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Latent-variable models 

 Large number of observed (manifest) variables should be 

explained by a few un-observed (latent) underlying 

variables 

 E.g.: Scores on several tests are influenced by “general 

academic ability” 

 Assumes local independence: Manifest variables are 

independent given latent variables 

Latent variables 

Manifest Variables Continuous Categorical 

Continuous Factor Analysis Latent Profile Analysis 

Categorical Item Response Theory Latent Class Analysis 



Overview 

 Introductory example 

 The general factor model for x and Σ 

 Estimation 

 Scale and rotation invariance 

 Factor rotation: Varimax 

 Factor scores 

 Comparing PCA and FA 
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Introductory example: Intelligence tests 

 Six intelligence tests (general, picture, blocks, maze, 

reading, vocab) on 112 persons 

 Sample correlation matrix 

 

 

 

 

 Can performance in and correlation between the six tests 

be explained by one or two variables describing some 

general concept of intelligence? 
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Introductory example: Intelligence tests 

x1i = ¸1fi + u1i

x2i = ¸2fi + u2i

:::

x6i = ¸6fi + u6i
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Model: 
f: Common factor (“ability”) 

¸: Factor loadings - Importance of f on xj 

u: Random disturbance specific to each exam 

Key assumption:  
u1, u2, u3 are uncorrelated 
Thus x1, x2, x3 are conditionally uncorrelated given f 
 
R: Function “factanal” in package “stats” 



 General model for one individual: 

 

 

 

 In matrix notation for one individual: 

 

 In matrix notation for n individuals: 

 
 Assumptions: 

- Cov(uj, fs) = 0 for all j, s 
- E[u] = 0, Cov(u) = ª is a diagonal matrix (diagonal elements = «uniquenesses») 

 Convention: 

- E[f] = 0, Cov(f) = identity matrix (i.e. factors are scaled) 
Otherwise, ¤ and ¹ are not well determined 

General Factor Model 

x1 = ¹1 + ¸11f1 + :::+ ¸1qfq + u1

:::

xp = ¹p + ¸p1fp + :::+ ¸pqfq + up
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x= ¹+¤f +u

xi = ¹+¤fi +ui (i = 1; :::; n)

To be determined from x: 

• Number q of common factors 

• Factor loadings ¤ 

• Specific variances ª 

• Factor scores f 



Representation in terms of covariance matrix 

 Using formulas and assumptions from previous slide: 

 

 

 Factor model = particular structure imposed on covariance 

matrix  

 Variances can be split up: 

 

 

 “Heywood case” (= kind of estimation error):  
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x= ¹+¤f +u , §=¤¤T +ª

var(xj) = ¾2j =
Pq

k=1 ¸2jk +Ãj

“communality”: variance  

due to common factors 

“specific variance”,  

“uniqueness” 

Ãj < 0



Estimation: MLE 

 Assume xi follows multivariate normal distribution 

 Choose Λ,Ψ to maximize the log-likelihood: 

𝑙 = log 𝐿 = −
𝑛

2
log Σ −

1

2
  𝑥𝑖 − 𝜇

𝑇Σ−1 𝑥𝑖 − 𝜇

𝑛

𝑖=1

 

 Iterative solution, difficult in practice (local maxima) 
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Number of factors 

 MLE approach for estimation provides test: 

𝐻𝑞: 𝑞 − 𝑓𝑎𝑐𝑡𝑜𝑟 𝑚𝑜𝑑𝑒𝑙 ℎ𝑜𝑙𝑑𝑠 

𝑣𝑠 
𝐻𝑢: Σ 𝑖𝑠 𝑢𝑛𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑 

 Modelling strategy: 

Start with small value of q and increase successively until 

some 𝐻𝑞 is not rejected.  

 (Multiple testing problem: Significance levels are not 

correct) 
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Intelligence tests revisited: Number of factors  
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Part of output of R function “factanal”: 

Hypothesis can not be rejected;  

for simplicity, we thus use two factors  



Scale invariance of factor analysis 

 Suppose yj = cjxj or in matrix notation y = Cx  

(C is a diagonal matrix); e.g. change of measurement units 

 

 

 

 

 

I.e., loadings and uniquenesses are the same if expressed 

in new units 

 Thus, using cov or cor gives basically the same result 

 Common practice:  

- use correlation matrix or 

- scale input data 

(This is done in “factanal”) 
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Cov(y) = C§CT =

= C(¤¤T +ª)CT =

= (C¤)(C¤)T +CªCT =

= ¤̂¤̂T + ª̂



Rotational invariance of factor analysis 

 Rotating the factors yields exactly the same model 

 Assume 𝑀𝑀𝑇 and transform 𝑓∗ = 𝑀𝑇𝑓, Λ∗ = Λ𝑀  

 This yields the same model: 

𝑥∗ = Λ∗𝑓∗ + 𝑢 = Λ𝑀 𝑀𝑇𝑓 + 𝑢 = Λ𝑓 + 𝑢 = 𝑥 

Σ∗ = Λ∗Λ∗𝑇 +Ψ = Λ𝑀 Λ𝑀 𝑇 +Ψ = ΛΛ𝑇 +Ψ = Σ 

 Thus, the rotated model is equivalent for explaining the 

covariance matrix 

 Consequence: Use rotation that makes interpretation of 

loadings easy 

 Most popular rotation: Varimax rotation 

Each factor should have few large and many small 

loadings 
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Intelligence tests revisited: Interpreting factors  
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Part of output of R function “factanal”: 

Verbal intelligence 

Spatial reasoning 

Interpretation of factors is generally debatable 



Estimating factor scores 

 Scores are assumed to be random variables: Predict 

values for each person 

 Two methods: 

- Bartlett (option “Bartlett” in R):  

Treat f as fix (ML estimate) 

- Thompson (option “regression” in R):  

Treat f as random (Bayesian estimate) 

 No big difference in practice 
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Case study: Drug use 
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Social drugs 

Hard drugs 

Amphetamine 

Hashish 

Smoking 

Inhalants ? 

Significance vs. Relevance: 

Might keep less than six factors if  

fit of correlation matrix is good enough 

Using different number of factors 

changes loadings completely 



Comparison: PC vs. FA 

 PCA aims at explaining variances, FA aims at explaining 

correlations 

 PCA is exploratory and without assumptions 

FA is based on statistical model with assumptions 

 First few PCs will be same regardless of q 

First few factors of FA depend on q 

 FA: Orthogonal rotation of factor loadings are equivalent 

This does not hold in PCA 

 More mathematically: 

PCA: 𝑥 = 𝜇 + Γ1𝑧1 + Γ2𝑧2 = 𝜇 + Γ1𝑧1 + 𝑒 
FA: 𝑥 = 𝜇 + Λ𝑓 + 𝑢 
Cov(u) is diagonal by assumption, Cov(e) is not 

 ! Both PCA and FA only useful if input data is correlated ! 
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Assume we only keep the PCs in Γ1 



Concepts to know 
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 Form of the general factor model 

 Representation in terms of covariance matrix 

 Scale and Rotation invariance, varimax 

 Interpretation of loadings 



R functions to know 

 Function “factanal” 
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