 2)



3)
3)

> lines(force.pred$pred + 1.96*force.pred$se, 1ty
> lines(force.pred$pred - 1.96*force.pred$se, 1ty
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