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Latent-variable models

= Large number of observed (manifest) variables should be
explained by a few un-observed (latent) underlying
variables

= E.g.: Scores on several tests are influenced by “general
academic ability”

= Assumes local independence: Manifest variables are
Independent given latent variables

Manifest Variables Continuous Categorical

Continuous Factor Analysis Latent Profile Analysis

Categorical ltem Response Theory Latent Class Analysis



Overview

= Introductory example

= The general factor model for x and X
= Estimation

= Scale and rotation invariance

= [actor rotation: Varimax

= Factor scores

= Comparing PCA and FA



Introductory example: Intelligence tests

= Six intelligence tests (general, picture, blocks, maze,
reading, vocab) on 112 persons

= Sample correlation matrix

general picture blocks maze reading vocab
general 1.0000000 0.4662649 0.5516632 0.3403250 0.5764799 0.5144058
picture 0.4662649 1.0000000 0.5724364 0.1930992 0.2629229 0.2392766
blocks ©0.5516632 0.5724364 1.0000000 0.4450901 0.3540252 0.3564715
maze 0.3403250 0.1930992 0.4450901 1.0000000 0.18329645 0.21EBE370
reading 0.5764799 0.2629229 0.3540252 0.1839645 1.0000000 0.7913779
vocab 0.5144058 0.2392766 0.3564715 0.2188370 0.7913779 1.0000000

= Can performance in and correlation between the six tests
be explained by one or two variables describing some
general concept of intelligence?



Introductory example: Intelligence tests

A: Factor loadings - Importance of f on x;

Key assumption:
u;, u,, U; are uncorrelated
Thus x4, X,, X5 are conditionally uncorrelated given f

R: Function “factanal” in package “stats”



General Factor Model

) .. To be det ined f :
= General model for one individual: © BE GEICHAEC O 2

T1 = M1+ Af1 e+ Agfg

Number g of common factors

Factor loadings A

Specific variances ¥

Ty = Hp Tt Aplfp Tt )\quq T Up Factor scores f

= |n matrix notation for one individual:
r=u+Af+u

= |n matrix notation for n individuals:

= Assumptions:

- Cov(y;, fg) =0 forallj, s

- E[u] = 0, Cov(u) = ¥ is a diagonal matrix (diagonal elements = «uniquenesses»)
= Convention:

- E[f] = 0, Cov(f) = identity matrix (i.e. factors are scaled)
Otherwise, A and p are not well determined



Representation in terms of covariance matrix

= Using formulas and assumptions from previous slide:

r=p+Af+u & T =AAT+T

= Factor model = particular structure imposed on covariance

matrix “communality”: variance

= Variances can be split up:  EEESMURERES

’Uar(xj) = 0 “specific variance”,

“‘uniqueness”

= “Heywood case” (= kind of estimation error):
P; <0



Estimation: MLE

= Assume Xx; follows multivariate normal distribution
= Choose A, ¥ to maximize the log-likelihood:

1 n
L = log(L) = —>log(1Z) =5 ) (x; = WE 7 (x; — )
=1

= |terative solution, difficult in practice (local maxima)



Number of factors

= MLE approach for estimation provides test:
H,:q — factor model holds

US
H,:Y is unconstrained

= Modelling strategy:
Start with small value of g and increase successively until

some H, Is not rejected.

= (Multiple testing problem: Significance levels are not
correct)



Intelligence tests revisited: Number of factors

Part of output of R function “factanal”:

Test of the |hypothesis that 2 factors are sufficient.
The chi square statistic is 6.11 on 4 degrees of freedom.
The |p-value is 0.191




Scale invariance of factor analysis

Suppose y; = ¢x; or in matrix notation y = CX
(C is a diagonal matrix); e.g. change of measurement units

Cov(y) = CxCt =

= C(AAT + )t =

= (CA(CNT +cCcuc?T =

= AT+
l.e., loadings and uniguenesses are the same If expressed
IN new units

= Thus, using cov or cor gives basically the same result

Common practice:

- use correlation matrix or
- scale input data

(This is done in “factanal”)

10



Rotational invariance of factor analysis

= Rotating the factors yields exactly the same model
= Assume MM' and transform f* = MTf,A* = AM
= This yields the same model:
x*=ANf*+u= WMYMTH+u=Af+tu=x
P =AANT P = (AMAMT +Y =ANT +WP =3
= Thus, the rotated model is equivalent for explaining the
covariance matrix

= Consequence: Use rotation that makes interpretation of
loadings easy

= Most popular rotation: Varimax rotation
Each factor should have few large and many small
loadings
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Intelligence tests revisited: Interpreting factors

Part of output of R function “factanal”:

Loadings:
Factorl Factor

general 0.499 0.543

picture 0.156 [0.8622

blocks 0.206 0. 860 Spa’ual reasoning
maze 0.109 0.468

reading 0.956 0.182

vocab 0.785 0.225

Interpretation of factors is generally debatable




Estimating factor scores

= Scores are assumed to be random variables: Predict
values for each person

= Two methods:
- Bartlett (option “Bartlett” in R):
Treat f as fix (ML estimate)
- Thompson (option “regression” in R):
Treat f as random (Bayesian estimate)
= No big difference In practice
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Using different number of factors | B

Case StUdy: Drug use changes loadings completely

Loadings: Loadings:

Factorl Factor2 Factor3 Factord Factord Factoré Factorl Factor? Factor3
cigarettes 0.494 0.110 cigarettes 0.132 0.495 0.352
beer 0.77 0.112 beer 0.778  0.150
wine 0.786 wine 0.781
1iquor 0.720, 0.121 0.103 0.115 0.160 Tiquor 0.193 0.717 0.192
cocaine 0.519 0.132 0.158 cocaine 0.471
tranquillizers 0.130 |0.564) 0.321 0.105 0.143 tranquillizers 0.643 0.114  0.148
drug store medication 0.255 0.372 drug store medication 0.354
heroin 0.532) 0.101 0.190 heroin 0.502
marijuana 0.429 0.158 0.152 0.259 (0.609) 0.110 marijuana 0.237  0.394  0.806
hashish 0.244 0.276 0.186 [0.881) 0.194 0.100 hashish 0.474  0.261  0.395
inhalants 0.166 0.308 0.150 0.140 inhalants 0.498  0.189 0.131
hallucinogenics 0.387 0.335 0.186 0.288 hallucinogenics 0.644
amphetamine 0.151  0.336 0.145 0.137 0.187 amphetamine 0.705  0.155 0.208

AmphetamineSmoking

Hard drugs Hashish Inhalants ?

Test of the hyputhe515 that 6 factors are 5uff1c1ent
The chi square statistic s ZZvalum I uegress o rreedom,
The p-value is 0.0975
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Comparison: PCvs. FA

PCA aims at explaining variances, FA aims at explaining
correlations

PCA is exploratory and without assumptions
FA is based on statistical model with assumptions

First few PCs will be same regardless of g
First few factors of FA depend on g

FA: Orthogonal rotation of factor loadings are equivalent
This does not hold in PCA

More mathematically: Assume we only keep the PCs in I}
PCA:x=ﬂ+F1Z1+F2Z2 =H+F1Z1+e

FA:x =u+Af +u

Cov(u) is diagonal by assumption, Cov(e) is not

I Both PCA and FA only useful if input data is correlated !
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Concepts to know

= Form of the general factor model

= Representation in terms of covariance matrix
= Scale and Rotation invariance, varimax

= Interpretation of loadings
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R functions to know

= Function “factanal’
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