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Overview

= |ntuition of Random Forest
= The Random Forest Algorithm

= De-correlation gives better accuracy w
' d
= Qut-of-bag error (OOB-error) Disease
= Variable importance m




Intuition of Random Forest
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M”Q
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New sample: retired working
old, retired, male, short
Tree predictions: healthy healthy
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m t
Majority rule:
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diseased



The Random Forest Algorithm
1. Forb=1 to B:

(a) Draw a

bootstrap sample

Z" of size N from the training data.

(b) Grow a random-forest tree T}, to the bootstrapped data, by re-
cursively repeating the following steps for each terminal node of
the tree, until the minimum node size n,,;,, is reached.

1. Select

m variables at random|from the p variables.

ii. Pick the best variable/split-point among the m.

1. Split the node into two daughter nodes.

2. Output the ensemble of trees {T}}5.

To make a prediction at a new point x:

Regression: fB(x) = + Zle Ty ().

Classification: Let Cy(z) be the class prediction of the bth random-forest
tree. Then CZ(x) = majority vote {Cy(x)}L.



Differences to standard tree

= Train each tree on bootstrap resample of data

(Bootstrap resample of data set with N samples:
Make new data set by drawing with replacement N samples; i.e., some samples will
probably occur multiple times in new data set)

= Don'’t prune

= Fit B trees in such a way and use average or majority
voting to aggregate results



Why Random Forest works 1/2

= Mean Squared Error = Variance + Bias?
= |f trees are sufficiently deep, they have very small bias

= How could we improve the variance over that of a single
tree?



Why Random Forest works 2/2

2 2 I — P Decreases, if number of trees B

B increases (irrespective of p)




Estimating generalization error:

Out-of bag (OOB) error

= Similar to leave-one-out cross-validation, but almost
without any additional computational burden

Data:
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Variable Importance for variable |

using Permutations Data
Resampled /.\ Resampled
Dataset 1 ~ 5op Dataset m OOB
Data m




Trees VS.

+ Trees yield insight into
decision rules

+ Rather fast

+ Easy to tune
parameters

- Prediction of trees tend
to have a high variance

Random Forest

+ RF has smaller prediction
variance and therefore
usually a better general
performance

+ Easy to tune parameters

- Rather slow

- “Black Box": Rather hard
to get insights into decision
rules



Comparing runtime
(just for illustration)

Up to “thousands” of variables

Problematic if there are categorical predictors with many levels (max: 32 levels)
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RF VS.

+ Can model nonlinear
class boundaries

+ OOB error “for free” (no
CV needed)

+ Works on continuous and
categorical responses
(regression / classification)

+ Gives variable
Importance

+ Very good performance

X

- “Black box” x X
- Slow X X

LDA

+ Very fast

+ Discriminants for visualizing
group separation

+ Can read off decision rule

- Can model only linear class
boundaries

- Mediocre performance
- No variable selection
- Only on categorical response

- Needs CV for estimating
prediction error

X X X
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Concepts to know

= |dea of Random Forest and how it reduces the prediction
variance of trees

= OOB error
= Variable Importance based on Permutation
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R functions to know

= Function “randomForest” and “varimpPlot” from package
“‘randomForest”
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