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Latent-variable models 

 Large number of observed (manifest) variables should be 

explained by a few un-observed (latent) underlying 

variables 

 E.g.: Scores on several tests are influenced by “general 

academic ability” 

 Assumes local independence: Manifest variables are 

independent given latent variables 

Latent variables 

Manifest Variables Continuous Categorical 

Continuous Factor Analysis Latent Profile Analysis 

Categorical Item Response Theory Latent Class Analysis 



Overview 

 Introductory example 

 The general factor model for x and Σ 

 Estimation 

 Scale and rotation invariance 

 Factor rotation: Varimax 

 Factor scores 

 Comparing PCA and FA 
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Introductory example: Intelligence tests 

 Six intelligence tests (general, picture, blocks, maze, 

reading, vocab) on 112 persons 

 Sample correlation matrix 

 

 

 

 

 Can performance in and correlation between the six tests 

be explained by one or two variables describing some 

general concept of intelligence? 
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Introductory example: Intelligence tests 

x1i = ¸1fi + u1i

x2i = ¸2fi + u2i

:::

x6i = ¸6fi + u6i
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Model: 
f: Common factor (“ability”) 

¸: Factor loadings - Importance of f on xj 

u: Random disturbance specific to each exam 

Key assumption:  
u1, u2, u3 are uncorrelated 
Thus x1, x2, x3 are conditionally uncorrelated given f 
 
R: Function “factanal” in package “stats” 



 General model for one individual: 

 

 

 

 In matrix notation for one individual: 

 

 In matrix notation for n individuals: 

 
 Assumptions: 

- Cov(uj, fs) = 0 for all j, s 
- E[u] = 0, Cov(u) = ª is a diagonal matrix (diagonal elements = «uniquenesses») 

 Convention: 

- E[f] = 0, Cov(f) = identity matrix (i.e. factors are scaled) 
Otherwise, ¤ and ¹ are not well determined 

General Factor Model 

x1 = ¹1 + ¸11f1 + :::+ ¸1qfq + u1

:::

xp = ¹p + ¸p1fp + :::+ ¸pqfq + up
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x= ¹+¤f +u

xi = ¹+¤fi +ui (i = 1; :::; n)

To be determined from x: 

• Number q of common factors 

• Factor loadings ¤ 

• Specific variances ª 

• Factor scores f 



Representation in terms of covariance matrix 

 Using formulas and assumptions from previous slide: 

 

 

 Factor model = particular structure imposed on covariance 

matrix  

 Variances can be split up: 

 

 

 “Heywood case” (= kind of estimation error):  
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x= ¹+¤f +u , §=¤¤T +ª

var(xj) = ¾2j =
Pq

k=1 ¸2jk +Ãj

“communality”: variance  

due to common factors 

“specific variance”,  

“uniqueness” 

Ãj < 0



Estimation: MLE 

 Assume xi follows multivariate normal distribution 

 Choose Λ,Ψ to maximize the log-likelihood: 

𝑙 = log 𝐿 = −
𝑛

2
log Σ −

1

2
  𝑥𝑖 − 𝜇

𝑇Σ−1 𝑥𝑖 − 𝜇

𝑛

𝑖=1

 

 Iterative solution, difficult in practice (local maxima) 
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Number of factors 

 MLE approach for estimation provides test: 

𝐻𝑞: 𝑞 − 𝑓𝑎𝑐𝑡𝑜𝑟 𝑚𝑜𝑑𝑒𝑙 ℎ𝑜𝑙𝑑𝑠 

𝑣𝑠 
𝐻𝑢: Σ 𝑖𝑠 𝑢𝑛𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑 

 Modelling strategy: 

Start with small value of q and increase successively until 

some 𝐻𝑞 is not rejected.  

 (Multiple testing problem: Significance levels are not 

correct) 
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Intelligence tests revisited: Number of factors  
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Part of output of R function “factanal”: 

Hypothesis can not be rejected;  

for simplicity, we thus use two factors  



Scale invariance of factor analysis 

 Suppose yj = cjxj or in matrix notation y = Cx  

(C is a diagonal matrix); e.g. change of measurement units 

 

 

 

 

 

I.e., loadings and uniquenesses are the same if expressed 

in new units 

 Thus, using cov or cor gives basically the same result 

 Common practice:  

- use correlation matrix or 

- scale input data 

(This is done in “factanal”) 
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Cov(y) = C§CT =

= C(¤¤T +ª)CT =

= (C¤)(C¤)T +CªCT =

= ¤̂¤̂T + ª̂



Rotational invariance of factor analysis 

 Rotating the factors yields exactly the same model 

 Assume 𝑀𝑀𝑇 and transform 𝑓∗ = 𝑀𝑇𝑓, Λ∗ = Λ𝑀  

 This yields the same model: 

𝑥∗ = Λ∗𝑓∗ + 𝑢 = Λ𝑀 𝑀𝑇𝑓 + 𝑢 = Λ𝑓 + 𝑢 = 𝑥 

Σ∗ = Λ∗Λ∗𝑇 +Ψ = Λ𝑀 Λ𝑀 𝑇 +Ψ = ΛΛ𝑇 +Ψ = Σ 

 Thus, the rotated model is equivalent for explaining the 

covariance matrix 

 Consequence: Use rotation that makes interpretation of 

loadings easy 

 Most popular rotation: Varimax rotation 

Each factor should have few large and many small 

loadings 

 

11 



Intelligence tests revisited: Interpreting factors  
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Part of output of R function “factanal”: 

Verbal intelligence 

Spatial reasoning 

Interpretation of factors is generally debatable 



Estimating factor scores 

 Scores are assumed to be random variables: Predict 

values for each person 

 Two methods: 

- Bartlett (option “Bartlett” in R):  

Treat f as fix (ML estimate) 

- Thompson (option “regression” in R):  

Treat f as random (Bayesian estimate) 

 No big difference in practice 
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Case study: Drug use 
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Social drugs 

Hard drugs 

Amphetamine 

Hashish 

Smoking 

Inhalants ? 

Significance vs. Relevance: 

Might keep less than six factors if  

fit of correlation matrix is good enough 

Using different number of factors 

changes loadings completely 



Comparison: PC vs. FA 

 PCA aims at explaining variances, FA aims at explaining 

correlations 

 PCA is exploratory and without assumptions 

FA is based on statistical model with assumptions 

 First few PCs will be same regardless of q 

First few factors of FA depend on q 

 FA: Orthogonal rotation of factor loadings are equivalent 

This does not hold in PCA 

 More mathematically: 

PCA: 𝑥 = 𝜇 + Γ1𝑧1 + Γ2𝑧2 = 𝜇 + Γ1𝑧1 + 𝑒 
FA: 𝑥 = 𝜇 + Λ𝑓 + 𝑢 
Cov(u) is diagonal by assumption, Cov(e) is not 

 ! Both PCA and FA only useful if input data is correlated ! 
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Assume we only keep the PCs in Γ1 



Concepts to know 
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 Form of the general factor model 

 Representation in terms of covariance matrix 

 Scale and Rotation invariance, varimax 

 Interpretation of loadings 



R functions to know 

 Function “factanal” 
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