Overview

- Intuition for Trees
- Regression Trees
- Classification Trees
Idea of Trees: Regression Trees
Continuous response

Binary Tree

Y = 1.2
X \leq 1
Y = 1.4
X > 0.3
Y = 0.7
X \leq 2
Y = 1.9
X > 2
Y = 0.3
X > 1
Y = 0.2
X \leq 0.3
Y = 1.3
X > 2
Y = 0.3
X \leq 2
Y = 1.2
X \leq 1
Y = 1.4
X > 0.3
Y = 0.7
X \leq 2
Y = 1.9
X > 2
Y = 0.3
X \leq 0.3
Y = 1.3
X > 2
Y = 0.3
X \leq 2
Y = 1.2
X \leq 1
Y = 1.4
X > 0.3
Y = 0.7
X \leq 2
Y = 1.9
X > 2
Y = 0.3
X \leq 0.3
Y = 1.3
X > 2
Y = 0.3
X \leq 2
Y = 1.2
X \leq 1
Y = 1.4
X > 0.3
Y = 0.7
X \leq 2
Y = 1.9
X > 2
Y = 0.3
X \leq 0.3
Y = 1.3
X > 2
Y = 0.3
X \leq 2
Y = 1.2
X \leq 1
Y = 1.4
X > 0.3
Y = 0.7
X \leq 2
Y = 1.9
X > 2
Y = 0.3
X \leq 0.3
Y = 1.3
X > 2
Y = 0.3
X \leq 2
Y = 1.2
X \leq 1
Y = 1.4
X > 0.3
Y = 0.7
X \leq 2
Y = 1.9
X > 2
Y = 0.3
X \leq 0.3
Y = 1.3
X > 2
Y = 0.3
X \leq 2
Y = 1.2
X \leq 1
Y = 1.4
X > 0.3
Y = 0.7
X \leq 2
Y = 1.9
X > 2
Y = 0.3
X \leq 0.3
Y = 1.3
X > 2
Y = 0.3
X \leq 2
Y = 1.2
X \leq 1
Y = 1.4
X > 0.3
Y = 0.7
X \leq 2
Y = 1.9
X > 2
Y = 0.3
X \leq 0.3
Y = 1.3
X > 2
Y = 0.3
X \leq 2
Y = 1.2
X \leq 1
Y = 1.4
X > 0.3
Y = 0.7
X \leq 2
Y = 1.9
X > 2
Y = 0.3
X \leq 0.3
Y = 1.3
X > 2
Y = 0.3
X \leq 2
Idea of Trees: Classification Tree
Discrete response

Survived in Titanic?

800/200

No

Sex=F

150/50

No

Age <35

3/17

Yes

Age ≥35

147/33

No

Age <27

70/130

Yes

Age ≥27

580/20

No

Sex=M

650/150

No

Yes

Missclassification rate:
- Total: (3+33+70+20) / 1000 = 0.126
- “Yes”-class: 53/200 = 0.26
- “No”-class: 73/800 = 0.09
Intuition of Trees: Recursive Partitioning

For simplicity:
Restrict to recursive binary splits
Fighting overfitting: Cost-complexity pruning

Overfitting: Fitting the training data **perfectly** might not be good for predicting future data

For trees:
1. Fit a very detailed model
2. Prune it using a complexity penalty to optimize cross-validation performance
Building Regression Trees 1/2

- Assume given partition of space R_1, \ldots, R_M

Tree model:
$$f(x) = \sum_{m=1}^{M} c_m I(x \in R_m)$$

- Goal is to minimize sum of squared residuals:
$$\sum (y_i - f(x_i))^2$$

- Solution: Average of data points in every region

$$\hat{c}_m = \text{ave}(y_i | x_i \in R_m)$$
Building Regression Trees 2/2

- Finding the best binary partition is computationally infeasible
- Use greedy approach: For variable j and split point s define the two generated regions:

$$R_1(j, s) = \{X | X_j \leq s\} \quad \text{and} \quad R_2(j, s) = \{X | X_j > s\}.$$

- Choose splitting variable j and split point s that solve:

$$\min_{j, s} \left[\min_{c_1} \sum_{x_i \in R_1(j, s)} (y_i - c_1)^2 + \min_{c_2} \sum_{x_i \in R_2(j, s)} (y_i - c_2)^2 \right]$$

inner minimization is solved by

$$\hat{c}_1 = \text{ave}(y_i | x_i \in R_1(j, s)) \quad \text{and} \quad \hat{c}_2 = \text{ave}(y_i | x_i \in R_2(j, s))$$

- Repeat splitting process on each of the two resulting regions
Pruning Regression Trees

- Stop splitting when some minimal node size (= nmb. of samples per node) is reached (e.g. 5)
- Then, cut back the tree again (“pruning”) to optimize the cost-complexity criterion:

\[N_m = \# \{ x_i \in R_m \}, \]
\[\hat{c}_m = \frac{1}{N_m} \sum_{x_i \in R_m} y_i, \]
\[Q_m(T) = \frac{1}{N_m} \sum_{x_i \in R_m} (y_i - \hat{c}_m)^2 \]

\[C_\alpha(T) = \sum_{m=1}^{|T|} N_m Q_m(T) + \alpha |T| \]

- Tuning parameter \(\alpha \) is chosen by cross-validation

“Impurity measure”

Goodness of fit

Complexity
Classification Trees

- Regression Tree:
 Quality of split measured by “Squared error”

- Classification Tree:
 Quality of split measured by general “Impurity measure”
Classification Trees: Impurity Measures

- Proportion of class k observations in node m:
 \[
 \hat{p}_{mk} = \frac{1}{N_m} \sum_{x_i \in R_m} I(y_i = k)
 \]

- Define majority class in node m: k(m)

- Common impurity measures \(Q_m(T) \):

 Misclassification error:
 \[
 \frac{1}{N_m} \sum_{i \in R_m} I(y_i \neq k(m)) = 1 - \hat{p}_{mk(m)}
 \]

 Gini index:
 \[
 \sum_{k \neq k'} \hat{p}_{mk} \hat{p}_{mk'} = \sum_{k=1}^{K} \hat{p}_{mk} (1 - \hat{p}_{mk})
 \]

 Cross-entropy or deviance:
 \[
 - \sum_{k=1}^{K} \hat{p}_{mk} \log \hat{p}_{mk}.
 \]

- For just two classes:
Example: Gini Index

Side effects after treatment? 100 persons, 50 with and 50 without side effects: 50 / 50 (No / Yes)

- **Split on sex**
 - 50 / 50
 - M: 30 / 40, Gini = 0.49
 - F: 20 / 10, Gini = 0.44
 - Total Gini = 0.49 + 0.44 = 0.93

- **Split on age**
 - 50 / 50
 - Old: 10 / 50, Gini = 0.27
 - Young: 40 / 0, Gini = 0
 - Total Gini = 0.27 + 0 = 0.27

0.27 < 0.93, therefore: Choose split on age
Classification Trees: Impurity Measures

- Usually:
 - Gini Index used for building
 - Misclassification error used for pruning
Example: Pruning using Misclass. Error (MCE)

\[C_\alpha(T) = \sum_{m=1}^{|T|} N_m Q_m(T) + \alpha|T| \]

\(C_\alpha(T) = 50 \times 0 + 10 \times 0 + 40 \times 0 + 0.5 \times 3 = 1.5 \)

\(C_\alpha(T) = 60 \times 0.167 + 40 \times 0 + 0.5 \times 2 = 11.0 \)

Smaller \(C_\alpha(T) \), therefore don’t prune
Trees in R

- Function “rpart” (recursive partitioning) in package “rpart” together with “print”, “plot”, “text”

- *Function “rpart” automatically prunes using optimal α based on 10-fold CV*

- Functions “plotcp” and “printcp” for cost-complexity information

- Function “prune” for manual pruning
Concepts to know

- Trees as recursive partitionings
- Concept of cost-complexity pruning
- Impurity measures
R functions to know