

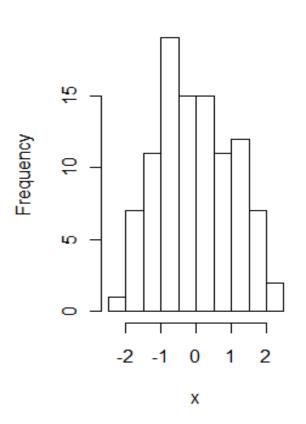
Visualization 1

Applied Multivariate Statistics – Spring 2013

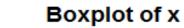
Goals

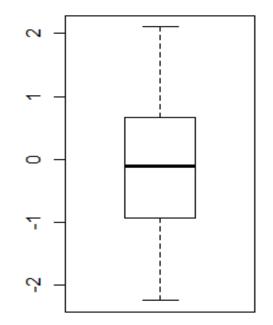
- Covariance, Correlation (true / sample version)
- Test for zero correlation: Fisher's z-Transformation
- Scatterplot / Scatterplotmatrix
- Covariance matrix / Correlation matrix
- Multivariate Normal Distribution
- Mahalanobis distance

Visualization in 1d

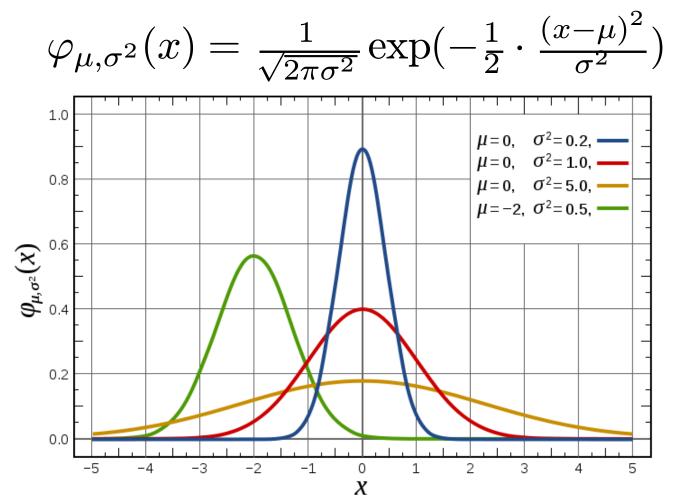


Histogram of x





Normal distribution in 1d: Most common model choice



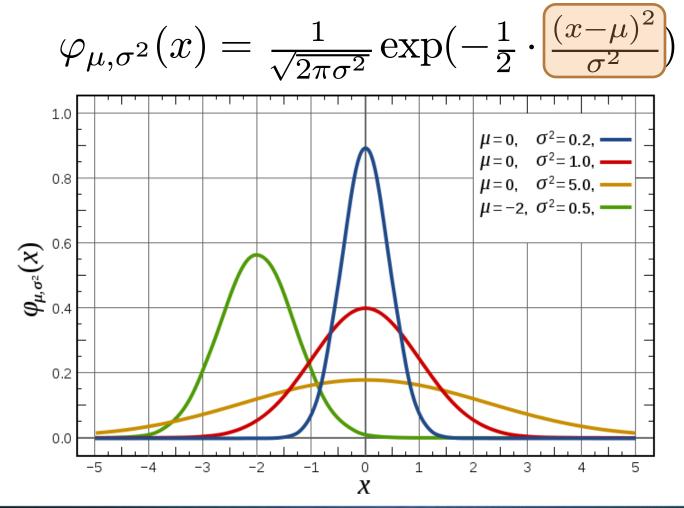
Appl. Multivariate Statistics - Spring 2013

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Squared Mahalanobis Distance

Normal distribution in 1d: Most common model choice

Sq. Distance from mean in standard deviations



One variable: Expected value and variance

- Expected value: $\mu = E(X) = \int xf(x)dx$ Estimate: Mean $\hat{\mu} = \overline{x} = \frac{1}{n}\sum x_i$
- Variance:

$$\sigma_X^2 = Var(X) = E\left(\left(X - E(X)\right)^2\right) = \int \left(x - E(X)\right)^2 dx$$

Estimate: Sample Variance

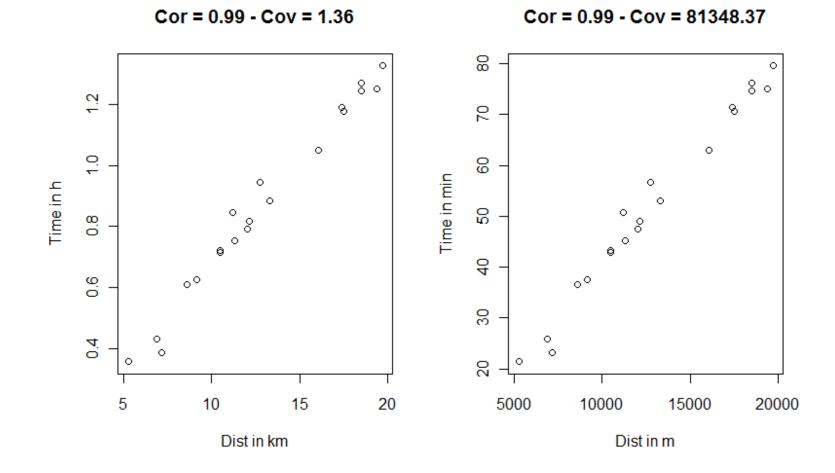
$$\widehat{\sigma_X^2} = \frac{1}{n-1} \sum (x_i - \overline{x})^2$$

• Standard deviation: $\sigma_X = \sqrt{Var(X)}$ Estimate: Square root of Sample Variance

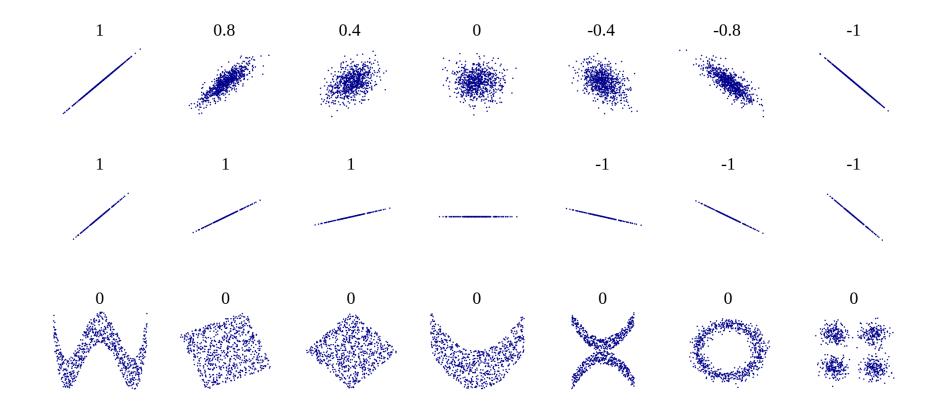
Two variables: Covariance and Correlation

- Covariance: $Cov(X,Y) = E[(X E[X])(Y E[Y])] \in [-\infty;\infty]$
- Correlation: $Corr(X,Y) = \frac{Cov(X,Y)}{\sigma_X \sigma_Y} \in [-1;1]$
- Sample covariance: $\widehat{Cov}(x,y) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i \overline{x})(y_i \overline{y})$
- Sample correlation: $r_{xy} = \widehat{Cor}(x,y) = \frac{\widehat{Cov}(x,y)}{\hat{\sigma}_x \hat{\sigma}_y}$
- Correlation is invariant to changes in units, covariance is not (e.g. kilo/gram, meter/kilometer, etc.)

Scatterplot: Correlation is scale invariant



Intuition and pitfalls for correlation Correlation = LINEAR relation



Source: Wikipedia

Appl. Multivariate Statistics - Spring 2013

Test for zero correlation: Fisher's z-Test

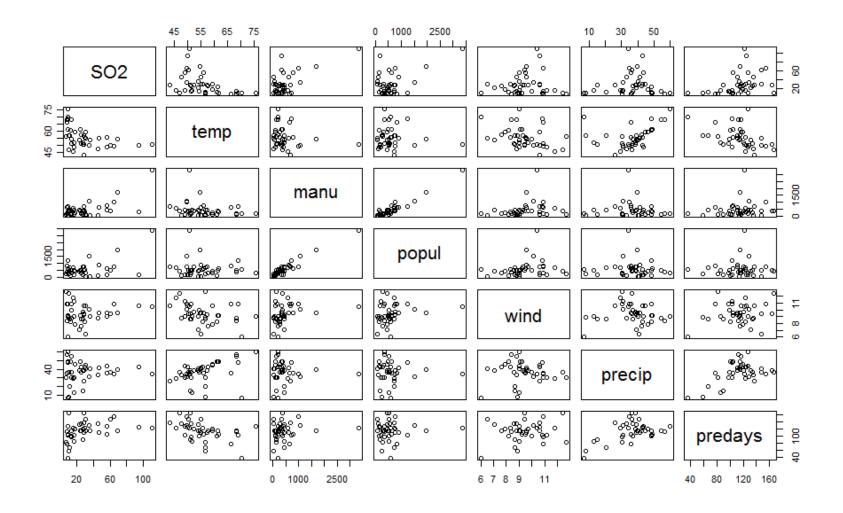
- X, Y (bivariate) normal distributed with true correlation ρ
- Take n samples
- Compute sample correlation r

Compute $z = \frac{1}{2} \log \left(\frac{1+r}{1-r} \right)$

Compute $\xi = \frac{1}{2} \log \left(\frac{1+\rho}{1-\rho} \right)$

- For large n: $\sqrt{n-1}(z-\xi) \sim N(0,1)$
- Use cor.test() in R to test and get confidence intervals

Many dimensions: Scatterplot matrix



Appl. Multivariate Statistics - Spring 2013

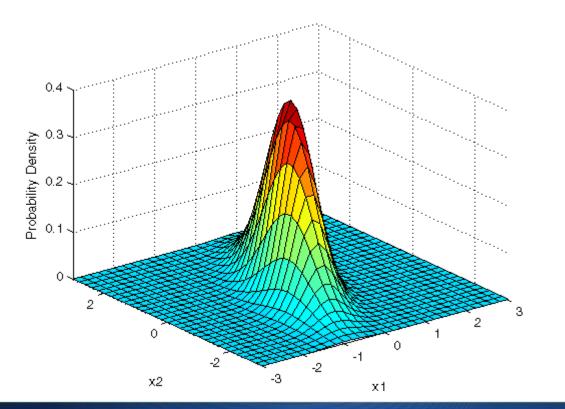
Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Covariance matrix / correlation matrix: Table of pairwise values

- True covariance matrix: $\Sigma_{ij} = Cov(X_i, X_j)$
- True correlation matrix: $C_{ij} = Cor(X_i, X_j)$
- Sample covariance matrix: $S_{ij} = \widehat{Cov}(x_i, x_j)$ Diagonal: Variances
- Sample correlation matrix: $R_{ij} = \widehat{Cor}(x_i, x_j)$ Diagonal: 1

Multivariate Normal Distribution: Most common model choice

$$f(x;\mu,\Sigma) = \frac{1}{(2\pi)^{(p/2)}|\Sigma|^{(1/2)}} \exp\left(-\frac{1}{2} \cdot (x-\mu)^T \Sigma^{-1}(x-\mu)\right)$$



Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

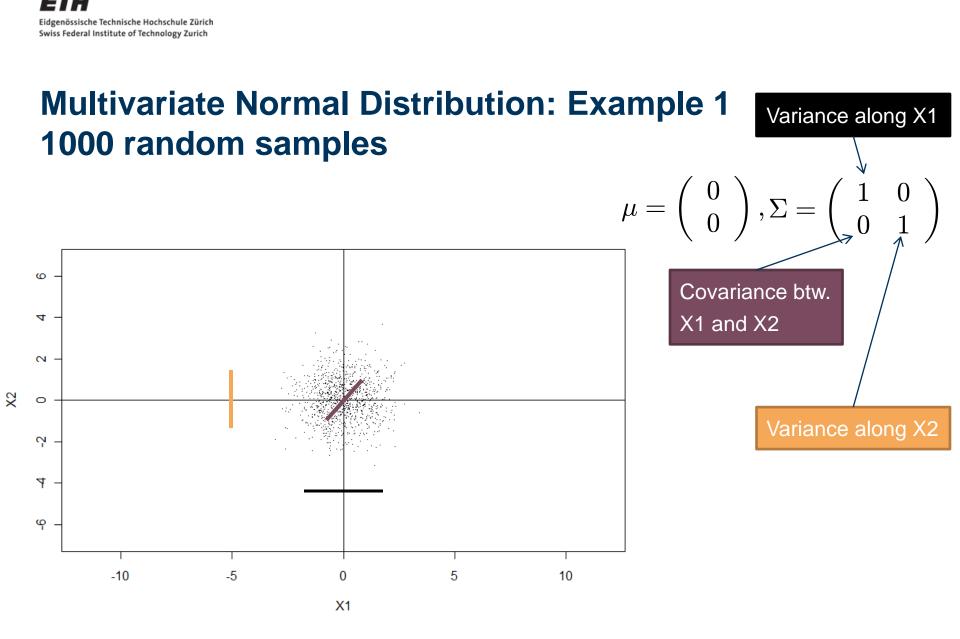
Multivariate Normal Distribution: Funny facts

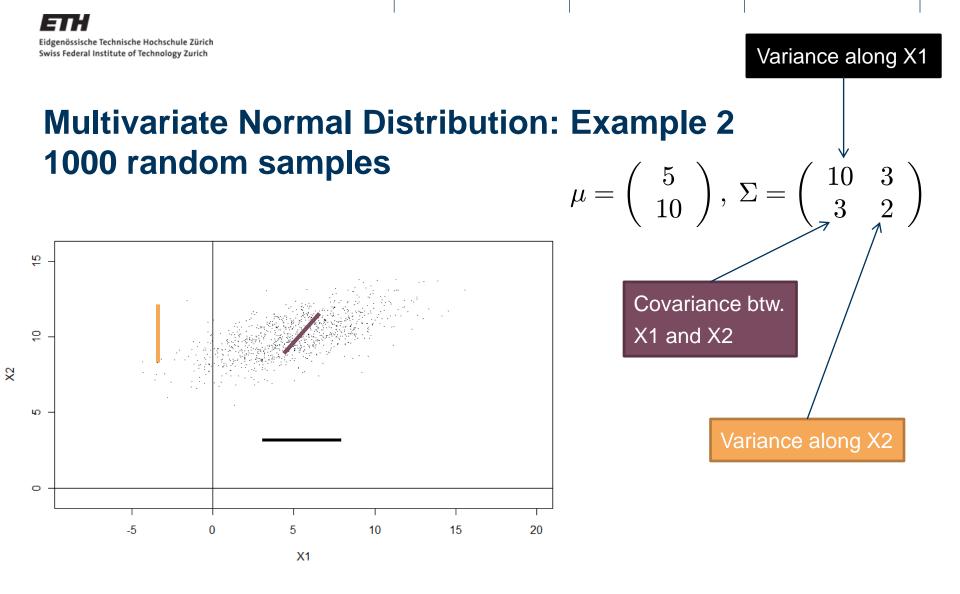
If X_1, \ldots, X_p multivariate normal, then

- every linear combination Y = a₁ X₁ + ... + a_p X_p is normally distributed
- every projection on a subspace is multivariate normally distributed

If margins are normally distributed, then it is NOT GUARANTEED that the underlying distribution is multivariate normal

(i.e., "multivariate" is stronger than just normal margins)

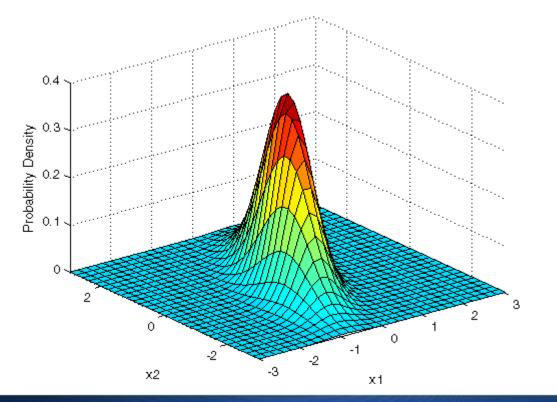




Multivariate Normal Distribution: Most common model choice (p dimensions)

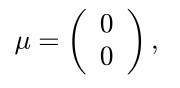
Sq. distance from mean in standard deviations IN DIRECTION OF X

$$f(x;\mu,\Sigma) = \frac{1}{(2\pi)^{(p/2)}|\Sigma|^{(1/2)}} \exp\left(-\frac{1}{2} \cdot (x-\mu)^T \Sigma^{-1} (x-\mu)\right)$$



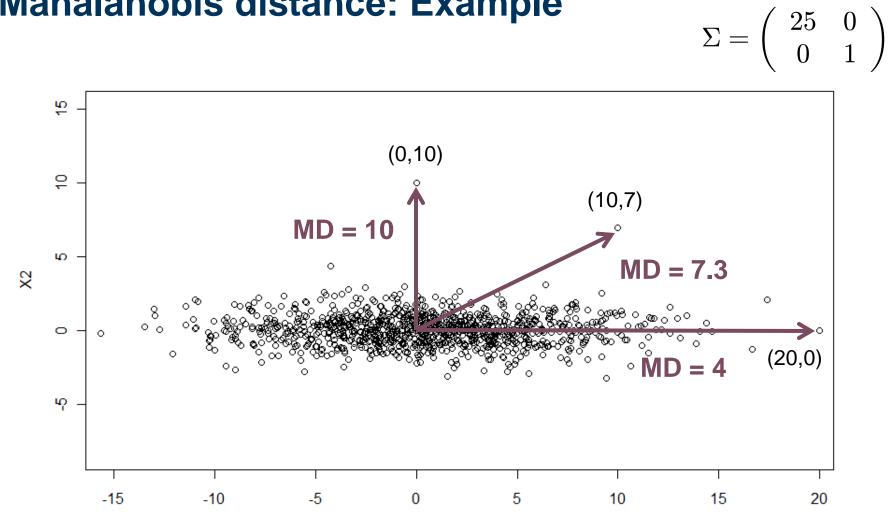
Appl. Multivariate Statistics - Spring 2013

Sq. Mahalanobis Distance MD²(x)



 $\Sigma =$

Mahalanobis distance: Example



X1

Concepts to know

- Covariance, Correlation (true / sample version)
- Test for zero correlation: Fisher's z-Transformation
- Scatterplot / Scatterplotmatrix
- Covariance matrix / Correlation matrix
- Multivariate Normal Distribution
- Mahalanobis distance

R commands to know

- read.csv, head, str, dim
- colMeans, cov, cor
- mvrnorm, t, solve, %*%