Cluster Analysis

Applied Multivariate Statistics – Spring 2013

Overview

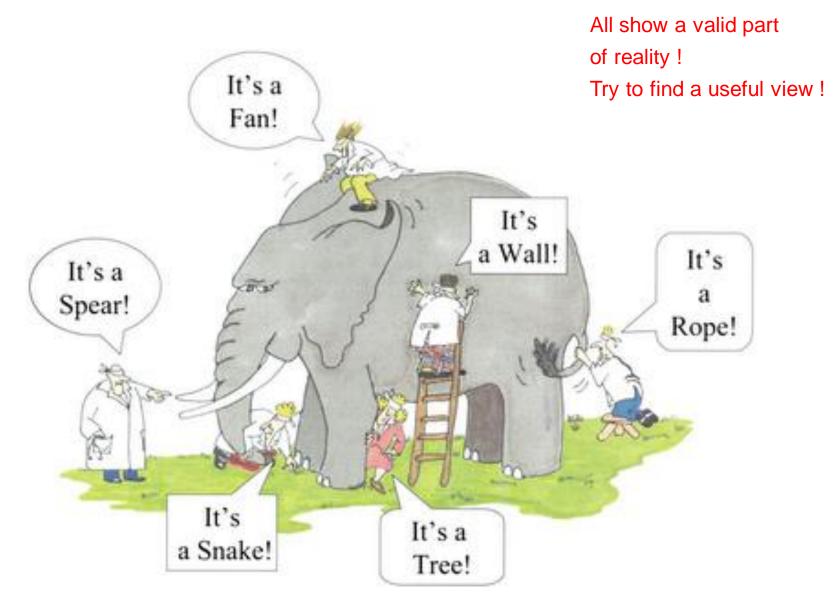
- Hierarchical Clustering: Agglomerative Clustering
- Partitioning Methods: K-Means and PAM
- Gaussian Mixture Models

Goal of clustering

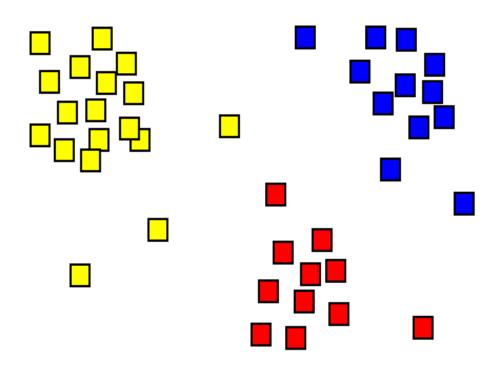
- Find groups, so that elements within cluster are very similar and elements between cluster are very different Problem: Need to interpret meaning of a group
- Examples:
 - Find customer groups to adjust advertisement
 - Find subtypes of diseases to fine-tune treatment
- Unsupervised technique: No class labels necessary
- N samples, k cluster: k^N possible assignments E.g. N=100, k=5 implies 5¹⁰⁰ = 7*10⁶⁹ possible assignments!!

Thus, impossible to search through all assignments

Which clustering method is best?



Clustering is useful in 3+ dimensions



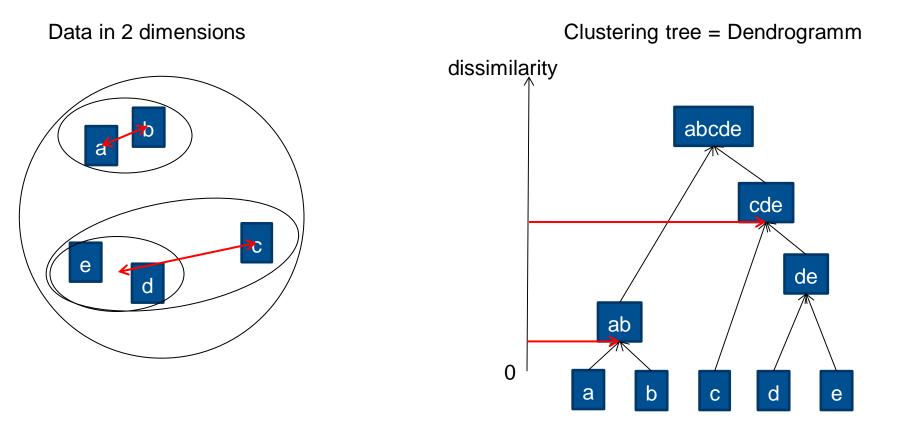
Human eye is extremely good at clustering

Use clustering only, if you can not look at the data (i.e. more than 2 dimensions)

Hierarchical Clustering

- Agglomerative: Build up cluster from individual observations
- Divisive: Start with whole group of observations and split off clusters
- Divisive clustering has much larger computational burden We will focus on agglomerative clustering
- Solve clustering for all possible numbers of cluster (1, 2, ..., N) at once
 Choose desired number of cluster later

Agglomerative Clustering

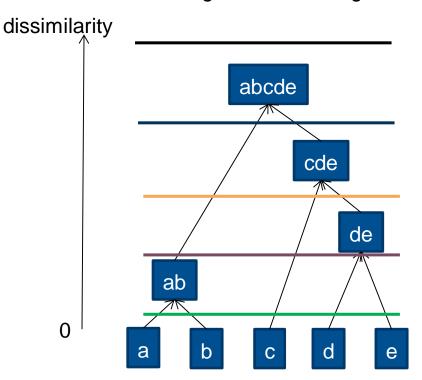


Join samples/cluster that are closest until only one cluster is left

Agglomerative Clustering: Cutting the tree

Get cluster solutions by cutting the tree:

- 1 Cluster: abcde (trivial)
- 2 Cluster: ab cde
- 3 Cluster: ab c de
- 4 Cluster: ab c d e
- 5 Cluster: a b c d e



Clustering tree = Dendrogramm

Dissimilarity between samples

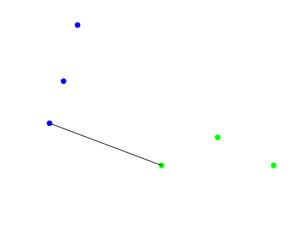
- Any dissimilarity can be used
 - euclidean (cont. data)
 - manhattan (cont. data)
 - simple matching coefficent (discrete data)
 - Jaccard dissimilarity (discrete data)
 - Gower's dissimilarity (mixed data)
 - etc.

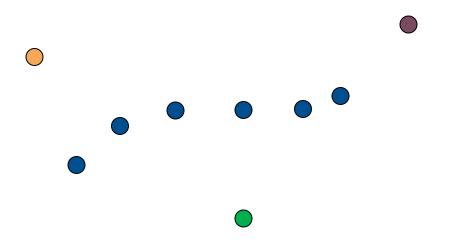
Dissimilarity between cluster

- Based on dissimilarity between samples
- Most common methods:
 - single linkage
 - complete linkage
 - average linkage
- No right or wrong: All methods show one aspect of reality
- If in doubt, I use complete linkage

Single linkage

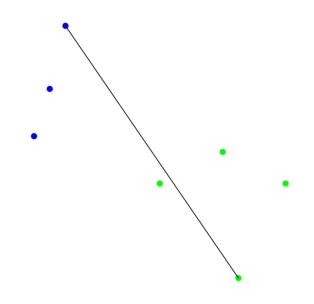
- Distance between two cluster = minimal distance of all element pairs of both cluster
- Suitable for finding elongated cluster

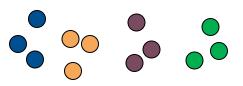




Complete linkage

- Distance between two cluster = maximal distance of all element pairs of both cluster
- Suitable for finding compact but not well separated cluster





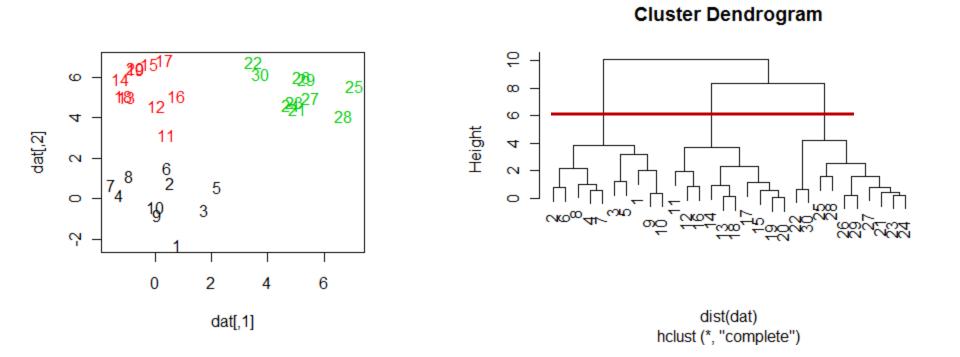
Average linkage

- Distance between two cluster = average distance of all element pairs of both cluster
- Suitable for finding well separated, potato-shaped cluster

٩

Choosing the number of cluster

- No strict rule
- Find the largest vertical "drop" in the tree



Quality of clustering: Silhouette plot

- One value S(i) in [0,1] for each observation
- Compute for each observation i:

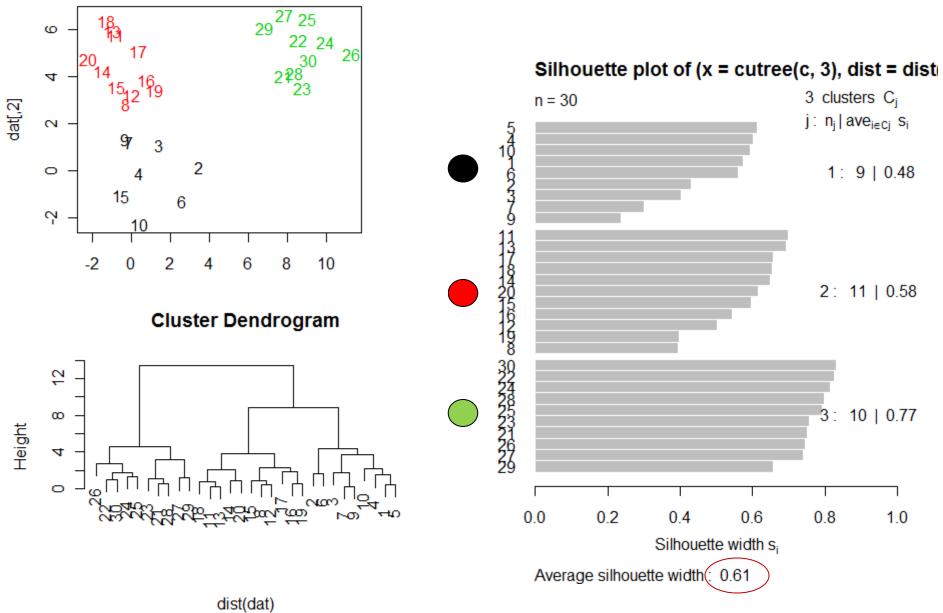
 a(i) = average dissimilarity between i and all other points of the cluster to which i belongs
 b(i) = average dissimilarity between i and its "neighbor" cluster, i.e., the nearest one to which it does *not* belong.

 Then, S(i) = (b(i)-a(i))/(max(a(i),b(i)))
- S(i) large: well clustered; S(i) small: badly clustered
 S(i) negative: assigned to wrong cluster

 \bigcirc

S(1) small

Silhouette plot: Example



hclust (*, "complete")

Agglomerative Clustering in R

- Pottery Example
- Functions "hclust", "cutree" in package "stats"
- Alternative: Function "agnes" in package "cluster"
- Function "silhouette" in package "cluster"

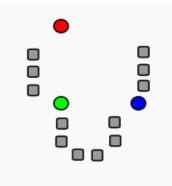
Partitioning Methods: K-Means

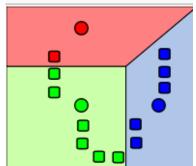
- Number of clusters K is fixed in advance
- Find K cluster centers μ_C and assignments, so that within-groups Sum of Squares (WGSS) is minimal
- $WGSS = \sum_{all \ Cluster \ C} \sum_{Point \ i \ in \ Cluster \ C} (x_i \mu_C)^2$
- Implemented only for continuous variables

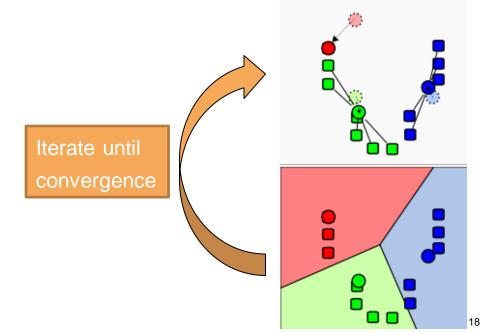


K-Means

- Exact solution computationally infeasible
- Approximate solutions, e.g. Lloyd's algorithm
- Different starting assignments will give different solutions Random restarts to avoid local optima

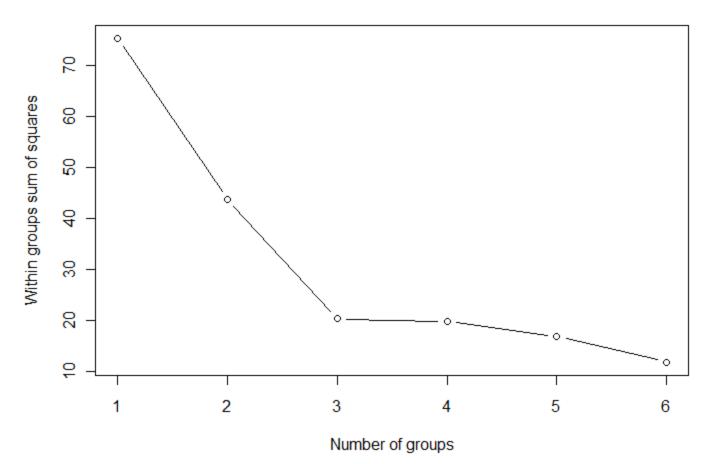






K-Means: Number of clusters

- Run k-Means for several number of groups
- Plot WGSS vs. number of groups
- Choose number of groups after the last big drop of



Robust alternative: PAM

- Partinioning around Medoids (PAM)
- K-Means: Cluster center can be an arbitrary point in space PAM: Cluster center must be an observation ("medoid")
- Advantages over K-means:
 - more robust against outliers
 - can deal with any dissimilarity measure
 - easy to find representative objects per cluster (e.g. for easy interpretation)

Partitioning Methods in R

- Function "kmeans" in package "stats"
- Function "pam" in package "cluster"
- Pottery revisited

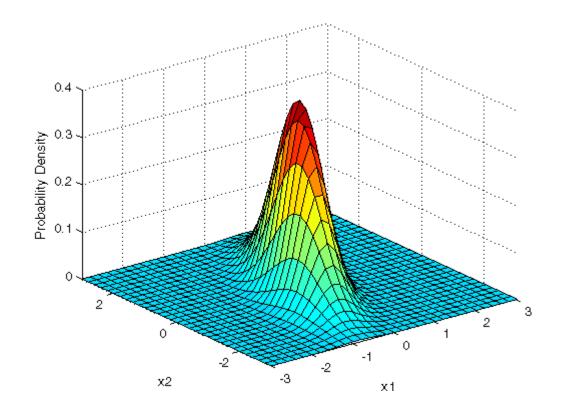
Gaussian Mixture Models (GMM)

- Up to now: Heuristics using distances to find cluster
- Now: Assume underlying statistical model
- Gaussian Mixture Model:
 $f(x; p, \theta) = \sum_{j=1}^{K} p_j g_j(x; \theta_j)$ K populations with different probability distributions
- Example: X₁ ~ N(0,1), X₂ ~ N(2,1); p₁ = 0.2, p₂ = 0.8 $f(x; p, \theta) = 0.2 \cdot \frac{1}{\sqrt{2\pi}} \exp(-x^2/2) + 0.8 \cdot \frac{1}{\sqrt{2\pi}} \exp(-(x-2)^2/2)$
- Find number of classes and parameters p_j and θ_j given data
- Assign observation x to cluster j, where estimated value of $P(cluster \ j | x) = \frac{p_j g_j(x; \theta_j)}{f(x; p, \theta)}$

is largest

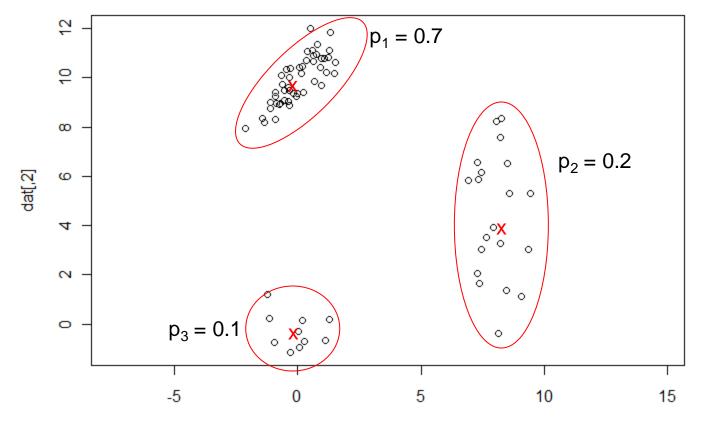
Revision: Multivariate Normal Distribution

$$f(x;\mu,\Sigma) = \frac{1}{\sqrt{2\pi|\Sigma|}} \exp\left(-\frac{1}{2} \cdot (x-\mu)^T \Sigma^{-1} (x-\mu)\right)$$



GMM: Example estimated manually

- 3 clusters
- $p_1 = 0.7, p_2 = 0.2, p_3 = 0.1$
- Mean vector and cov. Matrix per cluster



dat[,1]

Fitting GMMs 1/2

- Maximum Likelihood Method Hard optimization problem
- Simplification: Restrict Covariance matrices to certain patterns (e.g. diagonal)

identifier	Model	HC	EM	Distribution	Volume	Shape	Orientation
E		•	•	(univariate)	equal		
V		•	•	(univariate)	variable	\downarrow /	
EII	λI	•	•	Spherical	equal	equal	NA /
VII	$\lambda_k I$	•	•	Spherical	variable	equa	NA /
EEI	λA		•	Diagonal	equal	\mathbf{equal}	coordinate axes
VEI	$\lambda_k A$		•	Diagonal	variable	equal	coordinate axes
EVI	λA_k		•	Diagonal	equal	variable	coordinate/axes
VVI	$\lambda_k A_k$		•	Diagonal	variable	variable	coordinate axes
EEE	λDAD^T	•	•	Ellipsoidal	equal	equal	equal
EEV	$\lambda D_k A D_k^T$		•	Ellipsoidal	equal	equal	variable
VEV	$\lambda_k D_k A D_k^T$		•	Ellipsoidal	variable	equal	variable
VVV	$\lambda_k D_k A_k D_k^T$	•	•	Ellipsoidal	variable	variable	variable

Fitting GMMs 2/2

- Problem: Fit will never get worse if you use more cluster or allow more complex covariance matrices
 → How to choose optimal model ?
- Solution: Trade-off between model fit and model complexity

 $BIC = log-likelihood - log(n)/2^{*}(number of parameters)$

Find solution with maximal BIC

GMMs in R

- Function "Mclust" in package "mclust"
- Pottery revisited

Giving meaning to clusters

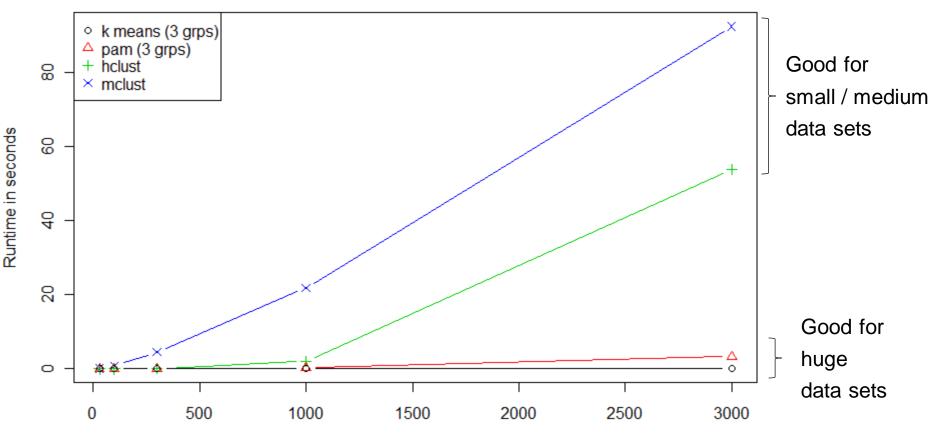
- Generally hard in many dimensions
- Look at position of cluster centers or cluster representatives (esp. easy in PAM)

(Very) small runtime study

Uniformly distributed points in [0,1]⁵ on my desktop

1 Mio samples with k-means: 5 sec

(always just one replicate; just to give you a rough idea...)



Number of samples

Comparing methods

- Partitioning Methods:
 - + Super fast ("millions of samples")
 - + No memory problems
 - No underlying Model
- Agglomerative Methods:
 - + Get solutions for all possible numbers of cluster at once
 - Memory problems after $\sim 10^4$ samples (need distance matrix with $(10^4)^2 = 10^8$ entries)
 - slow ("thousands of samples")
- GMMs:
 - + Get statistical model for data generating process
 - + Statistically justified selection of number of clusters
 - very slow ("hundreds of samples")
 - Memory problems after $\sim 10^4$ samples (need covariance matrix with $(10^4)^2 = 10^8$ entries)

Concepts to know

- Agglomerative clustering, dendrogram, cutting a dendrogram, dissimilarity measures between cluster
- Partitioning methods: k-Means, PAM
- GMM
- Choosing number of clusters:
 - drop in dendrogram
 - drop in WGSS
 - BIC
- Quality of clustering: Silhouette plot

R functions to know

- Functions "kmeans", "hclust", "cutree" in package "stats"
- Functions "pam", "agnes", "shilouette" in package "cluster"
- Function "Mclust" in package "mclust"