

Visualizing categorical data & inference

Applied Multivariate Statistics – Spring 2013

Goals

- Chi-Square test of independence
- R: mosaic plot, cotabplot (with shading)

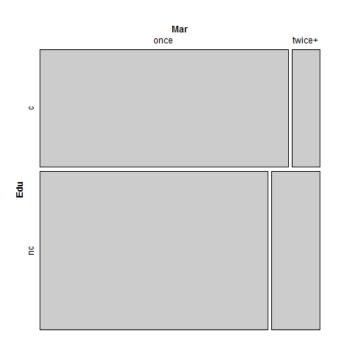
Start simple: Two binary variables

Education and Marriage (Kiser and Schaefer, 1949)

Education	Married Once	Married More Than Once	Total
College	550	61	611
No College	681	144	825
Total	1231	205	1436

- Two questions:
 - How to visualize (esp. if more than two variables)?
 - Dependence? Why?

Visualizing categorical data: Mosaic Plot



Education	Married Once	Married More Than Once	Total
College	550	61	611
No College	681	144	825
Total	1231	205	1436

Area proportional to table entry

Chi-Square Test of Independence

	A=1	A=2	Total
B=1	n11 (n12	n1*
B=2	n21	n22	n2*
	n*1	n*2	n

H₀: A and B are independent; therefore

$$P(A = i \cap B = j) \stackrel{\longleftarrow}{=} P(A = i) \cdot P(B = j) \approx \hat{P}(A = i) \cdot \hat{P}(B = j) = \frac{n_{\cdot i}}{n} \cdot \frac{n_{j \cdot}}{n} = \hat{\pi}_{ij}$$

Expected values in cells if H_0 is true: $E_{ij} = n \cdot \hat{\pi}_{ij}$

Chi-Square Test of Independence

	A=1	A=2	Total
B=1	n11	n12	n1*
B=2	n21	n22	n2*
	n*1	n*2	n

How different are observed and expected values? Most popular: *Pearson* Chi-Square Statistics

$$X^{2} = \sum_{i=1}^{I} \sum_{j=1}^{J} \frac{(O_{ij} - E_{ij})^{2}}{E_{ij}} = \sum_{i=1}^{I} \sum_{j=1}^{J} R_{ij}^{2}$$

If H₀ is true, X² follows a Chi-Square distribution with (I-1)(J-1) degrees of freedom (if n large and no empty cells) Thus, can compute p-values.

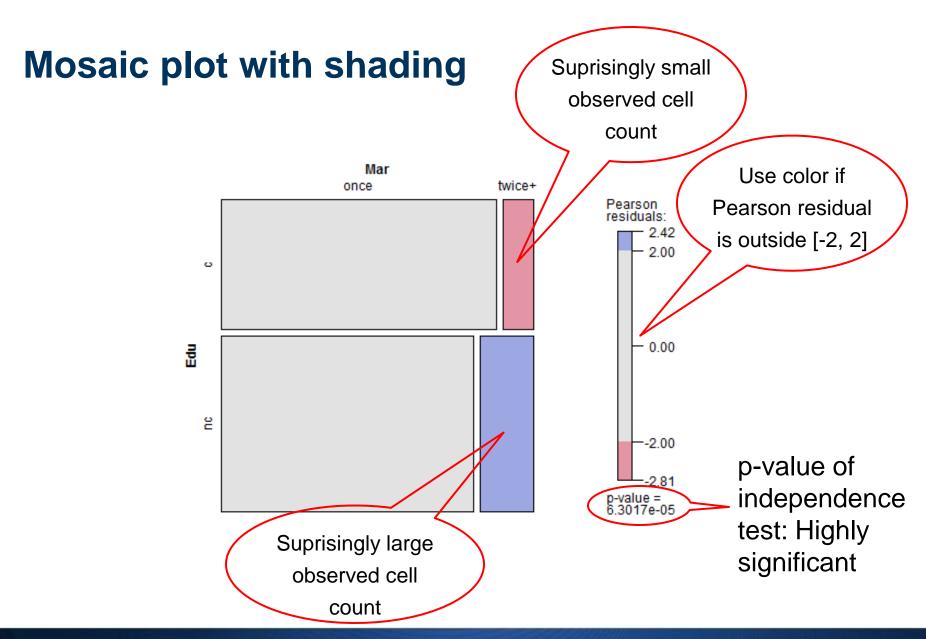
Alternative: Permutation test; more computer intensive but more precise

Pearson Residuals

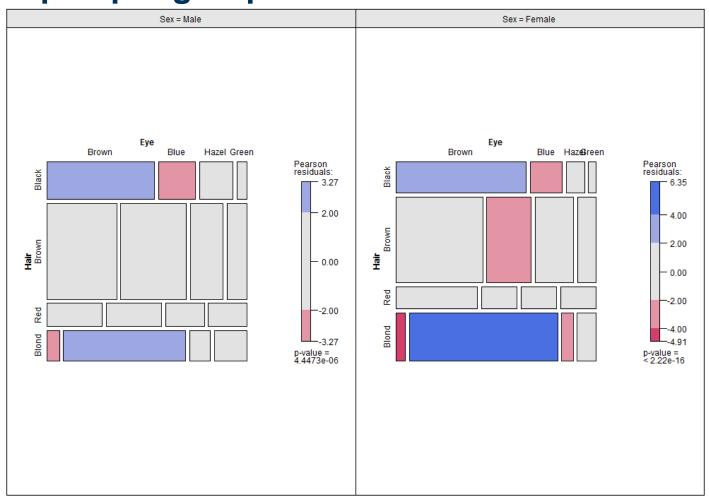
$$R_{ij} = \frac{O_{ij} - E_{ij}}{\sqrt{E_{ij}}}$$

Contribution

of each cell to misfit



Conditional plots: Mosaic plot per group



Case study: Admission UC Berkeley

Concepts to know

Chi-Square test of independence

R commands to know

- mosaic (with shading)
- Cotabplot (with shading) (both in package "vcd")