

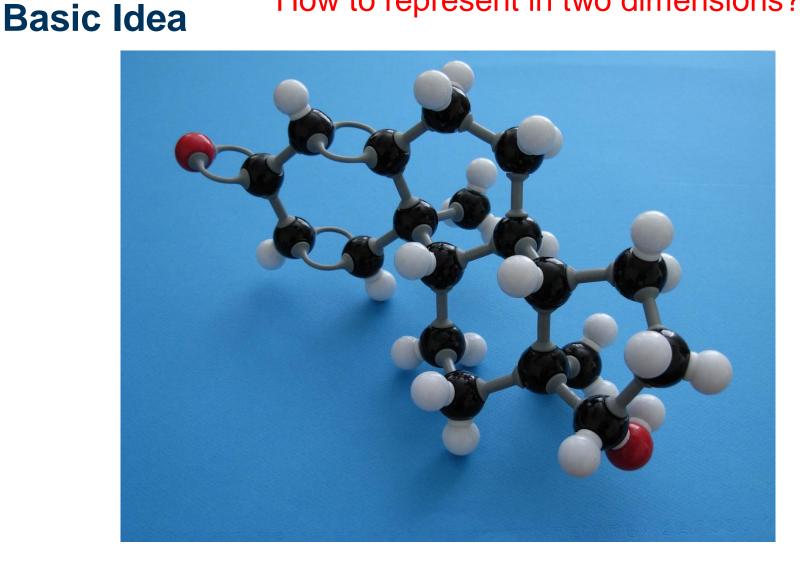
Multidimensional Scaling

Applied Multivariate Statistics – Spring 2013

Outline

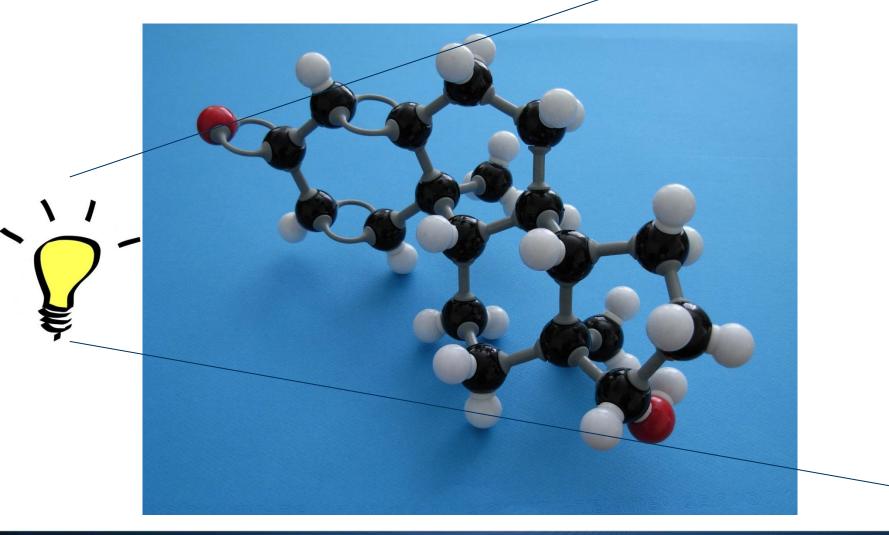
- Fundamental Idea
- Classical Multidimensional Scaling
- Non-metric Multidimensional Scaling

How to represent in two dimensions?



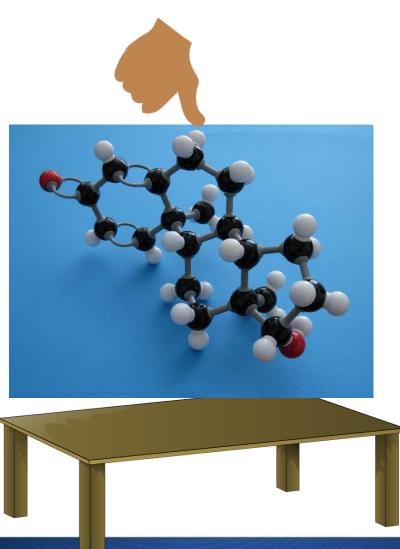
Appl. Multivariate Statistics - Spring 2013

Idea 1: Projection

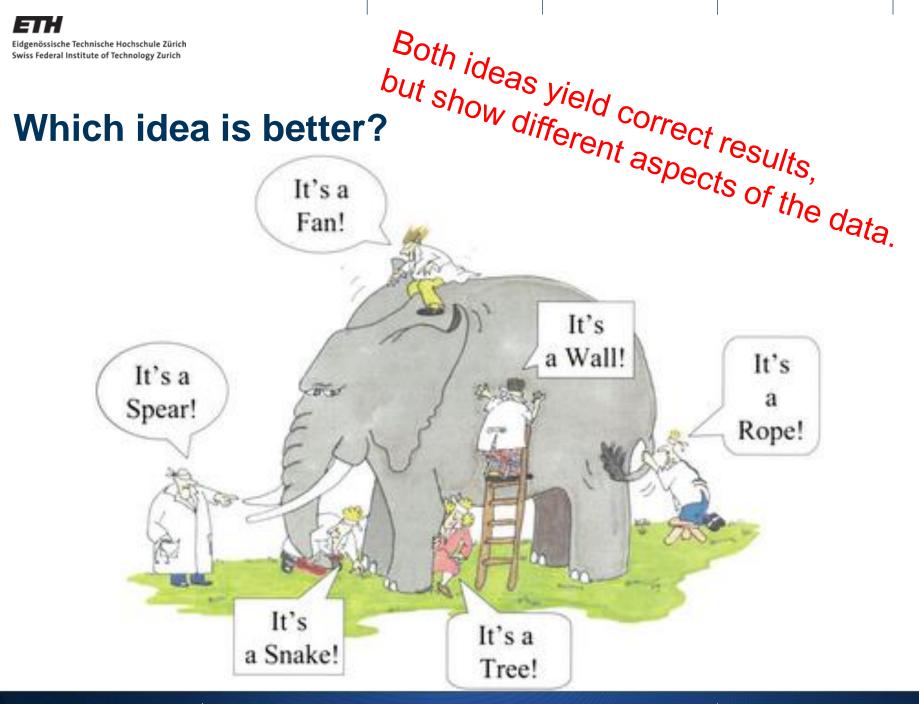


Appl. Multivariate Statistics - Spring 2013

Idea 2: Squeeze on table



Close points stay close



Appl. Multivariate Statistics - Spring 2013

Idea of MDS

- Represent high-dimensional point cloud in few (usually 2) dimensions keeping distances between points similar
- Classical/Metric MDS: Use a clever projection R: cmdscale
- Non-metric MDS: Squeeze data on table, only conserve ranks
 D: icoMDS
 - R: isoMDS

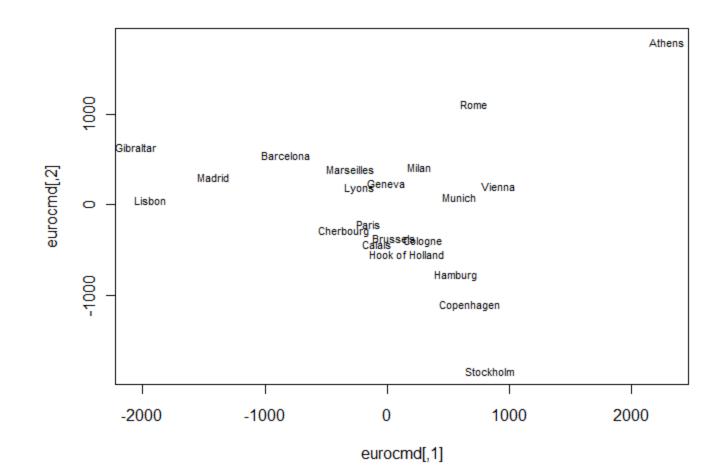
- Problem: Given euclidean distances among points, recover the position of the points!
- Example: Road distance between 21 European cities (almost euclidean, but not quite)

	Athens	Barcelona	Brussels	Calais	Cherbourg
Barcelona	3313				-
Brussels	2963	1318			
Calais	3175	1326	204		
Cherbourg	3339	1294	583	460	
Cologne	2762	1498	206	409	785

•

•

• First try:



Flip axes:

Can identify points up to - shift - rotation - reflection Stockholm Copenhagen Hamburg Hook of Holland alaisCologne Cherboul Pańs Munich Lyons Geneva Vienna Madrid Marseilles Milan Barcelona Rome

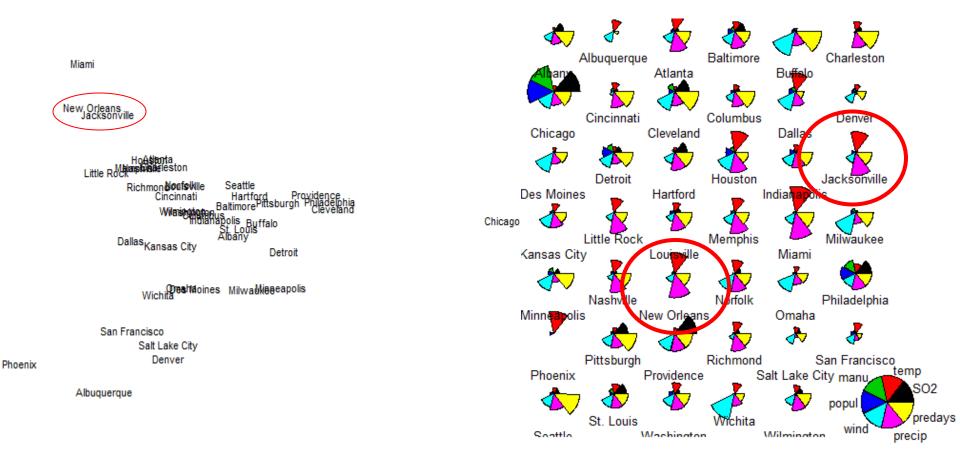
Lisbon

Gibraltar

Another example: Airpollution in US cities

> summary(dat)			
502	temp	manu	popul
Min. : 8.00	Min. :43.50	Min. : 35.0	Min. : 71.0
1st Qu.: 13.00	1st Qu.:50.60	1st Qu.: 181.0	1st Qu.: 299.0
Median : 26.00	Median :54.60	Median : 347.0	Median : 515.0
Mean : 30.05	Mean :55.76	Mean : 463.1	Mean : 608.6
3rd Qu.: 35.00	3rd Qu.:59.30	3rd Qu.: 462.0	3rd Qu.: 717.0
Max. :110.00	Max. :75.50	Max. :3344.0	Max. :3369.0
wind	precip	predays	
Min. : 6.000	Min. : 7.05	Min. : 36.0	
1st Qu.: 8.700	1st Qu.:30.96	1st Qu.:103.0	
Median : 9.300	Median :38.74	Median :115.0	
Mean : 9.444	Mean :36.77	Mean :113.9	
3rd Qu.:10.600	3rd Qu.:43.11	3rd Qu.:128.0	
Max. :12.700	Max. :59.80	Max. :166.0	

- Range of manu and popul is much bigger than range of wind
- Need to standardize to give every variable equal weight



Classical MDS: Theory

- Input: Euclidean distances between n objects in p dimensions
- Output: Position of points up to rotation, reflection, shift
- Two steps:
 - Compute inner products matrix B from distance
 - Compute positions from B

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Classical MDS: Theory – Step 1 n * q data matrix

• Inner products matrix $B = XX^T$ $b_{ij} = \sum_{k=1}^{q} x_{ik} x_{jk}$

- Connect to distance: $d_{ij}^2 = \sum_{k=1}^q (x_{ik} x_{jk})^2 = ... = b_{ii} + b_{jj} 2b_{ij}$
- Center points to avoid shift invariance $\left(\overline{x}=0 \rightarrow \sum_{i=1}^{n} x_{ik}=0 \rightarrow \sum_{i \text{ or } j} b_{ij}=0\right)$
- Invert relationship: b_{ij} = -¹/₂(d²_{ij} d²_i d²_{.j} + d²_{..}) "doubly centered" (Hint for middle of page 108: Plug in (4.3) and equations on top of page 108 to show that the expression involving d's is equal to b_{ij})
- Thus, we obtained B from the distance matrix

Classical MDS: Theory – Step 2

- Since B = XX^T, we need the "square root" of B
- B is a symmetric and positive definite n*n matrix
- Thus, B can be diagonalized: B = VΛV^T
 D is a diagonal matrix with λ₁ ≥ λ₂ ≥ ... ≥ λ_n on diagonal ("eigenvalues")
 V contains as columns normalized eigenvectors
- Some eigenvalues will be zero; drop them: $B = V_1 \Lambda_1 V_1^T$
- Take "square root": $X = V_1 \Lambda_1^{\frac{1}{2}}$
- Thus we obtained the position of points from the distances between all points

Classical MDS: Low-dim representation

- Keep only few (e.g. 2) largest eigenvalues and corresponding eigenvectors
- The resulting X will be the low-dimensional representation we were looking for
- Goodness of fit (GOF) if we reduce to m dimensions:

$$GOF = \frac{\sum_{i=1}^{m} \lambda_i}{\sum_{i=1}^{n} \lambda_i}$$

(should be at least 0.8)

Finds "optimal" low-dim representation: Minimizes

$$S = \sum_{i=1}^{n} \sum_{j=1}^{n} \left(d_{ij}^2 - (d_{ij}^{(m)})^2 \right)$$

Classical MDS: Pros and Cons

- + Optimal for euclidean input data
 + Still optimal, if B has non-negative eigenvalues (pos. semidefinite)
- + Very fast
- No guarantees if B has negative eigenvalues

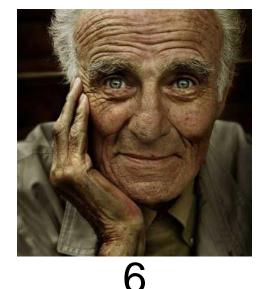
However, in practice, it is still used then. New measures for Goodness of fit:

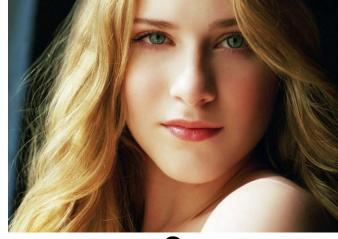
$$GOF = \frac{\sum_{i=1}^{m} \lambda_i^2}{\sum_{i=1}^{n} \lambda_i^2} \qquad GOF = \frac{\sum_{i=1}^{m} |\lambda_i|}{\sum_{i=1}^{n} |\lambda_i|} \qquad GOF = \frac{\sum_{i=1}^{m} \max(0,\lambda_i)}{\sum_{i=1}^{n} \max(0,\lambda_i)}$$

Used in R function "cmdscale"

Non-metric MDS: Idea

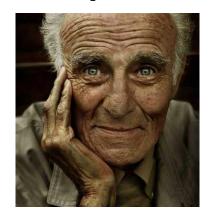
- Sometimes, there is no strict metric on original points
- Example: How beautiful are these persons?
 (1: Not at all, 10: Very much)





Non-metric MDS: Idea

- Absolute values are not that meaningful
- Ranking is important
- Non-metric MDS finds a low-dimensional representation, which respects the ranking of distances



Non-metric MDS: Theory

- δ_{ij} is the true dissimilarity, d_{ij} is the distance of representation
- Minimize STRESS (θ is an increasing function):

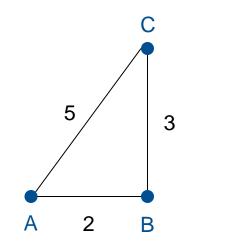
$$S = \frac{\sum_{i < j} (\theta(\delta_{ij}) - d_{ij})^2}{\sum_{i < j} d_{ij}^2}$$

- Optimize over both position of points and θ
- $\hat{d}_{ij} = heta(\delta_{ij})$ is called "disparity"
- Solved numerically (isotonic regression); Classical MDS as starting value; very time consuming

Non-metric MDS: Example for intuition (only)

True points in

high dimensional space



Compute best representation

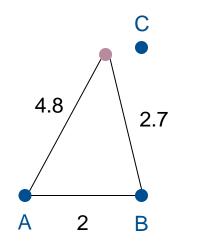
STRESS = 19.7

 $\delta_{AB} < \delta_{BC} < \delta_{AC}$

Non-metric MDS: Example for intuition (only)

True points in

high dimensional space



Compute best representation

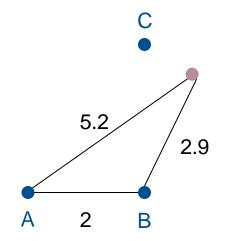
STRESS = 20.1

 $\delta_{AB} < \delta_{BC} < \delta_{AC}$

Non-metric MDS: Example for intuition (only)

True points in

high dimensional space



 $\delta_{AB} < \delta_{BC} < \delta_{AC}$

Compute best representation

Stop if minimal STRESS is found.

STRESS = 18.9

We will finally represent the "transformed true distances" (called disparities):

$$\hat{d}_{AB}=2,~\hat{d}_{BC}=2.9,~\hat{d}_{AC}=5.2$$
 instead of the true distances:

$$\delta_{AB} = 2, \ \delta_{BC} = 3, \ \delta_{AC} = 5$$

Non-metric MDS: Pros and Cons

- + Fulfills a clear objective without many assumptions (minimize STRESS)
- + Results don't change with rescaling or monotonic variable transformation
- + Works even if you only have rank information
- Slow in large problems
- Usually only local (not global) optimum found
- Only gets ranks of distances right

Non-metric MDS: Example

- Do people in the same party vote alike?
- Number of votes where 15 congressmen disagreed in 19 votes

-	Hunt(R)	Sandman(R)	Howard(D)	Thompson(D)
Hunt(R)	0	8	15	15
Sandman(R)	8	0	17	12
Howard(D)	15	17	0	9
Thompson(D)	15	12	9	0

Non-metric MDS: Example

Sandman(R)

Thompson(D)

Patten(D)

Hunt(R)

Widnall(R)

Roe(D)

Rinaldb(Rt)oski(D)

Minish(D)

Daniels(D)

Rodino(D) Howard(D)

Forsythe(R)

Freylinghuysen(R)

Maraziti(R)

Appl. Multivariate Statistics - Spring 2013

Concepts to know

- Classical MDS:
 - Finds low-dim projection that respects distances
 - Optimal for euclidean distances
 - No clear guarantees for other distances
 fast
- Non-metric MDS:
 - Squeezes data points on table
 - respects only rankings of distances
 - (locally) solves clear objective
 - slow

R commands to know

- cmdscale included in standard R distribution
- isoMDS from package "MASS"