

Dealing with missing values – part 2

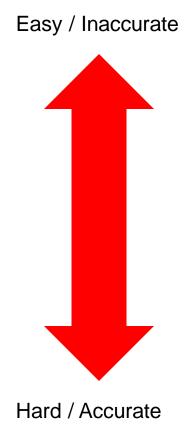
Applied Multivariate Statistics – Spring 2013

Overview

- More on Single Imputation: Shortcomings
- Multiple Imputation: Accounting for uncertainty

Single Imputation

- Unconditional Mean
- Unconditional Distribution
- Conditional Mean
- Conditional Distribution



Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Example: Blood Pressure - Revisited

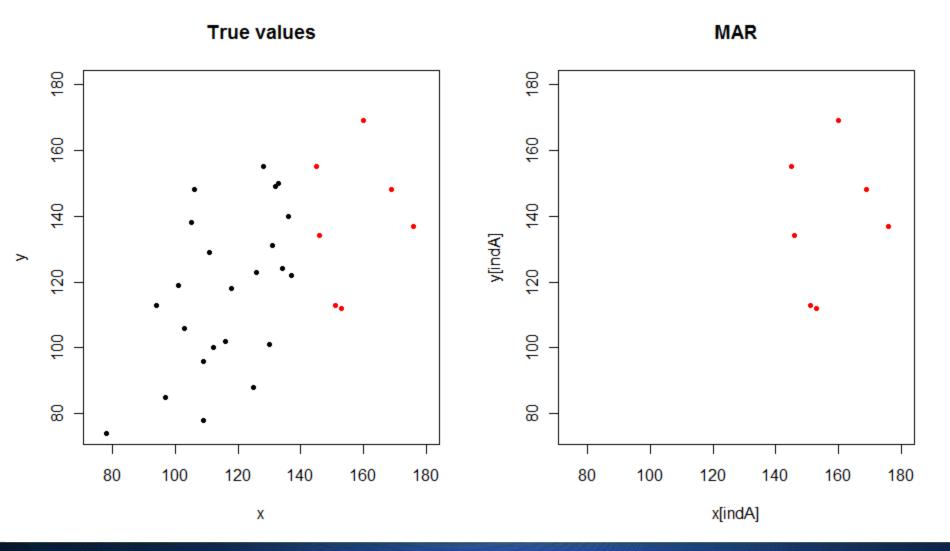
- 30 participants in January (X) and February (Y)
- MCAR: Delete 23 Y values randomly
- MAR: Keep Y only where X > 140 (follow-up)
- MNAR: Record Y only where Y > 140 (test everybody again but only keep values of critical participants)

	Y					
\boldsymbol{X}	Complete	MCAR	MAR	MNAR		
	Data for in	ndividual par	ticipants			
169	148	148	148	148		
126	123	_		_		
132	149	_		149		
160	169	_	169	169		
105	138	_		_		
116	102	_		_		
125	88	_		_		
112	100	_		_		
133	150	_		150		
94	113	_		_		
109	96	_		_		
109	78	_		_		
106	148	_		148		
176	137	_	137			
128	155	_		155		
131	131	_		_		
130	101	101		_		
145	155	_	155	155		
136	140	_		_		
146	134	_	134	_		
111	129	_		_		
97	85	85		_		
134	124	124		_		
153	112	_	112	_		
118	118	_		_		
137	122	122		_		
101	119	_		_		
103	106	106		_		
78	74	74		_		
151	113	_	113	_		

 \mathbf{v}

Example: Blood Pressure

Black points are missing (MAR)

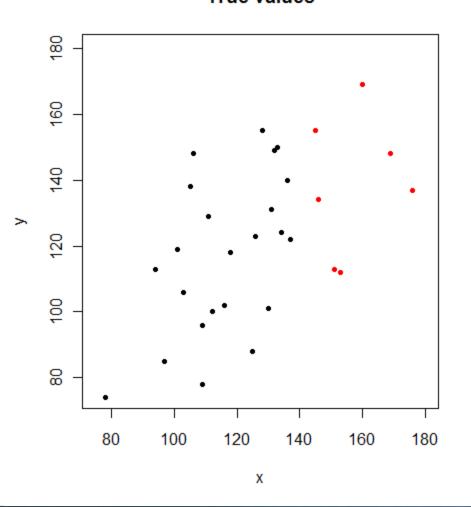


Unconditional Mean

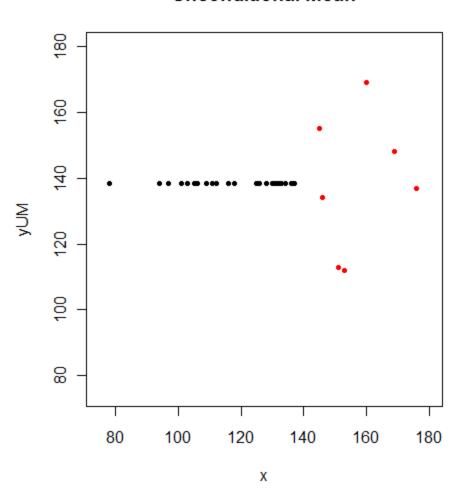
+ Mean of Y ok

- Variance of Y wrong

True values



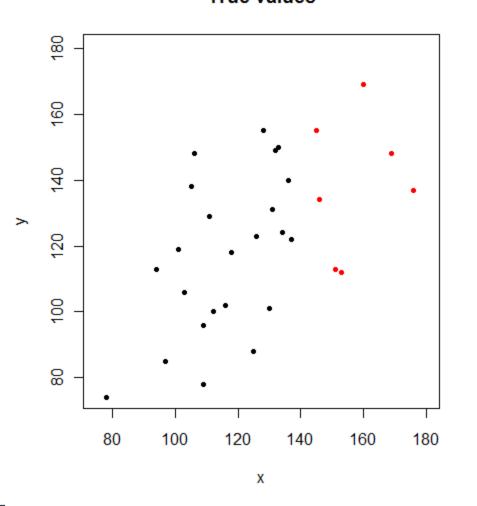
Unconditional Mean



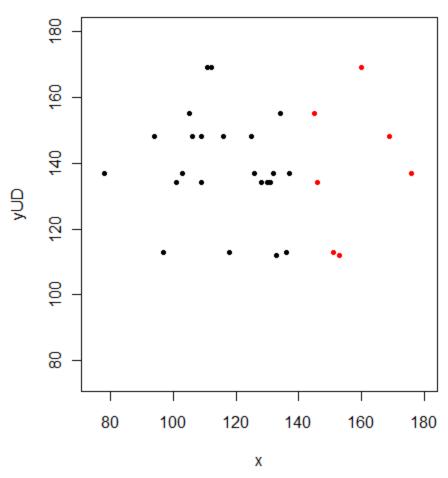
Unconditional Distribution

- + Mean of Y ok, Variance better
- Correlation btw X and Y wrong

True values

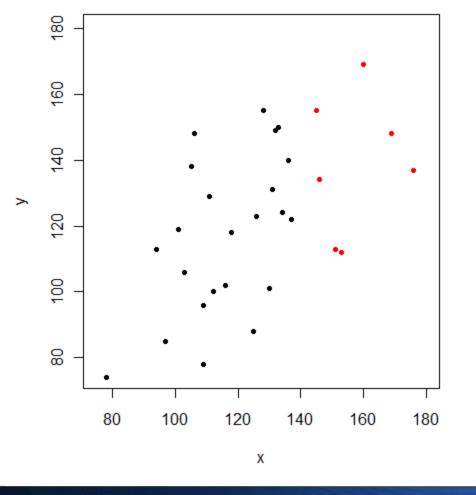


Unconditional Distribution



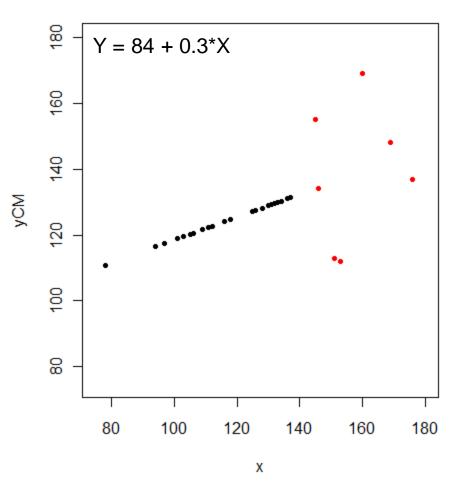
Conditional Mean

True values



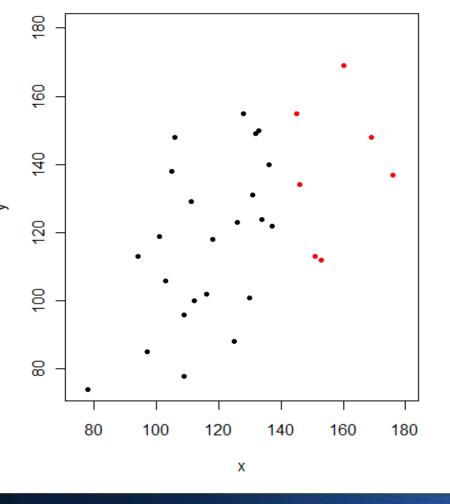
- + Conditional Mean of Y ok
- + Correlation ok
- (Conditional) Variance wrong

Conditional Mean



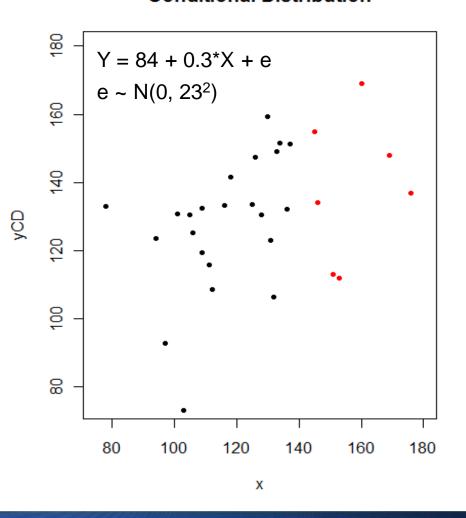
Conditional Distribution

True values



- + Conditional Mean of Y ok
- + Correlation ok
- + Conditional Variance of Y ok

Conditional Distribution



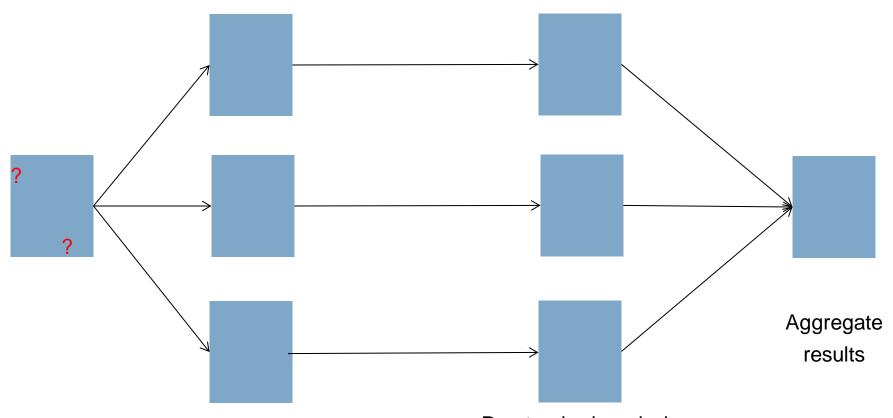
^{Cc} Problem: We ignore uncertainty



Problem of Single Imputation

- Too optimistic: Imputation model (e.g. in Y = a + bX) is just estimated, but not the true model
- Thus, imputed values have some uncertainty
- Single Imputation ignores this uncertainty
- Coverage probability of confidence intervals is wrong
- Solution: Multiple Imputation Incorporates both
 - residual error
 - model uncertainty (excluding model mis-specification)

Multiple Imputation: Idea

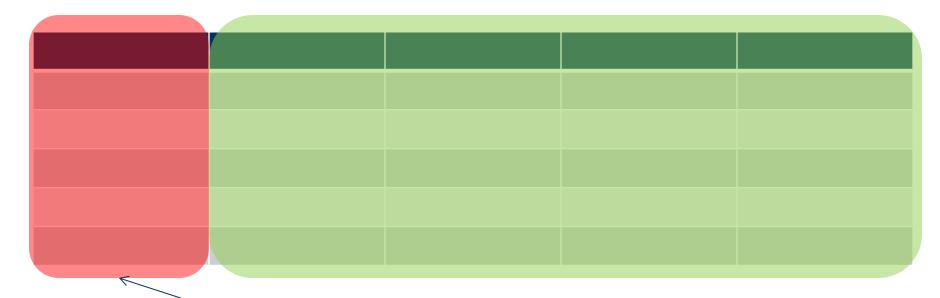


Impute several times

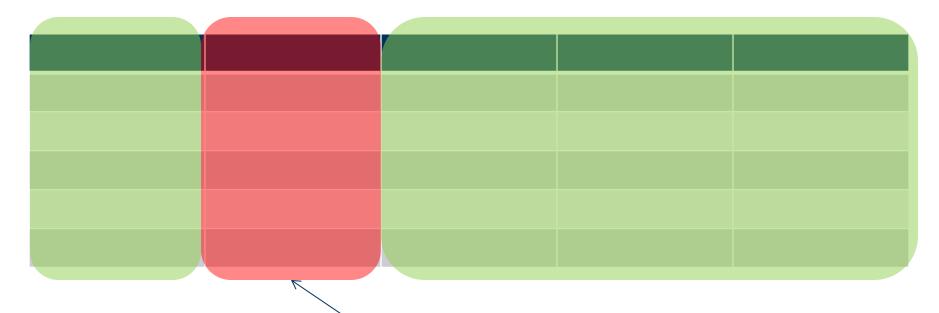
Do standard analysis for each imputed data set; get estimate and std.error

Multiple Imputation: Idea

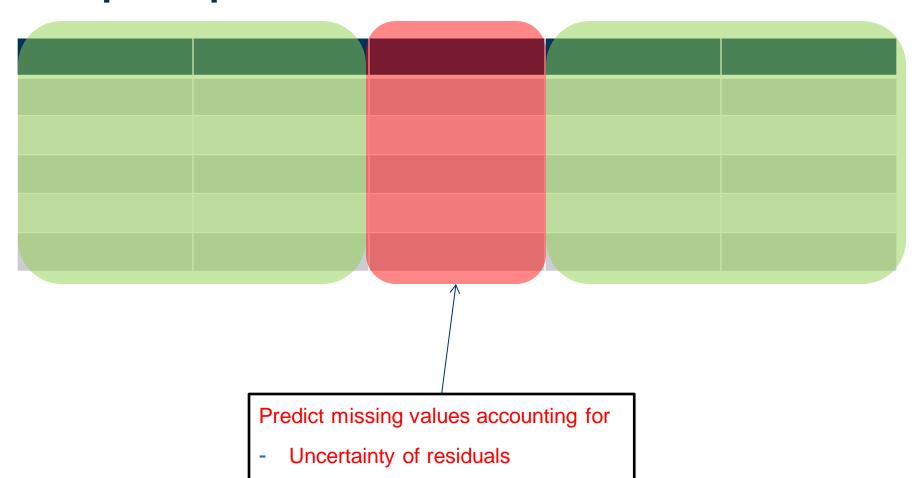
- Need special imputation schemes that include both
 - uncertainty of residuals
 - uncertainty of model(e.g. values of intercept a and slope b)
- Rough idea:
 - Fill in random values
 - Iteratively predict values for each variable until some convergence is reached (as in missForest)
 - Sample values for residuals AND for (a,b)
- Gibbs sampler is used
- Excellent for intuition (by one of the big guys in the field):
 http://sites.stat.psu.edu/~jls/mifaq.html



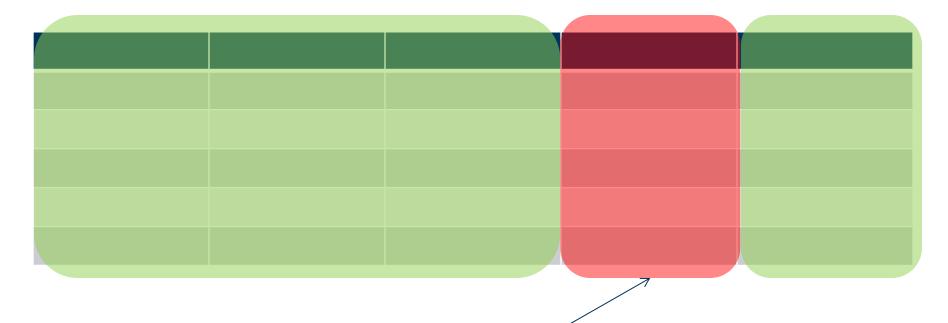
- Uncertainty of residuals
- Uncertainty of parameter estimates



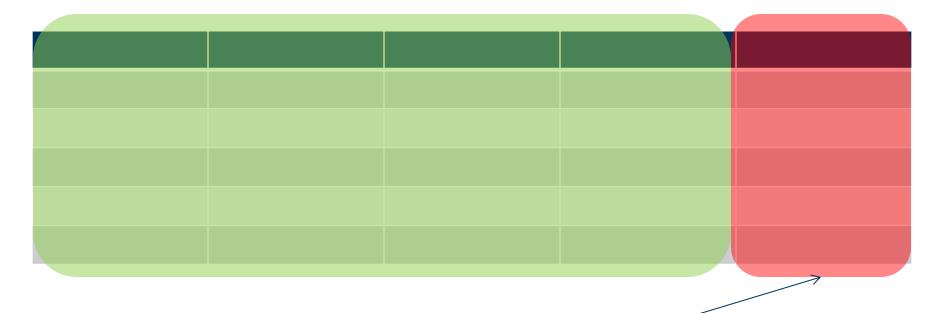
- Uncertainty of residuals
- Uncertainty of parameter estimates



Uncertainty of parameter estimates



- Uncertainty of residuals
- Uncertainty of parameter estimates

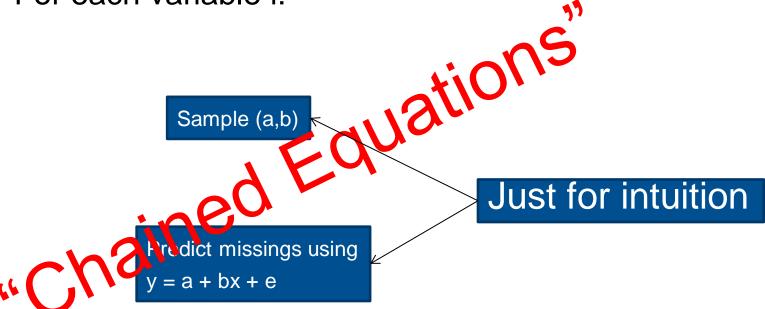


- Uncertainty of residuals
- Uncertainty of parameter estimates

- Uncertainty of residuals
- Uncertainty of parameter estimates

Multiple Imputation: Gibbs sampler (Not for exam)

Iteration t; repeat until convergence:
For each variable i:



R package: MICE Multiple Imputation with Chained Equations

- MICE has good default settings; don't worry about the data type
- Defaults for data types of columns:
 - numeric: Predictive Mean Matching (pmm)
 (like fancy linear regression; faster alternative: linear regression)
 - factor, 2 lev: Logistic Regression (logreg)
 - factor, >2 lev: Multinomial logit model (polyreg)
 - ordered, >2 lev: Ordered logit model (polr)

Aggregation of estimates

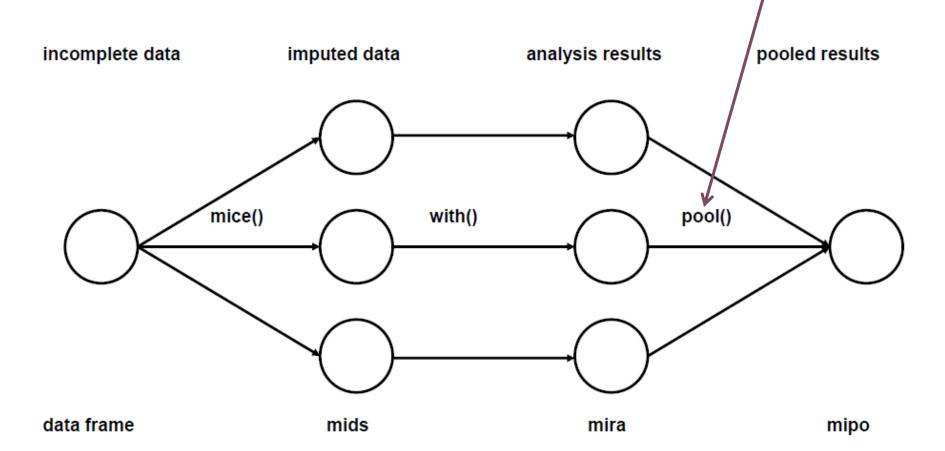
- \hat{Q}_i : Estimate of imputation i
 - U_i : Variance of estimate (= square of std. error)
- Assume: $\frac{\hat{Q}-Q}{\sqrt{M}} \approx N(0,1)$
- Average estimate: $\bar{Q} = \frac{1}{m} \sum_{j=1}^{m} \hat{Q}_j$

Here was a typo

- Within-imputation variance: $\bar{U} = \frac{1}{m} \sum_{j=1}^{m} \hat{U_j}$ Between-imputation variance: $B = \frac{1}{m-1} \sum_{j=1}^{m} (\hat{Q}_j \bar{Q})^2$
- **Total variance:** $T = \bar{U} + (1 + \frac{1}{m})B$
- Approximately: $\frac{ar{Q}-Q}{\sqrt{T}}\sim t_{
 u}$ with $u=(m-1)\left(1+\frac{mar{U}}{(1+m)B}\right)^2$
- 95%-CI: $\bar{Q} \pm t_{\nu:0.975} \sqrt{T}$

Multiple Imputation with MICE

Do manually, if you have non standard analysis



How much uncertainty due to missings?

Relative increase in variance due to nonrespose:

$$r = \frac{(1 + \frac{1}{m})B}{U}$$

Fraction (or rate) of missing information fmi:
 (!! Not the same as fraction of missing OBSERVATIONS)

$$fmi=rac{r+rac{2}{
u+3}}{r+1}$$

Proportion of the total variance that is attributed to the missing data:

$$\lambda = \frac{B(1+rac{1}{m})}{T}$$
 Returned by mice

How many imputations?

Rule of thumb:

- Preliminary analysis: m = 5
- Paper: m = 20 or even m = 50

- Surprisingly few!
- Efficiency compared to $m = \infty$ depends on fmi:

$$eff = \left(1 + \frac{fmi}{m}\right)^{-1}$$

Examples (eff in %):

Oftentimes OK

Perfect!

M	fmi=0.1	fmi=0.3	fmi=0.5	fmi=0.7	fmi=0.9
3	97	91	86	81	77
5	98	94	91	88	85
10	99	97	95	93	92
20	100	99	98	97	96

Concepts to know

- Idea of mice
- How to aggregate results from imputed data sets?
- How many imputations?

R functions to know

mice, with, pool

Next time

- Multidimensional Scaling
- Distance metrics