Principal Component Analysis

Applied Multivariate Statistics – Spring 2013

Overview

- Intuition
- Four definitions
- Practical examples
- Mathematical example
- Case study

PCA: Goals

- Goal 1: Dimension reduction to a few dimensions while explaining most of the variance (use first few PC's)
- Goal 2: Find one-dimensional index that separates objects best (use first PC)

PCA: Intuition

Find low-dimensional projection with largest spread

Appl. Multivariate Statistics - Spring 2013

PCA: Intuition

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

PCA: Intuition in 1d

Taken from "The Elements of Stat. Learning", T. Hastie et.al.

Appl. Multivariate Statistics - Spring 2013

PCA: Intuition in 2d

Taken from "The Elements of Stat. Learning", T. Hastie et.al.

Appl. Multivariate Statistics - Spring 2013

Overview

- Intuition
- Four definitions
- Practical examples
- Mathematical example
- Case study

PCA: Four equivalent definitions

- (Always center data first !)
 Good for intuition
- Orthogonal directions with largest variance
- Linear subspace (straight line, plane, etc.) with minimal squared residuals
- Using Spectraldecomposition (=Eigendecomposition)
- Using Singular Value Decomposition (SVD)

Good for computing

PCA (Version 1): Orthogonal directions

- PC 1 is direction of largest variance
- PC 2 is
 - perpendicular to PC 1
 - again largest variance
- PC 3 is
 - perpendicular to PC 1, PC 2
 - again largest variance
- etc.

PCA (Version 2): Best linear subspace

- PC 1: Straight line with smallest orthogonal distance to all points
- PC 1 & PC 2: Plane with smallest orthogonal distance to all points
- etc.

PCA (Version 3): Eigendecomposition

 Spectral Decomposition Theorem: Every symmetric, positive semidefinite Matrix R can be rewritten as

$$R = A D A^T$$

where D is diagonal and A is orthogonal.

- Eigenvectors of Covariance/Correlation matrix are PC's Columns of A are PC's
- Diagonal entries of D (=eigenvalues) are variances along PC's (usually sorted in decreasing order)
- R: Function "princomp"

PCA (Version 4): Singular Value Decomposition

- Singular Value Decomposition: Every matrix R can be rewritten as $R = U \ D \ V^T$ where D is diagonal and U, V are orthogonal.
- Columns of V are PC's
- Diagonal entries of D are "singular values"; related to standard deviation along PC's (usually sorted in decreasing order)
- UD contains samples measured in PC coordinates
- R: Function "prcomp"

Overview

- Intuition
- Four definitions
- Practical examples
- Mathematical example
- Case study

Example: Headsize of sons

Computing PC scores

- Substract mean of all variables
- Output of princomp: \$scores
 First column corresponds to coordinate in direction of 1.PC, Second col. corresponds to coordinate in direction of 2.PC, etc.
- Manually (e.g. for new observations): Scalar product of loading of ith PC gives coordinate in direction of ith PC
- Predict new scores: Use function "predict" (see ?predict.princomp)
- Example: Headsize of sons

Interpretation of PCs

- Oftentimes hard
- Look at loadings and try to interpret:

To scale or not to scale...

- R: In princomp, option "cor = TRUE" scales variables Alternatively: Use correlation matrix instead of covariance matrix
- Use correlation, if different units are compared
- Using covariance will find the variable with largest spread as 1. PC
- Example: Blood Measurement

How many PC's?

- No clear cut rules, only rules of thumb
- Rule of thumb 1: Cumulative proportion should be at least 0.8 (i.e. 80% of variance is captured)
- Rule of thumb 2: Keep only PC's with above-average variance

(if correlation matrix / scaled data was used, this implies: keep only PC's with eigenvalues at least one)

 Rule of thumb 3: Look at scree plot; keep only PC's before the "elbow" (if there is any…)

Overview

- Intuition
- Four definitions
- Practical examples
- Mathematical example
- Case study

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Mathematical example in detail: Computing eigenvalues and eigenvectors

- Correlation matrix: $R = \begin{pmatrix} 1 & r \\ r & 1 \end{pmatrix}$
- Find basis, in which R is diagonal: Eigenvectors are these basis vectors
 Eigenvalues are entries in diagonal matrix

Mathematical example in detail: Computing eigenvalues

• $det(R - \lambda 1) = 0$, solve for λ

•
$$\det(R - \lambda 1) = \det\left(\begin{pmatrix} 1 - \lambda & r \\ r & 1 - \lambda \end{pmatrix}\right) = \lambda^2 - 2\lambda + 1 - r^2 = 0$$

- Thus the eigenvalues are: λ_{1,2} = 1 ± r
 The variance along PC 1 is 1+r, the variance along PC 2 is 1-r
- Thus, there is a basis, in which R looks like:

$$\mathbf{R} = \begin{pmatrix} 1+r & 0\\ 0 & 1-r \end{pmatrix}$$

Mathematical example in detail: Computing eigenvectors

- For each eigenvalue, find a vector v_i so that $Rv_i = \lambda_i v_i$ holds
- Choose vectors that have unit length for convenience

• For 1+r:
$$Rv_1 = (1+r)v_1 \rightarrow v_1 = (0.71, 0.71)$$

For 1-r: $Rv_2 = (1-r)v_2 \rightarrow v_2 = (-0.71, 0.71)$

- v_1, v_2 are the directions of PC1 and PC2
- New observations can be expressed using coordinates of PC1 and PC2 by the linear algebra technique "change of base"
- That's what the R function "princomp" does

Overview

- Intuition
- Four definitions
- Practical examples
- Mathematical example
- Case study

Case study: Heptathlon Seoul 1988

Biplot: Show info on samples AND variables

Approximately true:

- Data points: Projection on first two PCs
 Distance in Biplot ~ True Distance
- Projection of sample onto arrow gives original (scaled) value of that variable
- Arrowlength: Variance of variable
- Angle between Arrows: Correlation

Approximation is often crude; good for quick overview

PCA: Eigendecomposition vs. SVD

- PCA based on Eigendecomposition: princomp
 + easier to understand mathematical background
 + more convenient summary method
- PCA based on SVD: prcomp
 + numerically more stable
 + still works if more dimensions than samples
- Both methods give same results up to small numerical differences

Concepts to know

- 4 definitions of PCA
- Interpretation: Output of princomp, biplot
- Predict scores for new observations
- How many PC's?
- Scale or not?
- Know advantages of PCA based on SVD

R functions to know

- princomp, biplot
- (prcomp just know that it exists and that it does the SVD approach)