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1. Problem
In a hospital, a group of 30 patients was examined using a chemical analysis of their blood.
Each analysis contains 8 variables, each measuring a different chemical compound.

The goal is to produce a visualization of the chemical contents of each patient and compare
the patients in terms of their chemical analysis results.

Load the data: The file readViz.338801.csv contains the data in comma-separated form.
Each row corresponds to a patient, each column to a chemical compound. Patient names
are in the first column and should be used in the visualization. The first row contains the
names of the columns.

Scaling: What is the scale of each variable? Would you scale, if we want to compare the
patients in relative terms?

Visualization and Interpretation: Make a suitable visualization of the data set. There is
a certain type of disease where all blood chemicals are reduced. Some of these patients
might be in this sample. Can you detect them? Make a legend.

Solution

Sick people: 2

Code:

> fn <- "/sfs/u/staff/kalisch/teaching/pruefungAMS/exams/data/readViz.csv"

> dd <- read.csv(file = paste(pth, fname, sep = ""), row.names = 1, header = TRUE)

> apply(dd, 2, sd)

V1 V2 V3 V4 V5 V6

3.143100e-06 3.069961e-05 3.233904e-06 3.648974e-01 3.145859e-03 3.574516e+00

V7 V8

3.322664e-06 3.353106e-03

> stars(dd, draw.segments = TRUE, key.loc = c(1,1))



AMS: AMS01 3

P1 P2 P3 P4 P5

P6 P7 P8 P9 P10

P11 P12 P13 P14 P15

P16 P17 P18 P19 P20

P21 P22 P23 P24 P25

P26 P27 P28 P29 P30
V1

V2V3

V4

V5 V8

2. Problem
Use LDA for supervised learning on simulated cancer data set. y=0 - no cancer, y = 1 -
cancer. There are 8 explanatory variables.
The data is saved in the data frame dat in the R-data file (supLearn2.156264.rda). Load
the data.
Fit LDA to the data. Then, create a new data frame containing the old observations 1,150
and 450. What tumor class is predicted by your LDA model? How does this compare to the
true labels?
Use leave-one-out cross-validation to estimate the accuracy of LDA on new observations.
What error rate would you expect?
Use LDA to visualize the separation of the four groups. Plot the value of the FIRST dis-
criminant vs. a random ordering of the observation number (sample(1 :nrow(dat)). Use a
different color for each symbol. Is there a horizontal line, that separates the groups well?
What is the maximum number of linear discriminants we can compute in this problem with
two groups and ten variables?
Solution
Code:

> library(MASS)

> lda.fit <- lda(y ~ ., data = dat)

> lda.fit

Call:

lda(y ~ ., data = dat)
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Prior probabilities of groups:

0 1

0.4 0.6

Group means:

X1 X2 X3 X4 X5 X6

0 -0.06371504 -0.16841011 -0.16843495 0.34530709 0.01122434 0.06820072

1 0.02206664 0.01179378 0.01403858 0.02090264 -0.05322646 0.02345557

X7 X8

0 0.376914649 0.56922381

1 -0.007036322 -0.01241636

Coefficients of linear discriminants:

LD1

X1 0.25709292

X2 0.33894624

X3 0.57967064

X4 -0.59481228

X5 -0.03958142

X6 0.21109163

X7 -0.08580920

X8 -0.19760791

> nd <- dat[c(1,150,450),]

> predict(lda.fit, newdata = nd)

$class

[1] 1 1 1

Levels: 0 1

$posterior

0 1

1 0.4442108 0.5557892

150 0.3167381 0.6832619

450 0.3090418 0.6909582

$x

LD1

1 -0.3991784

150 0.6426236

450 0.7110929

> dat$y[c(1,150,450)]

[1] 0 1 0

Levels: 0 1

> lda.CV <- lda(y ~ ., data = dat, CV = TRUE)

> tab <- table(lda.CV$class, dat$y)

> errRate <- 1 - (sum(diag(tab)) / nrow(dat))

> errRate

[1] 0.392
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> ld.pred <- predict(lda.fit)$x

> myCol <- as.numeric(dat$y)

> plot(sample(1:nrow(dat)), ld.pred, col = myCol)
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3. Problem
We need to re-organize the seating for 16 persons in a very busy office. Some people need
to visit each other in person quite a lot (“low contact distance”), others less so (“high contact
distance”). To be efficient, everybody should sit closer to people with high contact activity
than with low contact activity.

The management made a poll and asked everybody to rate the “contact distance” with every
other person in the office (0: contact all the time; 10: no contact at all). The result was made
symmetric afterwards.

Suggest a seating plan that fulfills these requirements as good as possible.

The data is saved in matrix dat in the R-data file (msc1.922675.rda) and contains the result
of the poll.

Solution
Code:

> library(MASS)

> mdsRes <- isoMDS(dat)

initial value 6.530452

iter 5 value 5.396519

iter 5 value 5.391199
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iter 5 value 5.389166

final value 5.389166

converged

> plot(mdsRes$points, type = "n")

> text(mdsRes$points, labels = rownames(mdsRes$points))

> stress <- round(mdsRes$stress, 2)
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STRESS: 5.39.

4. Problem
We have 482 soil samples. A chemical analysis involving 25 chemicals was done for each
sample. The chemicals are all measured in the same units and have similar scales.

The data is saved in the data frame dat in the R-data file (dis1.660625.rda).

For further processing, we would like to reduce the dimensionality as much as possible. But
we still want to explain most (e.g. 80%) of the variability in the data.

Find a suitable transformation for this goal.

What are the coordinates of the first sample in the new coordinate system?

How can the value of the first new coordinate be computed from the old data set?

Solution
Number of PCs should be around: 2

Code:
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> prc <- princomp(dat)

> summary(prc, loadings = FALSE)

Importance of components:

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5

Standard deviation 20.7463437 19.9300872 4.07442633 3.96901198 3.80950944

Proportion of Variance 0.4203562 0.3879295 0.01621315 0.01538506 0.01417335

Cumulative Proportion 0.4203562 0.8082857 0.82449884 0.83988390 0.85405725

Comp.6 Comp.7 Comp.8 Comp.9 Comp.10

Standard deviation 3.71180913 3.61510319 3.52480871 3.34350724 3.24606241

Proportion of Variance 0.01345568 0.01276368 0.01213404 0.01091789 0.01029078

Cumulative Proportion 0.86751293 0.88027660 0.89241064 0.90332854 0.91361931

Comp.11 Comp.12 Comp.13 Comp.14

Standard deviation 3.20770731 3.079963409 3.016037345 2.897377003

Proportion of Variance 0.01004902 0.009264574 0.008883984 0.008198688

Cumulative Proportion 0.92366834 0.932932911 0.941816895 0.950015584

Comp.15 Comp.16 Comp.17 Comp.18

Standard deviation 2.801135172 2.725232307 2.657329904 2.368004906

Proportion of Variance 0.007663065 0.007253396 0.006896446 0.005476455

Cumulative Proportion 0.957678648 0.964932045 0.971828490 0.977304946

Comp.19 Comp.20 Comp.21 Comp.22

Standard deviation 2.256553520 2.190080083 1.997120517 1.695174359

Proportion of Variance 0.004973082 0.004684404 0.003895318 0.002806487

Cumulative Proportion 0.982278028 0.986962432 0.990857750 0.993664237

Comp.23 Comp.24 Comp.25

Standard deviation 1.564431878 1.53340076 1.299439577

Proportion of Variance 0.002390274 0.00229639 0.001649098

Cumulative Proportion 0.996054511 0.99835090 1.000000000

> prc$scores[1,]

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6

25.00710592 -3.26839182 -2.81077379 1.50696594 5.19551195 -2.37002119

Comp.7 Comp.8 Comp.9 Comp.10 Comp.11 Comp.12

4.83366845 0.78130213 4.13893285 1.60865959 4.56357983 -1.10206245

Comp.13 Comp.14 Comp.15 Comp.16 Comp.17 Comp.18

0.85134284 -2.02886322 -0.80349138 -0.31788344 0.46000289 -2.11951630

Comp.19 Comp.20 Comp.21 Comp.22 Comp.23 Comp.24

0.40810308 1.11137993 -1.01233378 -0.61593040 1.53179855 -0.01436187

Comp.25

-1.76644238

> prc$loadings[,1]

[1] 0.09480420 -0.14324471 -0.26529907 0.03439226 0.34266897 -0.40964691

[7] -0.23534504 -0.15762490 0.13616095 -0.23552333 0.16041545 0.12973014

[13] 0.16887762 -0.21207324 -0.04652328 -0.09699898 -0.06348763 0.30367828

[19] -0.19687992 0.04350867 0.19234664 0.16153247 0.35114738 -0.08936989

[25] -0.02306239

> plot(prc)
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