ETH Zurich

Applied Multivariate Statistics

1. | | | | | | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
2.

3	9	2

3. \square $5 .$| | 9 | 0 |
| :--- | :--- | :--- |
4. \square

2 | 0 | 0 | 0 |
| :--- | :--- | :--- |

1. Problem

In a hospital, a group of 30 patients was examined using a chemical analysis of their blood. Each analysis contains 8 variables, each measuring a different chemical compound.

The goal is to produce a visualization of the chemical contents of each patient and compare the patients in terms of their chemical analysis results.
Load the data: The file readViz.338801.csv contains the data in comma-separated form. Each row corresponds to a patient, each column to a chemical compound. Patient names are in the first column and should be used in the visualization. The first row contains the names of the columns.

Scaling: What is the scale of each variable? Would you scale, if we want to compare the patients in relative terms?
Visualization and Interpretation: Make a suitable visualization of the data set. There is a certain type of disease where all blood chemicals are reduced. Some of these patients might be in this sample. Can you detect them? Make a legend.

Solution

Sick people: 2
Code:

```
> fn <- "/sfs/u/staff/kalisch/teaching/pruefungAMS/exams/data/readViz.csv"
> dd <- read.csv(file = paste(pth, fname, sep = ""), row.names = 1, header = TRUE)
> apply(dd, 2, sd)
V1 V2 V3 V4 V5 V6
3.143100e-06 3.069961e-05 3.233904e-06 3.648974e-01 3.145859e-03 3.574516e+00
    V7 V8
3.322664e-06 3.353106e-03
> stars(dd, draw.segments = TRUE, key.loc = c(1,1))
```


2. Problem

Use LDA for supervised learning on simulated cancer data set. $\mathrm{y}=0$ - no cancer, $\mathrm{y}=1$ cancer. There are 8 explanatory variables.
The data is saved in the data frame dat in the R-data file (supLearn2.156264.rda). Load the data.

Fit LDA to the data. Then, create a new data frame containing the old observations 1,150 and 450. What tumor class is predicted by your LDA model? How does this compare to the true labels?

Use leave-one-out cross-validation to estimate the accuracy of LDA on new observations. What error rate would you expect?
Use LDA to visualize the separation of the four groups. Plot the value of the FIRST discriminant vs. a random ordering of the observation number (sample(1 :nrow(dat)). Use a different color for each symbol. Is there a horizontal line, that separates the groups well?
What is the maximum number of linear discriminants we can compute in this problem with two groups and ten variables?

Solution

Code:

```
> library(MASS)
> lda.fit <- lda(y ~ ., data = dat)
> lda.fit
Call:
lda(y ~ ., data = dat)
```

```
Prior probabilities of groups:
    0 1
0.40.6
```

Group means:

| | X1 | X2 | X3 | X4 | X5 |
| :--- | ---: | ---: | ---: | ---: | ---: |\quad X6

\$class

[1] 111
Levels: 01
\$posterior
$0 \quad 1$
10.44421080 .5557892
1500.31673810 .6832619
4500.30904180 .6909582
\$x
LD1
$1-0.3991784$
$150 \quad 0.6426236$
$450 \quad 0.7110929$
> $\operatorname{dat} \$ \mathrm{y}[c(1,150,450)]$

```
[1] 0 1 0
Levels: 0 1
> lda.CV <- lda(y ~ ., data = dat, CV = TRUE)
> tab <- table(lda.CV$class, dat$y)
> errRate <- 1 - (sum(diag(tab)) / nrow(dat))
> errRate
```

[1] 0.392

```
> ld.pred <- predict(lda.fit)$x
> myCol <- as.numeric(dat$y)
> plot(sample(1:nrow(dat)), ld.pred, col = myCol)
```


3. Problem

We need to re-organize the seating for 16 persons in a very busy office. Some people need to visit each other in person quite a lot ("low contact distance"), others less so ("high contact distance"). To be efficient, everybody should sit closer to people with high contact activity than with low contact activity.
The management made a poll and asked everybody to rate the "contact distance" with every other person in the office (0 : contact all the time; 10 : no contact at all). The result was made symmetric afterwards.
Suggest a seating plan that fulfills these requirements as good as possible.
The data is saved in matrix dat in the R-data file (msc1.922675.rda) and contains the result of the poll.

Solution

Code:

```
> library(MASS)
> mdsRes <- isoMDS(dat)
initial value 6.530452
iter 5 value 5.396519
iter 5 value 5.391199
```

```
iter 5 value 5.389166
final value 5.389166
converged
> plot(mdsRes$points, type = "n")
> text(mdsRes$points, labels = rownames(mdsRes$points))
> stress <- round(mdsRes$stress, 2)
```


STRESS: 5.39.

4. Problem

We have 482 soil samples. A chemical analysis involving 25 chemicals was done for each sample. The chemicals are all measured in the same units and have similar scales.
The data is saved in the data frame dat in the R-data file (dis1.660625.rda).
For further processing, we would like to reduce the dimensionality as much as possible. But we still want to explain most (e.g. 80%) of the variability in the data.

Find a suitable transformation for this goal.
What are the coordinates of the first sample in the new coordinate system?
How can the value of the first new coordinate be computed from the old data set?

Solution

Number of PCs should be around: 2
Code:

```
> prc <- princomp(dat)
> summary(prc, loadings = FALSE)
```

Importance of components:
Comp. 1 Comp. 2 Comp. 3 Comp. 4 Comp. 5
Standard deviation 20.746343719 .93008724 .074426333 .969011983 .80950944 Proportion of Variance 0.42035620 .38792950 .016213150 .015385060 .01417335 Cumulative Proportion 0.42035620 .80828570 .824498840 .839883900 .85405725

Comp. 6 Comp. 7 Comp. 8 Comp. 9 Comp. 10
Standard deviation 3.711809133 .615103193 .524808713 .343507243 .24606241
Proportion of Variance 0.013455680 .012763680 .012134040 .010917890 .01029078 Cumulative Proportion 0.867512930 .880276600 .892410640 .903328540 .91361931

Comp. 11 Comp. 12 Comp. 13 Comp. 14
Standard deviation 3.207707313 .0799634093 .0160373452 .897377003
Proportion of Variance 0.010049020 .0092645740 .0088839840 .008198688
Cumulative Proportion 0.923668340 .9329329110 .9418168950 .950015584
Comp. 15 Comp. 16 Comp. 17 Comp. 18
Standard deviation 2.8011351722 .7252323072 .6573299042 .368004906
Proportion of Variance 0.0076630650 .0072533960 .0068964460 .005476455
Cumulative Proportion 0.9576786480 .9649320450 .9718284900 .977304946
Comp. 19 Comp. 20 Comp. 21 Comp. 22
Standard deviation 2.2565535202 .1900800831 .9971205171 .695174359
Proportion of Variance 0.0049730820 .0046844040 .0038953180 .002806487
Cumulative Proportion 0.9822780280 .9869624320 .9908577500 .993664237
Comp. 23 Comp. 24 Comp. 25
Standard deviation 1.5644318781 .533400761 .299439577
Proportion of Variance 0.0023902740 .002296390 .001649098 Cumulative Proportion 0.9960545110 .998350901 .000000000
> prc\$scores [1,]

Comp.1	Comp. 2	Comp. 3	Comp.4	Comp. 5	Comp. 6
25.00710592	-3.26839182	-2.81077379	1.50696594	5.19551195	-2.37002119
Comp.	Comp.8	Comp.9	Comp.10	Comp.11	Comp.12
4.83366845	0.78130213	4.13893285	1.60865959	4.56357983	-1.10206245
Comp.13	Comp.14	Comp.15	Comp.16	Comp.17	Comp.18
0.85134284	-2.02886322	-0.80349138	-0.31788344	0.46000289	-2.11951630
Comp.19	Comp.20	Comp. 21	Comp.22	Comp. 23	Comp. 24
0.40810308	1.11137993	-1.01233378	-0.61593040	1.53179855	-0.01436187
Comp. 25					

> prc\$loadings [, 1]

$[1]$	0.09480420	-0.14324471	-0.26529907	0.03439226	0.34266897	-0.40964691
$[7]$	-0.23534504	-0.15762490	0.13616095	-0.23552333	0.16041545	0.12973014
$[13]$	0.16887762	-0.21207324	-0.04652328	-0.09699898	-0.06348763	0.30367828
$[19]$	-0.19687992	0.04350867	0.19234664	0.16153247	0.35114738	-0.08936989
$[25]$	-0.02306239					
> plot(prc)						

