Solution to Series 3

1. a) Plotting and calculating the mean:
> mu <- mean(t.yields)
> plot(t.yields)
> abline(h = mu, lty=3)

We can regard this time series as being stationary.
b) Plotting the ACF:
> acf(t.yields, plot = TRUE)

The correlogram shows us that for lags $k \geq 3$, the estimated autocorrelations $\hat{\rho}\langle k\rangle$ do not differ significantly from 0 . The first of these autocorrelations is negative; as the time series oscillates very noticeably, this negativity is not at all surprising.
Looking at lagged scatterplots:
> lag.plot(t.yields, lag = 6, layout $=c(2,3)$, do.lines $=$ FALSE $)$

In the lagged scatterplot with lag 1 the pairs $\left[x_{t}, x_{t+1}\right]$ show the negative linear relationship we expected from the correlogram. For lag 2 , however, the lagged scatterplot shows up a positive linear relationship, and for lag $k \geq 4$ we see no further correlation. The pairs [x_{t}, x_{t+3}] (lagged scatterplot at lag 3) still have a slightly negative connection, but the correlogram tells us that we can assume $\widehat{\rho}\langle 3\rangle=0$.
c) The variance of the arithmetic mean $\widehat{\mu}$ is

$$
\operatorname{Var}(\widehat{\mu})=\frac{1}{n^{2}} \gamma(0)\left(n+2 \sum_{k=1}^{n-1}(n-k) \rho(k)\right)
$$

From the correlogram in Part b) we see that the estimated autocorrelations $\hat{\rho}\langle k\rangle$ do not differ significantly from 0 for lags $k \geq 3$. Thus we can set all the autocorrelations $\rho(k)$ for $k \geq 3$ to 0 . We obtain

$$
\operatorname{Var}(\widehat{\mu})=\frac{1}{n^{2}} \gamma(0)(n+2(n-1) \rho(1)+2(n-2) \rho(2))
$$

To estimate the variance of $\widehat{\mu}$, we replace $\gamma(0), \rho(1)$ and $\rho(2)$ by their estimates.
R code:
> $n<-$ length(t.yields)
> gamma0 <- var(t.yields) * (n - 1)/n
> rho <- acf(t.yields, plot=F)\$acf
> Var.mu <- $n^{\wedge}(-2)$ * gamma0 * ($\left.n+2 * \operatorname{sum}((n-1: 2) * r h o[2: 3])\right)$
This yields an estimated variance of $\widehat{\operatorname{Var}}(\widehat{\mu})=1.643$.
The bounds of an approximate 95% confidence interval for the mean yield are then given by

$$
\widehat{\mu} \pm 1.96 \cdot \operatorname{se}(\widehat{\mu})=\widehat{\mu} \pm 1.96 \cdot \sqrt{\widehat{\operatorname{Var}}(\widehat{\mu})}
$$

In our case, we get a confidence interval of [48.62, 53.64].
If we assume independence, the variance of $\widehat{\mu}$ is estimated as

$$
\widehat{\operatorname{Var}}(\widehat{\mu})=\frac{1}{n^{2}} \sum_{s=1}^{n} \widehat{\operatorname{Var}}\left(X_{s}\right)=\frac{\widehat{\gamma}(0)}{n}=1.997
$$

Under this independence assumption, therefore, an approximate 95% confidence interval for the mean yield is given by

$$
[\widehat{\mu}-1.96 \cdot \operatorname{se}(\widehat{\mu}), \widehat{\mu}+1.96 \cdot \operatorname{se}(\widehat{\mu})]=[48.36,53.90]
$$

Thus the correct specification of the independence structure here leads to a confidence interval which is 10% narrower.
d) Only the first partial autocorrelation is significantly different from zero. Thus we can assume that our time series is an $\operatorname{AR}(1)$ process.

e) For an $A R(1)$ model, the Yule-Walker equations simplify to

$$
\widehat{\rho}(1)=\widehat{\alpha} \cdot \widehat{\rho}(0), \quad \widehat{\rho}(0)=1
$$

σ^{2} can be estimated by $\widehat{\sigma}^{2}=\widehat{\sigma}_{X}^{2} \cdot\left(1-\widehat{\alpha}^{2}\right)$. Here, we get $\widehat{\alpha}=\widehat{\rho}(1)=-0.390$ and $\widehat{\sigma}^{2}=120.266$. Determining parameters with the help of R :

```
> r.yw <- ar(t.yields, method = "yw", order.max = 1)
> r.yw$ar
```

[1] -0. 3898783
> r.yw\$var.pred
[1] 122.0345
2. a) The experimental setup leads us to expect a period of 2 seconds. Since our measurements are spaced apart by 0.15 seconds, each 2 -second period covers $2 / 0.15=13.3$ measurements. This period, however, is subject to fluctuations, which are visible in both the time series plot and the correlogram of ordinary autocorrelations:

b) The PACF (see Part a)) is clearly significant for lags up to 6 ; also lags 9,10 and 17 are slightly significant. We could therefore use an AR model of order 6,9 or 17 . Order 17 seems quite high (and hence difficult to interpret), so orders 6 or 9 would be preferred. However, we cannot see by eye whether order 6 or 9 is really sufficient; this can be done with a residual analysis, see Part c).
The AIC plot yields similar proposes:

There is a big jump of the AIC at order 6, and a smaller one at order 9; hence one of these orders would be plausible to fit the given time series. However, the minimum of the AIC is attained at order $p=10$ (MLE), $p=17$ (Yule-Walker) or $p=17$ (Burg), respectively.
c) Fitting the AR model:
$>p<-9$
$>$ ar.force <- arima(ts.forceA, order $=c(p, 0,0)$, method $=$ "ML")
The residuals of this model look as follows:

```
> par(mfrow = c(2, 2), mar = c(3, 3, 2, 0.1))
> plot(ar.force$residuals, ylab = "residuals")
> acf(ar.force$residuals, type = "partial", plot = TRUE, main = "")
> plot(ts.forceA - ar.force$residuals, ar.force$residuals, xlab = "fitted values",
    ylab = "residuals", main = "Tukey-Anscombe plot")
> qqnorm(ar.force$residuals)
> qqline(ar.force$residuals)
```


The model with order 9 is acceptable. Its residuals are normally distributed, they have constant variance, and the correlogram as well as the Tukey-Anscombe plot do not indicate any dependence. If we take order $p=6$ instead of order $p=9$, the residuals look different. They still show some (weak) correlation, indicating that the order is not sufficient for this time series:

Tukey-Anscombe plot

Normal Q-Q Plot

d) > force.pred <- predict(ar.force, n. ahead = 40)
> plot(window(ts.force, start = 250), ylab = "")
> lines (force.pred\$pred, lty = 2)
> lines (force.pred\$pred + 1.96*force.pred\$se, lty = 3)
> lines (force.pred\$pred - 1.96*force.pred\$se, lty = 3)

