Principal Component Analysis

Applied Multivariate Statistics - Spring 2013

Overview

- Intuition
- Four definitions
- Practical examples
- Mathematical example
- Case study

PCA: Goals

- Goal 1: Dimension reduction to a few dimensions while explaining most of the variance (use first few PC's)
- Goal 2: Find one-dimensional index that separates objects best (use first PC)

PCA: Intuition

- Find low-dimensional projection with largest spread

Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich

PCA: Intuition

Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich

PCA: Intuition

Standard basis

	\mathbf{X}_{1}	\mathbf{X}_{2}
Std. Basis	0.3	0.5
PC Basis	0.7	0.1
After Dim. Reduction	0.7	-

PCA: Intuition

Dimension reduction:
Only keep coordinate
of first (few) PC's

First Principal Component (1.PC)

Rotated basis:

- Vector 1: Largest variance
- Vector 2: Perpendicular

Second Principal Component (2.PC)

Eidgenössische Technische Hochschule Zürich

PCA: Intuition in 1d

Taken from "The Elements of Stat. Learning", T. Hastie et.al.

Eidgenössische Technische Hochschule Zürich

PCA: Intuition in 2d

Taken from "The Elements of Stat. Learning", T. Hastie et.al.

Overview

- Intuition
- Four definitions
- Practical examples
- Mathematical example
- Case study

PCA: Four equivalent definitions

- (Always center data first !)

Good for intuition

- Orthogonal directions with largest variance
- Linear subspace (straight line, plane, etc.) with minimal squared residuals
- Using Spectraldecomposition (=Eigendecomposition)
- Using Singular Value Decomposition (SVD)

Good for computing

PCA (Version 1): Orthogonal directions

- PC 1 is direction of largest variance
- PC 2 is
- perpendicular to PC 1
- again largest variance
- PC 3 is
- perpendicular to PC 1, PC 2
- again largest variance
- etc.

PCA (Version 2): Best linear subspace

- PC 1: Straight line with smallest orthogonal distance to all points
- PC 1 \& PC 2: Plane with smallest orthogonal distance to all points
- etc.

PCA (Version 3): Eigendecomposition

- Spectral Decomposition Theorem:

Every symmetric, positive semidefinite Matrix R can be rewritten as

$$
R=A D A^{T}
$$

where D is diagonal and A is orthogonal.

- Eigenvectors of Covariance/Correlation matrix are PC's Columns of A are PC's
- Diagonal entries of D (=eigenvalues) are variances along PC's (usually sorted in decreasing order)
" R: Function "princomp"

PCA (Version 4): Singular Value Decomposition

- Singular Value Decomposition:

Every matrix R can be rewritten as

$$
R=U D V^{T}
$$

where D is diagonal and U, V are orthogonal.

- Columns of V are PC's
" Diagonal entries of D are "singular values"; related to standard deviation along PC's (usually sorted in decreasing order)
- UD contains samples measured in PC coordinates
" R: Function "prcomp"

Overview

- Intuition
- Four definitions
- Practical examples
- Mathematical example
- Case study

Example: Headsize of sons

> Standard deviation in direction of 1.PC,

$$
\operatorname{Var}=12.69^{2}=167.77
$$

Computing PC scores

- Substract mean of all variables
- Output of princomp: \$scores

First column corresponds to coordinate in direction of 1.PC, Second col. corresponds to coordinate in direction of 2.PC, etc.

- Manually (e.g. for new observations):

Scalar product of loading of ith PC gives coordinate in direction of $\mathrm{ith}^{\text {th }} \mathrm{PC}$

- Predict new scores: Use function "predict" (see ?predict.princomp)
- Example: Headsize of sons

Interpretation of PCs

- Oftentimes hard
- Look at loadings and try to interpret:

To scale or not to scale...

- R: In princomp, option "cor = TRUE" scales variables Alternatively: Use correlation matrix instead of covariance matrix
- Use correlation, if different units are compared
- Using covariance will find the variable with largest spread as 1. PC
- Example: Blood Measurement

How many PC's?

- No clear cut rules, only rules of thumb
- Rule of thumb 1: Cumulative proportion should be at least 0.8 (i.e. 80% of variance is captured)
- Rule of thumb 2: Keep only PC’s with above-average variance
(if correlation matrix / scaled data was used, this implies: keep only PC's with eigenvalues at least one)
- Rule of thumb 3: Look at scree plot; keep only PC's before the "elbow" (if there is any...)

How many PC's: Blood Example

Rule 1: 5 PC's

Importance of components:
Comp. 1 Comp. 2 Comp. 3 Comp. 4 Cbmp. 5 Comp. 6
Standard deviation $\quad 1.67101001 .23758481 .11771380 .882274190 .788395050 .69917350$
Proportion of Variance $0.34903430 .1914520 \quad 0.15616050 .09730097 \quad 0 \quad 07769584 \quad 0.06110545$
Cumulative Proportion 0.34903430 .54048630 .69664680 .793947780 .87164363$) .93274908$
Comp. 7 Comp. 8
Standard deviation $0.66002394 \quad 0.31996216$
Proportion of variance 0.054453950 .01279697
Cumulative Proportion 0.987203031 .00000000

Overview

- Intuition
- Four definitions
- Practical examples
- Mathematical example
- Case study

Mathematical example in detail:
 Computing eigenvalues and eigenvectors

- Correlation matrix: $R=\left(\begin{array}{ll}1 & r \\ r & 1\end{array}\right)$
- Find basis, in which R is diagonal: Eigenvectors are these basis vectors Eigenvalues are entries in diagonal matrix

Mathematical example in detail:
 Computing eigenvalues

- $\operatorname{det}(R-\lambda 1)=0$, solve for λ
- $\operatorname{det}(R-\lambda 1)=\operatorname{det}\left(\left(\begin{array}{cc}1-\lambda & r \\ r & 1-\lambda\end{array}\right)\right)=\lambda^{2}-2 \lambda+1-r^{2}=0$
- Thus the eigenvalues are: $\lambda_{1,2}=1 \pm r$ The variance along PC 1 is $1+r$, the variance along PC 2 is 1-r
- Thus, there is a basis, in which R looks like:

$$
\mathrm{R}=\left(\begin{array}{cc}
1+r & 0 \\
0 & 1-r
\end{array}\right)
$$

Mathematical example in detail:

Computing eigenvectors

- For each eigenvalue, find a vector v_{i} so that $R v_{i}=\lambda_{i} v_{i}$ holds
- Choose vectors that have unit length for convenience
- For $1+r: R v_{1}=(1+r) v_{1} \rightarrow v_{1}=(0.71,0.71)$

For 1-r: $R v_{2}=(1-r) v_{2} \rightarrow v_{2}=(-0.71,0.71)$

- v_{1}, v_{2} are the directions of PC1 and PC2
- New observations can be expressed using coordinates of PC1 and PC2 by the linear algebra technique "change of base"
- That's what the R function "princomp" does

Overview

- Intuition
- Four definitions
- Practical examples
- Mathematical example
- Case study

Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich

Case study: Heptathlon Seoul 1988

Biplot: Show info on samples AND variables

Approximately true:

- Data points: Projection on first two PCs Distance in Biplot ~ True Distance
- Projection of sample onto arrow gives original (scaled) value of that variable
- Arrowlength: Variance of variable
- Angle between Arrows: Correlation

Approximation is often crude; good for quick overview

PCA: Eigendecomposition vs. SVD

- PCA based on Eigendecomposition: princomp + easier to understand mathematical background
+ more convenient summary method
- PCA based on SVD: prcomp
+ numerically more stable
+ still works if more dimensions than samples
- Both methods give same results up to small numerical differences

Concepts to know

- 4 definitions of PCA
- Interpretation: Output of princomp, biplot
- Predict scores for new observations
- How many PC's?
- Scale or not?
- Know advantages of PCA based on SVD

R functions to know

- princomp, biplot
- (prcomp - just know that it exists and that it does the SVD approach)

