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1 Introduction 

1.1 Purpose 

Time series data, i.e. records which are measured sequentially over time, are 
extremely common. They arise in virtually every application field, such as e.g.: 

 Business 
Sales figures, production numbers, customer frequencies, ... 

 Economics 
Stock prices, exchange rates, interest rates, ... 

 Official Statistics 
Census data, personal expenditures, road casualties, ... 

 Natural Sciences 
Population sizes, sunspot activity, chemical process data, ... 

 Environmetrics 
Precipitation, temperature or pollution recordings, ... 

The purpose of time series analysis, simply put, is to understand the past data, 
and to forecast future values. While some simple descriptive techniques do often 
considerably enhance the understanding of the data, a full analysis usually 
involves modeling the stochastic mechanism that gives rise to the observed series. 

Once a good model is found and fitted to data, the analyst can use that model to 
forecast future values and produce prediction intervals, or he can generate 
simulations, for example to guide planning decisions. Moreover, fitted models are 
used as a basis for statistical tests: they allow determining whether fluctuations in 
monthly sales provide evidence of some underlying change, or whether they are 
still within the range of usual random variation. 

The dominant main features of many time series are trend and seasonal variation, 
both of which can be modeled deterministically by mathematical functions of time. 
Yet another key feature of most time series is that adjacent observations tend to 
be correlated, i.e. serially dependent. Much of the methodology in time series 
analysis is aimed at explaining this correlation using appropriate statistical models. 

While the theory on mathematically oriented time series analysis is vast and may 
be studied without necessarily fitting any models to data, the focus of our course 
will be applied and directed towards data analysis. We study some basic 
properties of time series processes and models, but mostly focus on how to 
visualize and describe time series data, on how to fit models to data correctly, on 
how to generate forecasts, and on how to adequately draw conclusions from the 
output that was produced. 
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1.2 Examples 

1.2.1 Air Passenger Bookings 

The numbers of international passenger bookings (in thousands) per month on an 
airline (PanAm) in the United States were obtained from the Federal Aviation 
Administration for the period 1949-1960. The company used the data to predict 
future demand before ordering new aircraft and training aircrew. The data are 
available as a time series in R. Here, we here show how to access them, and how 
to first gain an impression. 

> data(AirPassengers) 
> AirPassengers 
     Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
1949 112 118 132 129 121 135 148 148 136 119 104 118 
1950 115 126 141 135 125 149 170 170 158 133 114 140 
1951 145 150 178 163 172 178 199 199 184 162 146 166 
1952 171 180 193 181 183 218 230 242 209 191 172 194 
1953 196 196 236 235 229 243 264 272 237 211 180 201 
1954 204 188 235 227 234 264 302 293 259 229 203 229 
1955 242 233 267 269 270 315 364 347 312 274 237 278 
1956 284 277 317 313 318 374 413 405 355 306 271 306 
1957 315 301 356 348 355 422 465 467 404 347 305 336 
1958 340 318 362 348 363 435 491 505 404 359 310 337 
1959 360 342 406 396 420 472 548 559 463 407 362 405 
1960 417 391 419 461 472 535 622 606 508 461 390 432 

Some further information about this dataset can be obtained by typing 
?AirPassengers in R. The data are stored in an R-object of class ts, which is 
the specific class for time series data. However, for further details on how time 
series are handled in R, we refer to section 3. 

One of the most important steps in time series analysis is to visualize the data, i.e. 
create a time plot, where the air passenger bookings are plotted versus the time of 
booking. For a time series object, this can be done very simply in R, using the 
generic plot function: 

> plot(AirPassengers, ylab="Pax", main="Passenger Bookings") 

The result is displayed on the next page. There are a number of features in the 
plot which are common to many time series. For example, it is apparent that the 
number of passengers travelling on the airline is increasing with time. In general, a 
systematic change in the mean level of a time series that does not appear to be 
periodic is known as a trend. The simplest model for a trend is a linear increase or 
decrease, an often adequate approximation. We will discuss how to estimate 
trends, and how to decompose time series into trend and other components in 
section 4.2. 



 

 Page 3 

The data also show a repeating pattern within each year, i.e. in summer, there are 
always more passengers than in winter. This is known as a seasonal effect, or 
seasonality. Please note that this term is applied more generally to any repeating 
pattern over a fixed period, such as for example restaurant bookings on different 
days of week. 

 

We can naturally attribute the increasing trend of the series to causes such as 
rising prosperity, greater availability of aircraft, cheaper flights and increasing 
population. The seasonal variation coincides strongly with vacation periods. For 
this reason, we here consider both trend and seasonal variation as deterministic 
components. As mentioned before, section 4.2 discusses visualization and 
estimation of these components, while in section 6, time series regression models 
will be specified to allow for underlying causes like these, and finally section 8 
discusses exploiting these for predictive purposes. 

1.2.2 Lynx Trappings 

The next series which we consider here is the annual number of lynx trappings for 
the years 1821-1934 in Canada. We again load the data and visualize them using 
a time series plot: 

> data(lynx) 
> plot(lynx, ylab="# of Lynx Trapped", main="Lynx Trappings") 

The plot on the next page shows that the number of trapped lynx reaches high and 
low values every about 10 years, and some even larger figure every about 40 
years. There is no fixed natural period which suggests these results. Thus, we will 
not attribute this behavior not to a deterministic periodicity, but to a random, 
stochastic one.  
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This leads us to the heart of time series analysis: while understanding and 
modeling trend and seasonal variation is a very important aspect, most of the time 
series methodology proper is aimed at stationary series, i.e. data which do not 
show deterministic, but only random (cyclic) variation. 

1.2.3 Luteinizing Hormone Measurements 

One of the key features of the above lynx trappings series is that the observations 
apparently do not stem from independent random variables, but there is some 
serial correlation. If the previous value was high (or low, respectively), the next one 
is likely to be similar to the previous one. To explore, model and exploit such 
dependence lies at the root of time series analysis. 

We here show another series, where 48 luteinizing hormone levels were recorded 
from blood samples that were taken at 10 minute intervals from a human female. 
This hormone, also called lutropin, triggers ovulation.  

> data(lh) 
> lh 
Time Series: 
Start = 1; End = 48  
Frequency = 1  
 [1] 2.4 2.4 2.4 2.2 2.1 1.5 2.3 2.3 2.5 2.0 1.9 1.7 2.2 1.8 
[15] 3.2 3.2 2.7 2.2 2.2 1.9 1.9 1.8 2.7 3.0 2.3 2.0 2.0 2.9 
[29] 2.9 2.7 2.7 2.3 2.6 2.4 1.8 1.7 1.5 1.4 2.1 3.3 3.5 3.5 
[43] 3.1 2.6 2.1 3.4 3.0 2.9 

Again, the data themselves are of course needed to perform analyses, but provide 
little overview. We can improve this by generating a time series plot: 

> plot(lh, ylab="LH level", main="Luteinizing Hormone") 
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For this series, given the way the measurements were made (i.e. 10 minute 
intervals), we can almost certainly exclude any deterministic seasonal variation. 
But is there any stochastic cyclic behavior? This question is more difficult to 
answer. Normally, one resorts to the simpler question of analyzing the correlation 
of subsequent records, called autocorrelations. The autocorrelation for lag 1 can 
be visualized by producing a scatterplot of adjacent observations: 

> plot(lh[1:47], lh[2:48], pch=20) 
> title("Scatterplot of LH Data with Lag 1") 
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Besides the (non-standard) observation that there seems to be an inhomogeneity, 
i.e. two distinct groups of data points, it is apparent that there is a positive 
correlation between successive measurements. This manifests itself with the 
clearly visible fact that again, if the previous observation was above or below the 
mean, the next one is more likely to be on the same side. We can even compute 
the value of the Pearson correlation coefficient: 

> cor(lh[1:47], lh[2:48]) 
[1] 0.5807322 

This figure is an estimate for the so-called autocorrelation coefficient at lag 1. As 
we will see in section 4.3, the idea of considering lagged scatterplots and 
computing Pearson correlation coefficients serves as a good proxy for a 
mathematically more sound method. We also note that despite the positive 
correlation of +0.58, the series seems to always have the possibility of “reverting to 
the other side of the mean”, a property which is common to stationary series – an 
issue that will be discussed in section 2.2. 

1.2.4 Swiss Market Index 

The SMI is the blue chip index of the Swiss stock market. It summarizes the value 
of the shares of the 20 most important companies, and contains around 85% of 
the total capitalization. Daily closing data for 1860 consecutive days from 1991-
1998 are available in R: 

> data(EuStockMarkets) 
> EuStockMarkets 
Time Series: 
Start = c(1991, 130)  
End = c(1998, 169)  
Frequency = 260  
             DAX    SMI    CAC   FTSE 
1991.496 1628.75 1678.1 1772.8 2443.6 
1991.500 1613.63 1688.5 1750.5 2460.2 
1991.504 1606.51 1678.6 1718.0 2448.2 
1991.508 1621.04 1684.1 1708.1 2470.4 
1991.512 1618.16 1686.6 1723.1 2484.7 
1991.515 1610.61 1671.6 1714.3 2466.8 

As we can see, EuStockMarkets is a multiple time series object, which also 
contains data from the German DAX, the French CAC and UK’s FTSE. We will 
focus on the SMI and thus extract and plot the series: 

esm <- EuStockMarkets 
tmp <- EuStockMarkets[,2] 
smi <- ts(tmp, start=start(esm), freq=frequency(esm)) 
plot(smi, main="SMI Daily Closing Value") 
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Because subsetting from a multiple time series object results in a vector, but not a 
time series object, we need to regenerate a latter one, sharing the arguments of 
the original. In the plot we clearly observe that the series has a trend, i.e. the mean 
is obviously non-constant over time. This is typical for all financial time series. 

 

Such trends in financial time series are nearly impossible to predict, and difficult to 
characterize mathematically. We will not embark in this, but analyze the so-called 
log-returns, i.e. the logged-value of today’s value divided by the one of yesterday: 

> tmp      <- log(smi[2:1860]/smi[1:1859]) 
> lret.smi <- ts(tmp, start=c(1991,131), freq=frequency(esm)) 
> plot(lret.smi, main="SMI Log-Returns") 
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The SMI log-returns are an approximation to the percent change with respect to 
the previous day. As can be seen below, they do not show a trend anymore, but 
show some of the stylized facts that most log-returns of financial time series have. 
Using lagged scatterplots or the correlogram (to be discussed later in section 4.3), 
you can convince yourself that there is no serial correlation. Thus, there is no 
dependency which could be exploited to predict tomorrows return based on the 
one of today and/or previous days.  

However, it is visible that large changes, i.e. log-returns with high absolute values, 
imply that future log-returns tend to be larger than normal, too. This feature is also 
known as volatility clustering, and financial service providers are trying their best to 
exploit this property to make profit. Again, you can convince yourself of the 
volatility clustering effect by taking the squared log-returns and analyzing their 
serial correlation, which is different from zero. 

1.3 Goals in Time Series Analysis 

A first impression of the purpose and goals in time series analysis could be gained 
from the previous examples. We conclude this introductory section by explicitly 
summarizing the most important goals. 

1.3.1 Exploratory Analysis 

Exploratory analysis for time series mainly involves visualization with time series 
plots, decomposition of the series into deterministic and stochastic parts, and 
studying the dependency structure in the data. 

1.3.2 Modeling 

The formulation of a stochastic model, as it is for example also done in regression, 
can and does often lead to a deeper understanding of the series. The formulation 
of a suitable model usually arises from a mixture between background knowledge 
in the applied field, and insight from exploratory analysis. Once a suitable model is 
found, a central issue remains, i.e. the estimation of the parameters, and 
subsequent model diagnostics and evaluation. 

1.3.3 Forecasting 

An often-heard motivation for time series analysis is the prediction of future 
observations in the series. This is an ambitious goal, because time series 
forecasting relies on extrapolation, and is generally based on the assumption that 
past and present characteristics of the series continue. It seems obvious that good 
forecasting results require a very good comprehension of a series’ properties, be it 
in a more descriptive sense, or with respect to the fitted model. 
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1.3.4 Time Series Regression 

Rather than just forecasting by extrapolation, we can try to understand the relation 
between a so-identified response time series, and one or more explanatory series. 
If all of these are observed at the same time, we can in principle employ the usual 
regression framework. However, the all-to-common assumption of (serially) 
uncorrelated errors is usually violated in a time series framework. We will illustrate 
how to properly deal with this situation, in order to generate correct confidence and 
prediction intervals. 

1.3.5 Process Control 

Many production or other processes are measured quantitatively for the purpose 
of optimal management and quality control. This usually results in time series data, 
to which a stochastic model is fit. This allows understanding the signal in the data, 
but also the noise: it becomes feasible to monitor which fluctuations in the 
production are normal, and which ones require intervention. 
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2 Mathematical Concepts 
For performing anything else than very basic exploratory time series analysis, 
even from a much applied perspective, it is necessary to introduce the 
mathematical notion of what a time series is, and to study some basic probabilistic 
properties, namely the moments and the concept of stationarity. 

2.1 Definition of a Time Series 

As we have explained in section 1.2, observations that have been collected over 
fixed sampling intervals form a time series. Following a statistical approach, we 
consider such series as realizations of random variables. A sequence of random 
variables, defined at such fixed sampling intervals, is sometimes referred to as a 
discrete-time stochastic process, though the shorter names time series model or 
time series process are more popular and will mostly be used in this scriptum. It is 
very important to make the distinction between a time series, i.e. observed values, 
and a process, i.e. a probabilistic construct. 

Definition: A time series process is a set of random variables  ,tX t T , where T  
is the set of times at which the process was, will or can be observed. We assume 
that each random variable tX  is distributed according some univariate distribution 
function tF . Please note that for our entire course and hence scriptum, we 
exclusively consider time series processes with equidistant time intervals, as well 
as real-valued random variables tX . This allows us to enumerate the set of times, 
so that we can write {1,2,3, }T   . 

An observed time series, on the other hand, is seen as a realization of the random 
vector 1 2( , , , )nX X X X  , and is denoted with small letters 1 2( , , ), nx x x x  . It is 
important to note that in a multivariate sense, a time series is only one single 
realization of the n-dimensional random variable X , with its multivariate, n-
dimensional distribution function F . As we all know, we cannot do statistics with a 
single observation. As a way out of this situation, we need to impose some 
conditions on the joint distribution function F . 

2.2 Stationarity 

The aforementioned condition on the joint distribution F  is the concept of 
stationarity. In colloquial language this means that the probabilistic character of the 
series must not change over time, i.e. that any section of the time series is “typical” 
for every other section with the same length. More mathematically, we require that 
for any ,s t  and k , the observations , ,t t kx x   could have just as easily occurred at 
times , ,s s k  . 

Imposing even more mathematical rigor, we introduce the concept of strict 
stationarity. A time series is said to be strictly stationary if and only if the (k+1)-
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dimensional joint distribution of , ,t t kX X   coincides with the joint distribution of 
, ,s s kX X   for any combination of indices t , s  and k . For the special case of 
0k   and t s , this means that the univariate distributions tF  of all tX  are equal. 

For strictly stationary time series, we can thus leave off the index t  on the 
distribution. As the next step, we will define the moments: 

 Expectation t   [ ]tE X ,  for stationary series: t  . 
 Variance  2

t   ( )tVar X ,  for stationary series: 2 2
t  . 

 Covariance 1 2( , )t t   
1 2

( , )t tCov X X , for stationary series: ( , ) ( )t t hCov X X h  . 

In other words, strictly stationary series have constant expectation, constant 
variance , and the covariance, i.e. the dependency structure, depends only on the 
lag h , which is the time difference between the two observations. However, the 
covariance terms are generally different from 0, and thus, the tX  are usually 
dependent. 

In practice, except for simulation studies, we usually have no explicit knowledge of 
the latent time series process. Since strict stationarity is defined as a property of 
the process’ joint distributions (all of them), it is impossible to verify from a single 
realization, i.e. an observed time series. We can, however, always check whether 
a time series process shows constant mean and variance, and whether the 
dependency only depends on the lag h . This much less rigorous property is 
known as weak stationarity. 

In order to do well-founded statistical analyses with time series, weak stationarity 
is a necessary condition. It’s obvious that if a series’ observations do not have 
common properties such as constant mean/variance and a stable dependency 
structure, it will be impossible to statistically learn from it. On the other hand, it can 
be shown that weak stationarity, along with the additional property of ergodicity 
(i.e. the mean of a time series realization converges to the expected value, 
independent of the starting point), is sufficient for most practical purposes such as 
model fitting, forecasting, etc.. We will, however, not further embark in this subject. 

Remarks: 

 From now on, when we speak of stationarity, we strictly mean weak 
stationarity. The motivation is that weak stationarity is sufficient for applied 
time series analysis, and strict stationarity is a practically useless concept. 

 When we analyze time series data, we need to verify whether it might have 
arisen from a stationary process or not. Be careful with the wording: 
stationarity is always a property of the process, and never of the data. 

 Moreover, bear in mind that stationarity is a hypothesis, which needs to be 
evaluated for every series. We may be able to reject this hypothesis with 
quite some certainty if the data strongly speak against it. However, we can 
never prove stationarity with data. At best, it is plausible that a series 
originated from a stationary process. 
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 Some obvious violations of stationarity are trends, non-constant variance, 
deterministic seasonal variation, as well as apparent breaks in the data, 
which are indicators for changing dependency structure. 

2.3 Testing Stationarity 

If, as explained above, stationarity is a hypothesis which is tested on data, 
students and users keep asking if there are any formal tests. The answer to this 
question is yes, and there are even quite a number of tests. This includes the 
Augmented Dickey-Fuller Test, the Phillips-Perron Test, the KPSS Test, which are 
available in R’s tseries package. The urca package includes further tests such 
as the Elliott-Rothenberg-Stock, Schmidt-Phillips und Zivot-Andrews. 

However, we will not discuss any of these tests here for a variety of reasons. First 
and foremost, they all focus on some very specific non-stationarity aspects, but do 
not test stationarity in a broad sense. While they may reasonably do their job in the 
narrow field they are aimed for, they have low power to detect general non-
stationarity and in practice often fail to do so. Additionally, theory and formalism of 
these tests is quite complex, and thus beyond the scope of this course. In 
summary, these tests are to be seen as more of a pastime for the mathematically 
interested, rather than a useful tool for the practitioner. 

Thus, we here recommend assessing stationarity by visual inspection. The primary 
tool for this is the time series plot, but also the correlogram (see section 4.3) can 
be helpful as a second check. For long time series, it can also be useful to split up 
the series into several parts for checking whether mean, variance and dependency 
are similar over the blocks. 
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3 Time Series in R 

3.1 Time Series Classes 

In R, there are objects, which are organized in a large number of classes. These 
classes e.g. include vectors, data frames, model output, functions, and many 
more. Not surprisingly, there are also several classes for time series. We start by 
presenting ts, the basic class for regularly spaced time series. This class is 
comparably simple, as it can only represent time series with fixed interval records, 
and only uses numeric time stamps, i.e. (sophistically) enumerates the index set. 
However, it will still be sufficient for most, if not all, of what we do in this course. 
Then, we also provide an outlook to more complicated concepts. 

3.1.1 The ts Class 

For defining a time series of class ts, we of course need to provide the data, but 
also the starting time as argument start, and the frequency of measurements as 
argument frequency. If no starting time is supplied, R uses its default value of 1, 
i.e. enumerates the times by the index set 1, ..., n , where n  is the length of the 
series. The frequency is the number of observations per unit of time, e.g. 1 for 
yearly, 4 for quarterly, or 12 for monthly recordings. Instead of the start, we could 
also provide the end of the series, and instead of the frequency, we could supply 
argument deltat, the fraction of the sampling period between successive 
observations. The following example will illustrate the concept. 

Example: We here consider a simple and short series that holds the number of 
days per year with traffic holdups in front of the Gotthard road tunnel north 
entrance in Switzerland. The data are available from the Federal Roads Office. 

2004 2005 2006 2007 2008 2009 2010 

88 76 112 109 91 98 139 

The start of this series is in 2004. The time unit is years, and since we have just 
one record per year, the frequency of this series is 1. This tells us that while there 
may be a trend, there will not be a seasonal effect, which can only appear with 
periodic series, i.e. series with frequency > 1. We now define a ts object in in R. 

> rawdat <- c(88, 76, 112, 109, 91, 98, 139) 
> ts.dat <- ts(rawdat, start=2004, freq=1) 
> ts.dat 
Time Series: 
Start = 2004  
End = 2010  
Frequency = 1  
[1]  88  76 112 109  91  98 139 
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There are a number of simple but useful functions that extract basic information 
from objects of class ts, see the following examples: 

> start(ts.dat) 
[1] 2004    1 
 
> end(ts.dat) 
[1] 2010    1 
 
> frequency(ts.dat) 
[1] 1 
 
> deltat(ts.dat) 
[1] 1 

Another possibility is to obtain the measurement times from a time series object. 
As class ts only enumerates the times, they are given as fractions. This can still 
be very useful for specialized plots, etc. 

> time(ts.dat) 
Time Series: 
Start = 2004  
End = 2010  
Frequency = 1  
[1] 2004 2005 2006 2007 2008 2009 2010 

The next basic, but for practical purposes very useful function is window(). It is 
aimed at selecting a subset from a time series. Of course, also regular R-
subsetting such as ts.dat[2:5] does work with the time series class. However, 
this results in a vector rather than a time series object, and is thus mostly of less 
use than the window() command. 

> window(ts.dat, start=2006, end=2008) 
Time Series: 
Start = 2006  
End = 2008  
Frequency = 1  
[1] 112 109  91 

While we here presented the most important basic methods/functions for class ts, 
there is a wealth of further ones. This includes the plot() function, and many 
more, e.g. for estimating trends, seasonal effects and dependency structure, for 
fitting time series models and generating forecasts. We will present them in the 
forthcoming chapters of this scriptum. 

To conclude the previous example, we will not do without showing the time series 
plot of the Gotthard road tunnel traffic holdup days, see next page. Because there 
are a limited number of observations, it is difficult to give statements regarding a 
possible trend and/or stochastic dependency. 

> plot(ts.dat, ylab="# of Days", main="Traffic Holdups") 
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3.1.2 Other Classes 

Besides the basic ts class, there are several more which offer a variety of 
additional options, but will rarely to never be required during our course. Most 
prominently, this includes the zoo package, which provides infrastructure for both 
regularly and irregularly spaced time series using arbitrary classes for the time 
stamps. It is designed to be as consistent as possible with the ts class. Coercion 
from and to zoo is also readily available. 

Some further packages which contain classes and methods for time series include 
xts, its, tseries, fts, timeSeries and tis. Additional information on their 
content and philosophy can be found on CRAN. 

3.2 Dates and Times in R 

While for the ts class, the handling of times has been solved very simply and 
easily by enumerating, doing time series analysis in R may sometimes also require 
to explicitly dealing with date and time. There are several options for dealing with 
date and date/time data. The built-in as.Date() function handles dates that 
come without times. The contributed package chron handles dates and times, but 
does not control for different time zones, whereas the sophisticated but complex 
POSIXct and POSIXlt classes allow for dates and times with time zone control. 

As a general rule for date/time data in R, we suggest to use the simplest technique 
possible. Thus, for date only data, as.Date() will mostly be the optimal choice. If 
handling dates and times, but without time-zone information, is required, the 
chron package is the choice. The POSIX classes are especially useful in the 
relatively rare cases when time-zone manipulation is important. 
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Apart for the POSIXlt class, dates/times are internally stored as the number of 
days or seconds from some reference date. These dates/times thus generally 
have a numeric mode. The POSIXlt class, on the other hand, stores date/time 
values as a list of components (hour, min, sec, mon, etc.), making it easy to 
extract these parts. Also the current date is accessible by typing Sys.Date() in 
the console, and returns an object of class Date. 

3.2.1 The Date Class 

As mentioned above, the easiest solution for specifying days in R is with the 
as.Date() function. Using the format argument, arbitrary date formats can be 
read. The default, however, is four-digit year, followed by month and then day, 
separated by dashes or slashes: 

> as.Date("2012-02-14") 
[1] "2012-02-14" 
> as.Date("2012/02/07") 
[1] "2012-02-07" 

If the dates are in non-standard appearance, we require defining their format using 
some codes. While the most important ones are shown below, we reference to the 
R help file of function strptime for the full list. 

Code Value 

%d Day of the month (decimal number) 
%m Month (decimal number) 
%b Month (character, abbreviated) 
%B Month (character, full name) 
%y Year (decimal, two digit) 
%Y Year (decimal, four digit) 

The following examples illustrate the use of the format argument: 

> as.Date("27.01.12", format="%d.%m.%y") 
[1] "2012-01-27" 
> as.Date("14. Februar, 2012", format="%d. %B, %Y")  
[1] "2012-02-14" 

Internally, Date objects are stored as the number of days passed since the 1st of 
January in 1970. Earlier dates receive negative numbers. By using the 
as.numeric() function, we can easily find out how many days are past since the 
reference date. Also back-conversion from a number of past days to a date is 
straightforward: 

> mydat <- as.Date("2012-02-14") 
> ndays <- as.numeric(mydat) 
> ndays 
[1] 15384 
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> tdays <- 10000 
> class(tdays) <- "Date" 
> tdays 
[1] "1997-05-19" 

A very useful feature is the possibility of extracting weekdays, months and 
quarters from Date objects, see the examples below. This information can be 
converted to factors, as which they serve for purposes as visualization, for 
decomposition, or for time series regression.  

> weekdays(mydat) 
[1] "Dienstag" 
> months(mydat) 
[1] "Februar" 
> quarters(mydat) 
[1] "Q1" 

Furthermore, some very useful summary statistics can be generated from Date 
objects: median, mean, min, max, range, ... are all available. We can even 
subtract two dates, which results in a difftime object, i.e. the time difference in 
days. 

> dat <- as.Date(c("2000-01-01","2004-04-04","2007-08-09")) 
> dat 
[1] "2000-01-01" "2004-04-04" "2007-08-09" 
 
> min(dat) 
[1] "2000-01-01" 
> max(dat) 
[1] "2007-08-09" 
> mean(dat) 
[1] "2003-12-15" 
> median(dat) 
[1] "2004-04-04" 
 
> dat[3]-dat[1] 
Time difference of 2777 days 

Another option is generating time sequences. For example, to generate a vector of 
12 dates, starting on August 3, 1985, with an interval of one single day between 
them, we simply type: 

> seq(as.Date("1985-08-03"), by="days", length=12) 
 [1] "1985-08-03" "1985-08-04" "1985-08-05" "1985-08-06" 
 [5] "1985-08-07" "1985-08-08" "1985-08-09" "1985-08-10" 
 [9] "1985-08-11" "1985-08-12" "1985-08-13" "1985-08-14" 

The by argument proves to be very useful. We can supply various units of time, 
and even place an integer in front of it. This allows creating a sequence of dates 
separated by two weeks: 
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> seq(as.Date("1992-04-17"), by="2 weeks", length=12) 
 [1] "1992-04-17" "1992-05-01" "1992-05-15" "1992-05-29" 
 [5] "1992-06-12" "1992-06-26" "1992-07-10" "1992-07-24" 
 [9] "1992-08-07" "1992-08-21" "1992-09-04" "1992-09-18" 

3.2.2 The chron Package 

The chron() function converts dates and times to chron objects. The dates and 
times are provided separately to the chron() function, which may well require 
some inital pre-processing. For such parsing, R-functions such as substr() and 
strsplit() can be of great use. In the chron package, there is no support for 
time zones and daylight savings time, and chron objects are internally stored as 
fractional days since the reference date of January 1st, 1970. By using the function 
as.numeric(), these internal values can be accessed. The following example 
illustrates the use of chron: 

> library(chron) 
> dat <- c("2007-06-09 16:43:20", "2007-08-29 07:22:40", 
           "2007-10-21 16:48:40", "2007-12-17 11:18:50") 
> dts <- substr(dat,  1, 10) 
> tme <- substr(dat, 12, 19) 
> fmt <- c("y-m-d","h:m:s") 
> cdt <- chron(dates=dts, time=tme, format=fmt)  
> cdt 
[1] (07-06-09 16:43:20) (07-08-29 07:22:40)  
[3] (07-10-21 16:48:40) (07-12-17 11:18:50) 

As before, we can again use the entire palette of summary statistic functions. Of 
some special interest are time differences, which can now be obtained as either 
fraction of days, or in weeks, hours, minutes, seconds, etc.: 

> cdt[2]-cdt[1] 
Time in days: 
[1] 80.61065 
> difftime(cdt[2], cdt[1], units="secs") 
Time difference of 6964760 secs 

3.2.3 POSIX Classes 

The two classes POSIXct and POSIXlt implement date/time information, and in 
contrast to the chron package, also support time zones and daylight savings time. 
We recommend utilizing this functionality only when urgently needed, because the 
handling requires quite some care, and may on top of that be system dependent. 
Further details on the use of the POSIX classes can be found on CRAN. 

As explained above, the POSIXct class also stores dates/times with respect to the 
internal reference, whereas the POSIXlt class stores them as a list of 
components (hour, min, sec, mon, etc.), making it easy to extract these parts.  
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3.3 Data Import 

We can safely assume that most time series data are already present in electronic 
form; however, not necessarily in R. Thus, some knowledge on how to import data 
into R is required. It is be beyond the scope of this scriptum to present the 
uncounted options which exist for this task. Hence, we will restrict ourselves to 
providing a short overview and some useful hints. 

The most common form for sharing time series data are certainly spreadsheets, or 
in particular, Microsoft Excel files. While library(ROBDC) offers functionality to 
directly import data from Excel files, we discourage its use. First of all, this only 
works on Windows systems. More importantly, it is usually simpler, quicker and 
more flexible to export comma- or tab-separated text files from Excel, and import 
them via the ubiquitous read.table() function, respectively the tailored version 
read.csv() (for comma separation) and read.delim() (for tab separation).  

With packages ROBDC and RMySQL, R can also communicate with SQL databases, 
which is the method of choice for large scale problems. Furthermore, after loading 
library(foreign), it is also possible to read files from Stata, SPSS, Octave 
and SAS. 
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4 Descriptive Analysis 
As always when working with “a pile of numbers”, i.e. data, it is important to first 
gain an overview. In the context of time series analysis, this can be done in 
several ways. We start by discussing time series plots, then focus on the 
decomposition of time series into trend, seasonal effect and stationary random 
part and conclude by discussing methods for visualizing the dependency structure. 

4.1 Visualization 

4.1.1 Time Series Plot 

The most important means of visualization is the time series plot, where the data 
are plotted versus time/index. We have seen several examples in section 1.2, 
where we also got acquainted with R’s generic plot() function that produces 
such output. We here show another example, the monthly unemployment rate for 
the US state of Maine, from January 1996 until August 2006. The data are 
available from a text file on the web. We can read it directly into R, define the data 
as an object of class ts and then do the time series plot: 

> www <- "http://www.massey.ac.nz/~pscowper/ts/Maine.dat" 
> dat <- read.table(www, header=TRUE) 
> tsd <- ts(dat, start=c(1996,1), freq=12) 
> plot(tsd, ylab="(%)", main="Unemployment in Maine") 

Not surprisingly, the series shows both seasonal variation and a non-linear trend. 
Since unemployment rates are one of the main economic indicators used by 
politicians/decision makers, this series poses a worthwhile forecasting problem. 
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Another issue is the correct aspect ratio for time series plots: if the time axis gets 
too much compressed, it can become difficult to recognize the features of a series. 
Thus, we here recommend choosing the aspect ratio appropriately. Unfortunately, 
there are no hard and simple rules on how to do this. As a rule of the thumb, the 
“banking to 45 degrees” rule exists. This means that increase and decrease in 
periodic series should not be displayed at angles much higher or lower than 45 
degrees. For very long series, this can become difficult on either A4 paper or a 
computer screen. In this case, we recommend splitting up the series and display it 
in different frames. 

4.1.2 Multiple Time Series Plots 

It is quite often the case that we encounter an applied problem where we are 
provided with multiple time series. Here, we illustrate some basics on how to 
import, define and plot them properly. Our example contains the monthly supply of 
electricity (millions of kWh), beer (millions of liters) and chocolate-based 
production (tonnes) in Australia over the period from January 1958 to December 
1990. These data are available from the Bureau of Australian Statistics and are, in 
pre-processed form, accessible as a text-file online. 

www <- "http://www.massey.ac.nz/~pscowper/ts/cbe.dat" 
dat <- read.table(www, header=TRUE) 
tsd <- ts(dat, start=1958, freq=12) 
plot(tsd, main="Chocolate, Beer & Electricity") 

All three series show a distinct seasonal pattern, along with a trend. It also 
instructive to know that the Australian population increased by a factor of 1.8 
during the period where these three series were observed. 
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As visible in the bit of code above, plotting multiple series into different panels is 
straightforward. As a general rule, using different frames for multiple series is the 
most recommended means of visualization. However, there may be other cases 
where it is more instructive to have them in the same frame. Of course, this 
requires that the series are either on the same scale, or have been indexed, resp. 
standardized to be so. While R offers function ts.plot() to include multiple 
series in the same frame, that function does not allow color coding. For this 
reason, we prefer doing some manual work. 

## Indexing the series 
tsd[,1] <- tsd[,1]/tsd[1,1]*100 
tsd[,2] <- tsd[,2]/tsd[1,2]*100 
tsd[,3] <- tsd[,3]/tsd[1,3]*100 
 
## Plotting in one single frame 
clr <- c("green3", "red3", "blue3") 
plot.ts(tsd[,1], ylim=range(tsd), ylab="Index", col=clr[1]) 
title("Indexed Chocolate, Beer & Electricity") 
lines(tsd[,2], col=clr[2]) 
lines(tsd[,3], col=clr[3]) 
 
## Legend 
ltxt <- names(dat) 
legend("topleft", lty=1, col=clr, legend=ltxt) 

In the indexed single frame plot below, we can very well judge the relative 
development of the series over time. Due to different scaling, this was nearly 
impossible with the multiple frames on the previous page. We observe that 
electricity production increased around 8x during 1958 and 1990, whereas for 
chocolate the multiplier is around 4x, and for beer less than 2x. Also, the seasonal 
variation is most pronounced for chocolate, followed by electricity and then beer. 
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4.2 Decomposition 

4.2.1 The Basics 

We have learned in section 2.2 that stationarity is an important prerequisite for 
being able to statistically learn from time series data. However, many of the 
example series we treated so far have either shown a trend or a seasonal effect, 
and thus are non-stationary. In this section, we will learn how to deal with 
deterministic trend and seasonal variation. This is achieved by using 
decomposition models, the easiest of which is the simple additive one: 

 t t t tX m s E   , 

where tX  is the time series process at time t , tm  is the trend, ts  is the seasonal 
effect, and tE  is the remainder, i.e. a sequence of usually correlated random 
variables with mean zero. Mostly, the goal is to find a decomposition such that tE  
is a stationary time series process. 

 

There are time series, where seasonal effect and random variation increase as the 
trend increases. The air passenger bookings from section 1.2.1 are an example. In 
many of these cases, a multiplicative decomposition model is appropriate: 

 t t t tX m s E    

If we take logarithms, this brings us back to the additive case: 

log( ) log( ) log( ) log( )t t t t t t tX m s E m s E         

For illustration, we carry out the log-transformation on the air passenger bookings; 
see the above. Indeed, seasonal effect and random variation now seem to be 
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independent of the level of the series. Thus, for the original data, the multiplicative 
model is appropriate. However, it is now clearly evident from these logged data 
that the seasonal effect changes over time. 

For logged series, some care is required when the exponential function is applied 
to the predicted mean of log( )tX  to obtain a prediction for the expectation of tX , 
as the effect is usually to bias the predictions. If the process tE  is normally 
distributed with mean 0 and variance 2 , then the expectation of tX  is given by: 

 2ˆ[ ] exp( )·exp( / 2)t t t tE X X m s     

In the following few chapters, we now explain a few methods for estimating and 
additive decomposition of an observed time series.  

4.2.2 Differencing 

A simple, yet not overly useful approach for removing deterministic trends and/or 
seasonal effects from a time series is by taking differences. While it is conceptually 
simple and quick, its main disadvantage is that it does not result in explicit 
estimates of trend component tm  and seasonal component ts .  

However, in the absence of a seasonal effect, a (piecewise) linear trend in a time 
series can be removed by taking first-order differences with lag 1: 
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Another somewhat disturbing property of the differencing approach is that strong, 
artificial new dependencies are created. Note that if tE  is a stochastically 
independent process, then tX  is independent, too, but the differenced process tY  
is not: 
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We illustrate how differencing works by using a dataset that shows the traffic 
development on Swiss roads. The data are available from the federal road office 
(ASTRA) and show the indexed traffic amount from 1990-2010. We type in the 
values and plot the original series: 

> SwissTraffic <- ts(c(100.0, 102.7, 104.2, 104.6, 106.7, 
                       106.9, 107.6, 109.9, 112.0, 114.3, 
                       117.4, 118.3, 120.9, 123.7, 124.1, 
                       124.6, 125.6, 127.9, 127.4, 130.2, 
                       131.3), start=1990, freq=1) 
> plot(SwissTraffic) 
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There is a clear trend, which is at least piecewise linear. Taking first-order 
differences with lag 1 shows the yearly changes in the Swiss Traffic Index, this 
should be a stationary series. In R, the job is done with function diff(). 

> diff(SwissTraffic) 
Time Series: 
Start = 1991  
End = 2010  
Frequency = 1  
 [1]  2.7  1.5  0.4  2.1  0.2  0.7  2.3  2.1  2.3  3.1 
[11]  0.9  2.6  2.8  0.4  0.5  1.0  2.3 -0.5  2.8  1.1 
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Please note that the time series of differences is now 1 instance shorter than the 
original series. The reason is that for the first year, 1990, there is no difference to 
the previous year available. The differenced series now clearly has a constant 
mean, i.e. the trend was successfully removed. 

What has differencing to offer for polynomial trends, i.e. quadratic or cubic ones? It 
is possible to take higher order differences to remove also these. We here show 
how to do it in the case of a quadratic trend.  

2
1 2

1 1 2

1 2 2

,

( ) ( )

2 2

t t t

t t t t t
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The extension to cubic trends and even higher orders is straightforward. In R, we 
can still employ function diff(), but have to provide argument 
differences=... for indicating the order of the difference. 

Removing Seasonal Effects by Differencing 

For time series with monthly measurements, seasonal effects are very common. 
Using an appropriate form of differencing, it is possible to remove these, as well as 
(piecewise) linear trends, and obtain a stationary series. We take first-order 
differences with lag p : 

 t t t pY X X   , 

where p  is the period of the seasonal effect, or in other words, the frequency of 
series, which is the number of measurements per time unit. The series tY  then is 
made up of the changes compared to the previous period’s value, i.e. often the 
previous year’s value. Also, from the definition, with the same argument as above, 
it is evident that not only the seasonal variation, but also a strictly linear will be 
removed. While taking seasonal differences still has some ability to remove only 
piecewise linear trends, this property is much less existent than when differencing 
with lag 1. 

We are illustrating seasonal differencing using the Mauna Loa atmospheric 2CO  
concentration data. This is a time series with monthly records from January 1959 
to December 1997. It exhibits both a (almost linear) trend and a distinct seasonal 
pattern. We first load the data and do a time series plot: 

> data(co2) 
> plot(co2, main="Mauna Loa CO2 Concentrations") 

Seasonal differencing is very conveniently available in R. We use function 
diff(), but have to set argument lag=.... For the Mauna Loa data with 
monthly measurements, the correct lag is 12. This results in the series shown on 
the next page. It remains somewhat questionable whether it is stationary, owing to 
a potentially non-linear trend in the original data. 
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> sd.co2 <- diff(co2, lag=12) 
> plot(sd.co2, main="Differenced Mauna Loa Data (p=12)") 

 

Because we are comparing every record with the one from the previous year, the 
resulting series is 12 observations shorter than the original one. We conclude this 
section by emphasizing again that while differencing is quick and simple, we do 
not obtain explicit estimates for trend tm  and seasonal effect ts . Not surprisingly, 
this makes extrapolation of a series quite difficult – which of course is an issue, if 
one is interested in forecasting. Please note that this problem is addressed in 
section 7, where we discuss SARIMA models. 
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4.2.3 Smoothing, Filtering 

Our next goal is to define a decomposition procedure that yields explicit trend, 
seasonality and remainder estimates ˆ tm , t̂s  and ˆ

tE . In the absence of a seasonal 
effect, the trend of a time series can simply be obtained by applying an additive 
linear filter: 

 ˆ
q

t i t i
i p

m a X 


   

This definition is general, as it allows for arbitrary weights and asymmetric 
windows. The most popular implementation, however, relies on p q  and 

1/ (2 1)ia p  , i.e. a running mean estimator with symmetric window and uniformly 
distributed weights. The window width is the smoothing parameter. 

Example: Trend Estimation with Running Mean 

We here again consider the Swiss Traffic data that were already exhibited before. 
They show the indexed traffic development in Switzerland between 1990 and 
2010. Linear filtering is available with function filter() in R. With the correct 
settings, this function becomes a running mean estimator. 

> trend.est <- filter(SwissTraffic, filter=c(1,1,1)/3) 
> trend.est 
Time Series: Start = 1990, End = 2010, Frequency = 1 
 [1]       NA 102.3000 103.8333 105.1667 106.0667 107.0667 
 [7] 108.1333 109.8333 112.0667 114.5667 116.6667 118.8667 
[13] 120.9667 122.9000 124.1333 124.7667 126.0333 126.9667 
[19] 128.5000 129.6333       NA 
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In our example, we chose the trend estimate to be the mean over three 
consecutive observations. This has the consequence that for both the first and the 
last instance of the time series, no trend estimate is available. Also, it is apparent 
that the Swiss Traffic series has a very strong trend signal, whereas the remaining 
stochastic term is comparably small in magnitude. We can now compare the 
estimated remainder terms from differencing and running mean trend estimation: 

 

The blue line is the remainder estimate from running mean approach, while the 
grey one resulted from differencing with lag 1. We observe that the latter has 
bigger variance; and, while there are some similarities between the two series, 
there are also some prominent differences – please note that both are estimates of 
one and the same term, i.e. the stochastic remainder. 

Trend Estimation for Seasonal Data 

We now turn our attention to time series that show both trend and seasonal effect. 
The goal is to specify a filtering approach that allows trend estimation for periodic 
data. We still base this on the running mean idea, but have to make sure that we 
average over a full period. For monthly data, the formula is: 

 6 5 5 6

1 1 1

12 2 2
ˆ t t t t tX Xm X X       

 
 

, for 7,..., 6t n   

Be careful, as there is a slight snag if the frequency is even: if we estimate the 
trend for December, we use data from July to May, and then also add half of the 
value of the previous June, as well as half of the next June. This is required for 
having a window that is centered at the time we wish to estimate the trend. 

Using R’s function filter(), with appropriate choice of weights, we can compute 
the seasonal running mean. We illustrate this with the Mauna Loa 2CO  data. 
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> wghts     <- c(.5,rep(1,11),.5)/12 
> trend.est <- filter(co2, filter=wghts, sides=2) 
> plot(co2, main="Mauna Loa CO2 Concentrations") 
> lines(trend.est, col="red") 

We obtain a trend which fits well to the data. It is not a linear trend, rather it seems 
to be slightly progressively increasing, and it has a few kinks, too. 

 

We finish this section about trend estimation using linear filters by stating that 
other smoothing approaches, e.g. running median estimation, the loess smoother 
and many more are valid choices for trend estimation, too. 

Estimation of the Seasonal Effect 

For fully decomposing periodic series such as the Mauna Loa data, we also need 
to estimate the seasonal effect. This is done on the basis of the trend adjusted 
data: simple averages over all observations from the same seasonal entity are 
taken. The following formula shows the January effect estimation for the Mauna 
Loa data, a monthly series which starts in January and has 39 years of data. 
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In R, a convenient way of estimating such seasonal effects is by generating a 
factor for the months, and then using the tapply() function. Please note that the 
seasonal running mean naturally generates NA values at the start and end of the 
series, which we need to remove in the seasonal averaging process. 

> trend.adj <- co2-trend.est 
> month     <- factor(rep(1:12,39)) 
> seasn.est <- tapply(trend.adj, month, mean, na.rm=TRUE) 
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> plot(seasn.est, type="h", xlab="Month") 
> title("Seasonal Effects for Mauna Loa Data") 
> abline(h=0, col="grey") 

 

In the plot above, we observe that during a season, the highest values are usually 
observed in May, whereas the seasonal low is in October. The estimate for the 
remainder at time t  is simply obtained by subtracting estimated trend and 
seasonality from the observed value 

 ˆ ˆ ˆt t t tE x m s    

We display this below. It seems as if the remainder still has some periodicity. Does 
that mean that removing the seasonal effect was not successful? 
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The observed periodicity is due to the fact that the seasonal effect is not constant 
but slowly evolving over time. In the beginning, we tend to overestimate it for most 
months, whereas in the end, we underestimate. We will address the issue on how 
to visualize evolving seasonality below in section 4.2.4 about STL-decomposition. 

Moreover, we would like to emphasize that R offers the convenient decompose() 
function for running mean estimation and seasonal averaging. Only for educational 
purposes, we had done this in a do-it-yourself manner above. Please note that 
decompose() only works with periodic series where at least two full periods were 
observed; else it is not mathematically feasible to estimate trend and seasonality 
from a series. 

> co2.dec <- decompose(co2) 
> plot(co2.dec) 

 

The decompose() function also offers a neat plotting method that shows the four 
frames above with the series, and the estimated trend, seasonality and remainder. 
Except for the different visualization, the results are exactly the same as what we 
had produced with our do-it-yourself approach. 

4.2.4 Seasonal-Trend Decomposition with LOESS 

Another algorithm in R, which offers decomposition of a time series into trend, 
seasonal effect and remainder, is stl(). The output is (nearly) equivalent to what 
we had obtained above with decompose(). However, the details behind are 
different, i.e. more sophisticated and complex than the simple filtering/averaging 
procedure which was employed so far. 
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Because it is beyond the scope of this applied course, we do without giving full 
details on the stl-decomposition. However, it is based on LOESS, a smoothing 
procedure that is based on local, weighted regression. The aim of the weighting 
scheme is to reduce potentially disturbing influence of outliers. In stl(), 
estimation of trend and seasonality are done iteratively. While this all sounds 
straightforward, the (here omitted) technical details are quite complicated. 

> co2.stl <- stl(co2, s.window="periodic") 
> plot(co2.stl, main="STL-Decomposition of CO2 Data") 

 

The graphical output is similar to the one on the previous page. The grey bars on 
the right hand side facilitate interpretation of the decomposition: they show the 
relative magnitude of the effects, i.e. cover the same span on the y-scale in all of 
the frames. The two principal arguments in function stl() are t.window and 
s.window. The first one, t.window, controls the amount of smoothing for the 
trend, and has a default value which often yields good results. The value used can 
be inferred with: 

> co2.stl$win[2] 
 t  
19 

The result is the number of lags used as a window for trend extraction in LOESS. 
Increasing it means the trend becomes smoother; lowering it makes the trend 
rougher, but more adapted to the data. The second argument, s.window, controls 
the smoothing for the seasonal effect. When set to “periodic” as above, the 
seasonality is obtained as a constant value from simple (monthly) averaging, as 
presented in section 4.2.3.  
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However, stl() offers better functionality. If s.window is set to a numeric value, 
the procedure can accommodate for evolving seasonality. The assumption behind 
is that the change in the seasonal effect happens slowly and smoothly. We 
visualize what is meant with the logged air passenger data. For quick illustration, 
we estimate the trend with a running mean filter, subtract it from the observed 
series and display all March and all August values of the trend adjusted series: 

 

When assuming a non-changing seasonal effect, the standard procedure would be 
to take the mean of the data points in the above scatterplots and declare that as 
the seasonal effect for March and August, respectively. This is a rather crude way 
of data analysis, and can of course be improved. 

 

-0
.0

5
0

.0
0

0
.0

5
0

.1
0

1949 1952 1955 1958

Effect of March

0
.1

5
0

.2
0

0
.2

5

1949 1952 1955 1958

Effect of August

STL-Decomposition of Logged Air Passenger Bookings

5.
0

6.
0

d
a

ta

-0
.2

0.
0

0.
2

se
a

so
n

a
l

4.
8

5.
4

6.
0

tr
e

n
d

-0
.0

5
0.

05

1950 1952 1954 1956 1958 1960

re
m

a
in

d
e

r

time



 

 Page 35 

For obtaining a better decomposition of the air passenger bookings, we need to 
allow for changing seasonal effect. We achieve this by employing the stl() 
function and setting s.window=13. The resulting graphical output is displayed on 
the previous page. Please note that there is no default value for the seasonal 
span, and the optimal choice is left to the user upon visual inspection. An excellent 
means for doing so is the monthplot() function which shows the seasonal 
effects that were estimated by stl(). 

 

On the left, we observe appropriate smoothing. However on the right, with smaller 
span, we observe overfitting – the seasonal effects do not evolve in a smooth way, 
and it means that this is not a good decomposition estimate. 

4.2.5 Parametric Modeling 

A powerful approach for decomposing time series is parametric modeling. It is 
based on the assumption of a functional form for the trend, usually a polynomial. 
For the seasonal effect, we can either use the dummy variable approach that 
amounts to averaging. Or, in some special cases, a sine/cosine seasonality may 
be appropriate. We illustrate the parametric modeling approach by two examples 
and use them for discussing some specifics. 

We consider the Maine unemployment data from section 4.1.1. Our goal is to fit a 
polynomial trend, along with a seasonal effect that is obtained by averaging. We 
write down this model for a polynomial of grade 4. 

2 3 4
0 1 2 3 4· · ,· ·t ti tX t t t t E            , 

where 1, ,128t    and {1, ,12}i t   , i.e. i t  is a factor variable encoding for the 
month the observation was made in, see the R code below. Two questions 
immediately pop up, namely what polynomial order is appropriate, and how this 
model can be fit.  
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As for the fitting, this will be done with the least squares algorithm. This requires 
some prudence, because we assume a remainder term tE  which is not 
necessarily stochastically independent. Thus, we have some violated assumption 
for the ordinary least squares (OLS) estimation. Since the estimated coefficients 
are still unbiased, OLS is a valid approach. However, be careful with the standard 
errors, as well as tests and confidence intervals derived from them, because they 
can be grossly misleading. 

For the grade of the polynomial, we determine by eyeballing from the time series 
plot that the hypothesized trend in the unemployment series has at least 3 minima. 
This means that a polynomial with grade below 4 will not result in a sensible trend 
estimate. Thus, we try orders 4, 5 and 6, and discuss how an appropriate choice 
can be made from residual analysis. However, we first focus on the R code for 
fitting such models: 

> maine <- ts(dat, start=c(1996,1), freq=12) 
> tr    <- as.numeric(time(maine)) 
> tc    <- tr-mean(tr) 
> mm    <- rep(c("Jan", "Feb", "Mar", "Apr", "May", "Jun", 
                "Jul", "Aug", "Sep", "Oct", "Nov", "Dec")) 
> mm    <- factor(rep(mm,11),levels=mm)[1:128] 

In a first step, we lay the basics. From time series maine, we extract the times of 
observation as the predictor. As always when fitting polynomial regression models, 
it is crucial to center the x-values to mitigate potential collinearity among the terms. 
Furthermore, we define a factor variable for modeling the seasonality. 

> fit04    <- lm(maine~tc+I(tc^2)+I(tc^3)+I(tc^4)+mm) 
> cf       <- coef(fit04) 
> t.est.04 <- cf[1]+cf[2]*tc+cf[3]*tc^2+cf[4]*tc^3+cf[5]*tc^4 
> t04.adj  <- t.est.04-mean(t.est.04)+mean(maine) 

We can obtain an OLS-fit of the decomposition model with R’s lm() procedure. 
The I() notation in the formula assures that the “^” are interpreted as 
arithmetical operators, i.e. powers of the predictor, rather than as formula 
operators. Thereafter, we can use the estimated coefficients for determining the 
trend estimate t.est.04. Because the seasonal factor uses the month of 
January as a reference, and thus generally has a mean different from zero, we 
need to shift the trend to make run through “the middle of the data” – this is key if 
we aim for visualizing the trend. 

> plot(maine, ylab="(%)", main="Unemployment in Maine")  
> lines(tr, t.04.adj) 

The time series plot on the next page is enhanced with polynomial trend lines of 
order 4 (blue), 5 (red) and 6 (green). From this visualization, it is hard to decide 
which of the polynomials is most appropriate as a trend estimate. Because there 
are some boundary effects for orders 5 and 6, we might guess that their additional 
flexibility is not required. As we will see below, this is treacherous. 
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A better way for judging the fit of a parametric model is by residual analysis. We 
plot the remainder term ˆ

tE  versus time and add a LOESS smoother. 

> re.est <- maine-fitted(fit04) 
> plot(re.est, ylab="", main="Residuals vs. Time, O(4)") 
> fit <- loess(re.est~tr) 
> lines(tr, fitted(fit), col="red") 
> abline(h=0, col="grey") 

 

The above plot shows some, but not severe, lack of fit, i.e. the remainder term still 
seems to have a slight trend, owing to a too low polynomial grade. The picture 
becomes clearer when we produce the equivalent plots for grade 5 and 6 
polynomials. These are displayed on the next page. 
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The residuals look best in the last plot for order 6, which would be the method of 
choice for this series. It is also striking that the remainder is not an i.i.d. series, the 
serial correlation is clearly standing out. In the next section, we will address the 
estimation and visualization of such autocorrelations. 

We conclude this chapter on parametric modeling by issuing a warning: while the 
explicit form of the trend can be useful, it shall never be interpreted as causal for 
the evolvement of the series. Also, much care needs to be taken if forecasting is 
the goal. Extrapolating high-order polynomials beyond the range of observed times 
can yield very poor results. We will discuss some simple methods for trend 
extrapolation later in section 8 about forecasting. 
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4.3 Autocorrelation 

An important feature of time series is their serial correlation. This section aims at 
analyzing and visualizing these correlations. We first display the autocorrelation 
between two random variables t kX   and tX , which is defined as: 

( ,
Cor( ,

( )

)

(
)

)
t k t

t k t

t k t

Cov X X
X X

Var X Var X





  

This is a dimensionless measure for the linear association between the two 
random variables. Since for stationary series, we require the moments to be non-
changing over time, we can drop the index t  for these, and write the 
autocorrelation as a function of the lag k : 

 ( ) ( , )t k tk Cor X X   

The goals in the forthcoming sections are estimating these autocorrelations from 
observed time series data, and to study the estimates’ properties. The latter will 
prove useful whenever we try to interpret sample autocorrelations in practice. 

The example we consider in this chapter is the wave tank data. The values are 
wave heights in millimeters relative to still water level measured at the center of 
the tank. The sampling interval is 0.1 seconds and there are 396 observations. For 
better visualization, we here display the first 60 observations only: 

> www  <- "http://www.massey.ac.nz/~pscowper/ts/wave.dat" 
> wave <- ts(read.table(www, header=TRUE)$waveht) 
> plot(window(wave, 1, 60), ylim=c(-800,800), ylab="Height") 
> title("Wave Tank Data") 
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These data show some pronounced cyclic behavior. This does not come 
surprising, as we all know from personal experience that waves do appear in 
cycles. The series shows some very clear serial dependence, because the current 
value is quite closely linked to the previous and following ones. But very clearly, it 
is also a stationary series. 

4.3.1 Lagged Scatterplot 

An appealing idea for analyzing the correlation among consecutive observations in 
the above series is to produce a scatterplot of 1( , )t tx x   for all 1,..., 1t n  . There is 
a designated function lag.plot() in R. The result is as follows: 

> lag.plot(wave, do.lines=FALSE, pch=20) 
> title("Lagged Scatterplot, k=1") 

 

The association seems linear and is positive. The Pearson correlation coefficient 
turns out to be 0.47, thus moderately strong. How to interpret this value from a 
practical viewpoint? Well, the square of the correlation coefficient, 20.47 0.22 , is 
the percentage of variability explained by the linear association between tx  and its 
respective predecessor. Here in this case, 1tx   explains roughly 22% of the 
variability observed in tx .  

We can of course extend the very same idea to higher lags. We here analyze the 
lagged scatterplot correlations for lags 2,...5k  , see below. When computed, the 
estimated Pearson correlations turn out to be -0.27, -0.50, -0.39 and -0.22, 
respectively. The formula for computing them is: 
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where (1)
1

1 n k

i
i

x x
n k






   and ( )

1

1 n

k i
i k

x x
n k  


   

It is important to notice that while there are 1n   data pairs for computing (1) , 
there are only 2n   for (2) , and then less and less, i.e. n k  pairs for ( )k . 
Thus for the last autocorrelation coefficient which can be estimated, ( 2)n  , there 
is only one single data pair which is left. Of course, they can always be 
interconnected by a straight line, and the correlation in this case is always 1 . Of 
course, this is an estimation snag, rather than perfect linear association for the two 
random variables. 

 

Intuitively, it is clear that because there are less and less data pairs at higher lags, 
the respective estimated correlations are less and less precise. Indeed, by digging 
deeper in mathematical statistics, one can prove that the variance of ( )k  
increases with k . This is undesired, as it will lead to instable results and spurious 
effects. The remedy is discussed in the next section. 

4.3.2 Plug-In Estimation 

For mitigating the above mentioned problem with the lagged scatterplot method, 
autocorrelation estimation is commonly done using the so-called plug-in approach, 
using estimated autocovariances as the basis. The formula is as follows: 
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Note that here, n  is used as a denominator irrespective of the lag and thus the 
number of summands. This has the consequence that ˆ(0)  is not an unbiased 
estimator for 2(0) X  , but as explained above, there are good reasons to do so. 
When plugging in the above terms, the estimate for the k th autocorrelation 
coefficient turns out to be: 

 1

2

1

( )( )
ˆ( )

( )

n k

s k s
s

n

t
t

x x x x
k

x x









 







, for 1,..., 1k n  . 

It is straightforward to compute these in R, function acf() does the job, and we 
below do so for the wave tank data. As for the moment, we are interested in the 
numerical results, we set argument plot=FALSE. However, as we will see below, 
it is usually better to visualize the estimated autocorrelation coefficients 
graphically, as it will be explained below in section 4.3.3. Also note that R by 
default does not return all autocorrelations which are estimable in this series with 
396 observations, but only the first 25. 

> acf(wave, plot=FALSE) 
 
Autocorrelations of series ‘wave’, by lag 
 
     0      1      2      3      4      5      6      7  
 1.000  0.470 -0.263 -0.499 -0.379 -0.215 -0.038  0.178  
     8      9     10     11     12     13     14     15  
 0.269  0.130 -0.074 -0.079  0.029  0.070  0.063 -0.010  
    16     17     18     19     20     21     22     23  
-0.102 -0.125 -0.109 -0.048  0.077  0.165  0.124  0.049  
    24     25  
-0.005 -0.066 

Next, we compare the autocorrelations from lagged scatterplot estimation vs. the 
ones from the plug-in approach. These are displayed on the next page. While for 
the first 50 lags, there is not much of a difference, the plug-in estimates are much 
more damped for higher lags. As claimed above, the lagged scatterplot estimate 
shows a value of 1  for lag 394, and some generally very erratic behavior in the 
few lags before. 

We can “prove”, or rather, provide evidence that this is an estimation artifact only if 
we restrict the series to the first 60 observations and then repeat the estimation of 
autocorrelations. Again, for the highest few legs which are estimable, the lagged 
scatterplot approach shows erratic behavior – and this was not present at the 
same lags, when the series was still longer. We do not observe this kind of effect 
with the plug-in based autocorrelations, thus this is clearly the method of choice. 

We finish this chapter by repeating that the bigger the lag, the fewer data pairs 
remain for estimating the autocorrelation coefficient. We discourage of the use of 
the lagged scatterplot approach. While the preferred plug-in approach is biased 
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due to the built-in damping mechanism, i.e. the estimates for high lags are 
shrunken towards zero; it can be shown that it has lower mean squared error. This 
is because it produces results with much less (random) variability. It can also be 
shown that the plug-in estimates are consistent, i.e. the bias disappears 
asymptotically.  

 

Nevertheless, all our findings still suggest that it is a good idea to consider only a 
first portion of the estimated autocorrelations. A rule of the thumb suggests that 

1010 log ( )n  is a good threshold. For a series with 100 observations, the threshold 
becomes lag 20. A second rule operates with / 4n  as the maximum lag to which 
the autocorrelations are shown. 

 

0 100 200 300 400

-1
.0

-0
.5

0
.0

0
.5

1
.0

Index

la
g

co
rr

ACF Estimation: Lagged Scatterplot vs. Plug-In

0 10 20 30 40 50 60

-1
.0

-0
.5

0
.0

0
.5

1
.0

Index

la
g

co
rr

Lagged Scatterplot
Plug-In

ACF Estimation: Lagged Scatterplot vs. Plug-In



 

 Page 44 

4.3.3 Correlogram 

Now, we know how to estimate the autocorrelation function (ACF) for any lag k . 
Here, we introduce the correlogram, the standard means of visualization for the 
ACF. We will then also study the properties of the ACF estimator. We employ R 
and obtain: 

> acf(wave, ylim=c(-1,1)) 

 

It has become a widely accepted standard to use vertical spikes for displaying the 
estimated autocorrelations. Also note that the ACF starts with lag 0, which always 
takes the value 1. For better judgment, we also recommend setting the y-Range to 
the interval [ 1,1] . Apart from these technicalities, the ACF reflects the properties 
of the series. We also observe a cyclic behavior with a period of 8, as it is 
apparent in the time series plot of the original data. Moreover, the absolute value 
of the correlations attenuates with increasing lag. Next, we will discuss the 
interpretation of the correlogram. 

Confidence Bands 

It is obvious that even for an iid series without any serial correlation, and thus 
( ) 0k   for all k , the estimated autocorrelations ˆ ( )k  will generally not be zero. 

Hopefully, they will be close, but the question is how close. An answer is indicated 
by the confidence bands, i.e. the blue dashed lines in the plot above. 

These so-called confidence bands are obtained from an asymptotic result: for long 
iid time series it can be shown that the ˆ ( )k  approximately follow a (0,1/ )N n  
distribution. Thus, each ( )k  lies within the interval of 1.96 / n  with a probability 
of approximately 95%. This leads us to the following statement that facilitates 
interpretation of the correlogram: “for any stationary time series, sample 
autocorrelation coefficients ˆ ( )k  that fall within the confidence band 2 / n  are 
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considered to be different from 0  only by chance, while those outside the 
confidence band are considered to be truly different from 0 .”  

On the other hand, the above statement means that even for iid series, we expect 
5% of the estimated ACF coefficients to exceed the confidence bounds; these 
correspond to type 1 errors. Please note again that the indicated bounds are 
asymptotic and derived from iid series. The properties of serially dependent series 
are much harder to derive. 

ACF of Non-Stationary Series 

Estimation of the ACF from an observed time series assumes that the underlying 
process is stationary. Only then we can treat pairs of observations at lag k  as 
being probabilistically “equal” and compute sample covariance coefficients. Hence, 
while stationarity is at the root of ACF estimation, we can of course still apply the 
formulae given above to non-stationary series. The ACF then usually exhibits 
some typical patterns. This can serve as a second check for non-stationarity, i.e. 
helps to identify it, should it have gone unnoticed in the time series plot. We start 
by showing the correlogram for the SMI daily closing values from section 1.2.4. 
This series does not have seasonality, but a very clear trend.  

> acf(smi, lag.max=100) 

 

We observe that the ACF decays very slowly. The reason is that if a time series 
features a trend, the observations at consecutive observations will usually be on 
the same side of the series’ global mean x . This is why that for small to moderate 
lags k , most of the terms 

( )( )s k sx x x x    
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are positive. For this reason, the sample autocorrelation coefficient will be positive 
as well, and is most often also close to 1. Thus, a very slowly decaying ACF is an 
indicator for non-stationarity, i.e. a trend which was not removed before 
autocorrelations were estimated. 

Next, we show an example of a series that has no trend, but a strongly recurring 
seasonal effect. We use R’s data(nottem), a time series containing monthly 
average air temperatures at Nottingham Castle in England from 1920-1939. Time 
series plot and correlogram are as follows: 

 

 

The ACF is cyclic, and owing to the recurring seasonality, the envelope again 
decays very slowly. Also note that for periodic series, R has periods rather than 
lags on the x-axis – often a matter of confusion. We conclude that a hardly, or very 
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slowly decaying periodicity in the correlogram is an indication of a seasonal effect 
which was forgotten to be removed. Finally, we also show the correlogram for the 
logged air passenger bookings. This series exhibits both an increasing trend and a 
seasonal effect. The result is as follows: 

> data(AirPassengers) 
> txt <- "Correlogram of Logged Air Passenger Bookings" 
> acf(log(AirPassengers), lag.max=48, main=txt) 

 

Here, the two effects described above are interspersed. We have a (here 
dominating) slow decay in the general level of the ACF, plus some periodicity. 
Again, this is an indication for a non-stationary series. It needs to be decomposed, 
before the serial correlation in the stationary remainder term can be studied. 

The ACF and Outliers 

If a time series has an outlier, it will appear twice in any lagged scatterplot, and will 
thus potentially have “double” negative influence on the ˆ ( )k . As an example, we 
consider variable temp from data frame beaver1, which can be found in R’s 
data(beavers). This is the body temperature of a female beaver, measured by 
telemetry in 10 minute intervals. We first visualize the data with a time series plot, 
see next page. 

Observation 80 is a moderate, but distinct outlier. It is unclear to the author 
whether this actually is an error, or whether the reported value is correct. However, 
the purpose of this section is showing the potential bad influence of erroneous 
values, so we do not bother too much. Because the Pearson correlation 
coefficient, as well as the plug-in autocorrelation estimator is clearly non-robust, 
the appearance of the correlogram can be altered quite strongly due to the 
presence of just one single outlier.  
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> data(beavers) 
> beaver <- ts(beaver1$temp, start=1, freq=1) 
> plot(beaver, main="Beaver Body Temperature Data") 

 

> plot(beaver[1:113], beaver[2:114], pch=20,) 
> title("Lagged Scatterplot for Beaver Temperature") 

 

The two data points where the outlier is involved are easily identifiable. We 
compute the Pearson correlation coefficients with and without these observations; 
they are 0.86 and 0.91, respectively. Depending on how severe the outlier is, the 
effect can be much stronger of course. On the next page, we also show the entire 
correlogram for the beaver data, computed with (black) and without (red) the 
outlier. Also here, the difference may seem small and rather academic, but it could 
easily be severe if the outlier was just pronounced enough. 
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The question is, how do we handle missing values in time series? In principle, we 
cannot just omit them without breaking the time structure. And breaking it means 
going away from our paradigm of equally spaced points in time. A popular choice 
is thus replacing the missing value. This can be done with various degrees of 
sophistication: 

a) replacing the value with the global mean 

b) using a local mean, i.e. +/- 3 observations 

c) model based imputation by forecasting 

The best strategy depends upon the case at hand. And in fact, there is a fourth 
alternative: while R’s acf() function by default does not allow for missing values, 
it still offers the option to proceed without imputation. If argument is set as 
na.action=na.pass, the covariances are computed from the complete cases, 
and the correlogram is shown as usual. However, having missed values in the 
series has the consequence that the estimates produced may well not be a valid 
(i.e. positive definite) autocorrelation sequence, and may contain missing values. 
From a practical viewpoint, these drawbacks can often be neglected, though. 

4.3.4 Quality of ACF Estimates 

In this section we will deal with the quality of the information that is contained in 
the correlogram. We will not do this from a very theoretical viewpoint, but rather 
focus on the practical aspects. We have already learned that the ACF estimates 
are generally biased, i.e. damped for higher lags. This means that it is better to cut 
off the correlogram at a certain lag. Furthermore, non-stationarities in the series 
can hamper the interpretation of the correlogram and we have also seen that 
outliers can have a quite strong impact. But there is even more... 
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The Compensation Issue 

One can show that the sum of all autocorrelations which can be estimated from a 
series realization is -1/2. Or, written as a formula: 

 
1

1

1
ˆ ( )

2

n

k

k




   

We omit the proof here. It is clear that the above condition will lead to quite severe 
artifacts, especially when a time series process has only positive correlations. We 
here show both the true, theoretical ACF of an AR(1) process with 1 0.7  , which, 
as we will see in section 5, has ( ) 0k   for all k , and the sample correlogram for 
a realization of that process with length 200 observations. 

 

 

0 50 100 150 200

-1
.0

-0
.5

0
.0

0
.5

1
.0

Lag

A
C

F

True ACF of an AR(1) Process with alpha=0.7

0 50 100 150 200

-0
.2

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Lag

A
C

F

Correlogram for a Realization from an AR(1) Process



 

 Page 51 

The respective R-commands for producing these plots are as follows: 

## True ACF 
true.acf <- ARMAacf(ar=0.7, lag.max=200) 
plot(0:200, true.acf, type="h", xlab="Lag", ylim=c(-1,1)) 
title("True ACF of an AR(1) Process with alpha=0.7") 
abline(h=0, col="grey") 
 
## Simulation and Generating the ACF 
set.seed(25) 
ts.simul <- arima.sim(list(ar=0.7), 200) 
acf(ts.simul, lag=200, main="Correlogram ...") 

What we observe is quite striking: only for the very first few lags, the sample ACF 
does match with its theoretical counterpart. As soon as we are beyond lag 6k  , 
the sample ACF turns negative. This is an artifact, because the sum of the 
estimated autocorrelations coefficients needs to add up to -1/2. Some of these 
spurious, negative correlation estimates are so big that they even exceed the 
confidence bounds – an observation that has to be well kept in mind if one 
analyzes and tries to interpret the correlogram. 

Simulation Study 

Last but not least, we will run a small simulation study that visualizes the variability 
there is in ACF estimation. We will again base this on the simple AR(1) process 
with coefficient 1 0.7  . For further discussion of the process’ properties, we refer 
to section 5. There, it will turn out that the thk  autocorrelation coefficient of such a 
process takes the value (0.7)k , as visualized on the previous page.  

For understanding the variability in ˆ (1) , ˆ (2) , ˆ (5)  and ˆ (10) , we simulate from 
the aforementioned AR(1) process. We generate series of length 20n  , 50n  , 

100n   and 200n  . We then obtain the correlogram, record the estimated 
autocorrelation coefficients and repeat this process 1000 times. This serves as a 
basis for displaying the variability in ˆ (1) , ˆ (2) , ˆ (5)  and ˆ (10)  with boxplots. 
They can be found on the next page. 

We observe that for “short” series with less than 100 observations, estimating the 
ACF is a difficult matter. The ˆ ( )k  are strongly biased downwards, and there is 
huge variability. Only for longer series, the consistency of the estimator “kicks in”, 
and yields estimates which are reasonably precise. For lag 10k  , on the other 
hand, we observe less bias, but the variability in the estimate remains large, even 
for “long” series. 

We conclude this situation by summarizing: by now, we have provided quite a bit 
of evidence that the correlogram can be tricky to interpret at best, sometimes even 
misleading, or plain wrong. However, it is the best means we have for 
understanding the dependency in a time series. And we will base many if not most 
of our decision in the modeling process on the correlogram. However, please be 
aware of the estimation variability there is. 
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4.4 Partial Autocorrelation 

For the above AR(1) process, with its strong positive correlation at lag 1, it is 
somehow “evident” that the autocorrelation for lags 2 and higher will be positive as 
well – just by propagation: if A is highly correlated to B, and B is highly correlated 
to C, then A is usually highly correlated to C as well. It would now be very 
instructive to understand the direct relation between A and C, i.e. exploring what 
dependency there is in excess to the one associated to B. In a time series context, 
this is exactly what the partial autocorrelations do. The mathematical definition is 
the one of a conditional correlation: 

 1 1 1 1( ) ( , | , , )t k t t t t k t kk Cor X X X x X x            

In other words, we can also say that the partial autocorrelation is the association 
between tX  and t kX   with the linear dependence of 1tX   through 1t kX    removed. 
Another instructive analogy can be drawn to linear regression. The autocorrelation 
coefficient ( )k  measures the simple dependence between tX  and t kX  , whereas 
the partial autocorrelation ( )k  measures the contribution to the multiple 
dependence, with the involvement of all intermediate instances 1 1,...,t t kX X    as 
explanatory variables. 

There is a (theoretical) relation between the partial autocorrelations ( )k  and the 
plain autocorrelations (1),..., ( )k  , i.e. they can be derived from each other, e.g.: 
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(1) (1)   and 2 2(2) ( (2) (1) ) / (1 (1) )       

The formula for higher lags k  exists, but get complicated rather quickly, so we do 
without displaying them. However, another absolutely central property of the 
partial autocorrelations ( )p  is that the thk  coefficent of the AR(p) model, denoted 
as p , is equal to ( )p . While there is an in depth discussion of AR(p) models in 
section 5, we here briefly sketch the idea, because it makes the above property 
seem rather logical. An autoregressive model of order p , i.e. an AR(p) is: 

1 1t t k t p tX X X E     ,  

where tE  is a sequence of iid random variables. Making the above statement 
concrete, this means that in an AR(3) process, we have 3(3)  , but generally 

2(2)   and 1(1)  . Moreover, we have ( ) 0k   for all k p . These 
properties are used in R for estimating partial autocorrelation coefficients. 
Estimates ˆ( )p  are generated by fitting autoregressive models of successively 
higher orders. 

The job is done with function pacf(): input/output are equal/similar to ACF 
estimation. In particular, the confidence bounds are also presented for the PACF. 
We conclude this section by showing the result for the wave tank data. 

> pacf(wave, ylim=c(-1,1), main="PACF of Wave Tank Data") 

 

We observe that ˆ(1) 0.5   and ˆ(2) 0.6   . Some further PACF coefficients up to 
lag 10 seem significantly different from zero, but are smaller. From what we see 
here, we could try to describe the wave tank data with an AR(2) model. The next 
section will explain why. 
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5 Stationary Time Series Models 
Rather than simply describing observed time series data, we now aim for fitting 
models. This will prove useful for a deeper understanding of the data, but is 
especially beneficial when forecasting is the main goal. We here focus on 
parametric models for stationary time series, namely the broad class of 
autoregressive moving average (ARMA) processes – these have shown great 
importance in modeling real-world data. 

5.1 White Noise 

As the most basic stochastic process, we introduce discrete white noise. A time 
series 1 2( , ,..., )nW W W  is called white noise if the random variables 1 2, ,...W W  are 
independent and identically distributed with mean zero. This also implies that all 
random variables tW  have identical variance, and there are no autocorrelations 
and partial autocorrelations either: ( ) 0k   and ( ) 0k   for all lags k . If in 
addition, the variables also follow a Gaussian distribution, i.e. 2~ (0, )t WW N  , the 
series is called Gaussian white noise. 

Before we show a realization of a white noise process, we state that the term 
“white noise” was coined in an article on heat radiation published in Nature in April 
1922. There, it was used to refer to series time series that contained all 
frequencies in equal proportions, analogous to white light. It is possible to show 
that i.i.d. sequences of random variables do contain all frequencies in equal 
proportions, and hence, here we are. 

 

In R, it is easy to generate Gaussian white noise, we just type: 

> ts(rnorm(200, mean=0, sd=1)) 
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Well, by giving more thought on how computers work, i.e. by relying on 
deterministic algorithms, it may seem implausible that they can really generate 
independent data. We do not embark into these discussions here, but treat the 
result of rnorm() as being “good enough” for a realization of a white noise 
process. Here, we show ACF and PACF of the above series. As expected, there 
are no (strongly) significant estimates. 

 

White noise series are important, because they usually arise as residual series 
when fitting time series models. The correlogram generally provides enough 
evidence for attributing a series as white noise, provided the series is of 
reasonable length – our studies in section 4.3 suggests that 100 or 200 is such a 
value. Please also note that while there is not much structure in Gaussian white 
noise, it still has a parameter. It is the variance 2

W  

5.2 Autoregressive Models 
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5.3 Moving Average Models 

Here, we will discuss moving average models. These can be seen as an extension 
of the white noise process, i.e. tX  can be written as a linear combination of the 
current plus a few of the most recent innovation terms. As we will see, this leads to 
a time series process that is stationary, but not iid. Furthermore, we will see that in 
many respects, moving average models are complementary to autoregressive 
models.  

5.3.1 Backshift Operator 

We start our discussion of moving average models by introducing the backshift 
operator B  because it allows for convenient notation. When the operator B  is 
applied to tX  it returns the instance at lag 1, i.e.  

1( )t tB X X  . 

Less mathematically, we can also say that applying B  means “go back one step”, 
or “increment the time series index t  by -1”. We can of course apply B  repeatedly 
and so shift back to lag k , in particular: 

( )k
t t kB X X  . 

As mentioned above, this will serve us to write time series models in more 
compact form. We illustrate this for an AR(p) model, where 

 2
1 2( ... )p

t p t tX B B B X E       , or respectively: 

 2
1 2(1 ... )p

p t tB B B X E        

We can summarize 2
1 2(1 ... )p

pB B B       by ( )B , this is the characteristic 
polynomial of the respective AR process. Soon, we will exploit the very same 
mechanism with moving average models. 

5.3.2 Model Equation 

As we had mentioned above, a moving average model of order q , or abbreviated, 
an ( )MA q  model for a series tX  is a linear combination of the current innovation 
term tE , plus the q  most recent ones 1,...,t t qE E  . The model equation is: 

1 1· ·t t t q t qX E E E      

We require that tE  is an innovation, which means independent and identically 
distributed, and also independent of any sX  where s t . We make use of the 
backshift operator that was defined above for rewriting the model: 

 1(1 ) ( )q
t q t tX B B E B E       
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Please note that some other textbooks also define this model with negative signs 
for the j . While this is mathematically equivalent, we prefer our notation with the 
‘+’ signs, because this is also how things are defined in R. Please also note that 
we can always enhance this model by adding a constant   that accounts for non-
zero expectation of a time series. 

Why such MA(q) models? They have been applied successfully in many applied 
fields, particularly in econometrics. Time series such as economic indicators are 
affected by a variety of random events such as strikes, government decision, 
referendums, shortages of key commodities and so on. Such events will not only 
have an immediate effect, but may also affect the value (to a lesser extent) in 
several of the consecutive periods. Thus, it is plausible that moving average 
processes appear in practice. Moreover, some of their theoretical properties are in 
a nice way complementary to the ones of AR processes. This will become clear if 
we closely study the MA(1) model. 

5.3.3 The MA(1) Process 

For proofing stationarity and deriving the moments of moving average processes, 
we first consider the simple model of order 1: 

1 1·t t tX E E    

where tE  is a white noise process with ( ) 0tE E   and 2( )tVar E  . It is 
straightforward to show that tX  has mean zero, since it is the sum of two random 
variables with each mean zero. The variance is also easy to derive: 

 2 2
1( ) (1 )t EVar X     

The ACF is special because only the coefficient at lag 1 is different from zero, and 
there is no further autocorrelation: 

1
2

1

(1)
(1 )







, and ( ) 0k   for 1k  . 

Also, we have (1) 0.5  , no matter what the choice for 1  is. Thus if in practice we 
observe a series where the first-order autocorrelation coefficient clearly exceeds 
this value, we have counterevidence to a MA(1) process.  

For illustration, we generate a realization consisting of 500 observations, from 
such a process with 1 0.7  , and display time series plot, along with both 
estimated and true ACF/PACF. 

> set.seed(21) 
> ts.ma1 <- arima.sim(list(ma=0.7), n=500) 
> 
> plot(ts.ma1, ylab="", ylim=c(-4,4)) 
> title("Simulation from a MA(1) Process") 
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> acf.true  <- ARMAacf(ma=0.7, lag.max=20) 
> pacf.true <- ARMAacf(ma=0.7, pacf=TRUE, lag.max=20) 

 

We observe that the estimates are pretty accurate: the ACF has a clear cut-off, 
whereas the PACF shows some alternating behavior with an exponential decay in 
absolute value – completely contrary to the stylized facts an AR process shows. 
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Invertibility 

The first autocorrelation coefficient (1)  can be written in standard form, or also as 
follows: 

 1 1
2 2

1 1

1/
(1)

1 1 (1/ )

 
 

 
 

 

Apparently, a MA(1) process with coefficient 1  has exactly the same ACF as the 
one with 11 /  . Thus, for example, the two processes 10.5·t t tX E E    and 

12·t t tY E E    have the same dependency structure. This problem of ambiguity 
leads to the concept of invertibility. 

TBC... 

5.4 ARMA Models 
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6 Time Series Regression 

6.1 What Is the Problem? 

It is often the case that we aim for describing some time series tY  with a linear 
combination of some explanatory series 1,..., p

t tx x . As we will see below, the 
predictors can either be true covariates, or terms that are derived from time, as for 
example linear trends or seasonal effects. We employ the universally known linear 
model for linking the response series with the predictors: 

 1
0 1 ... p

t t p t tY x x E        

The regression coefficients 1,..., p   are usually estimated with the least squares 
algorithm, for which an error term with zero expectation, constant variation and no 
correlation is assumed. However, if response and predictors are time series, the 
last condition often turns out to be violated. 

Now, if we are facing a (time series) regression problem with correlated errors, the 
estimates ˆ

j  will remain being unbiased, but the least squares algorithm is no 
longer efficient. Or in other words: more precisely working estimators exist. Even 
more problematic are the standard errors of the regression coefficients ˆ

j : they 
are often grossly wrong in case of correlated errors. As they are routinely 
underestimated, inference on the predictors often yields spurious significance, i.e. 
one is prone to false conclusions from the analysis. 

Thus, there is a need for more general linear regression procedures that can deal 
with serially correlated errors, and fortunately, they exist. We will here discuss the 
simple, iterative Cochrane-Orcutt procedure, and the Generalized Least Squares 
method, which marks a theoretically sound approach to regression with correlated 
errors. But first, we present some time series regression problems to illustrating 
what we are dealing with. 

Example 1: Global Temperature 

In climate change studies time series with global temperature values are analyzed. 
The scale of measurement is anomalies, i.e. the difference between the monthly 
global mean temperature versus the overall mean between 1961 and 1990. The 
data can be obtained at http://www.cru.uea.ac.uk/cru/data. For illustrative 
purposes, we here restrict to a period from 1971 to 2005 which corresponds to a 
series of 420 records. For a time series plot, see the next page. 

> ## Time Series Plot 
> my.temp <- window(global, c(1971,1), c(2005,12)) 
> plot(my.temp, ylab="anomaly") 
> title("Global Temperature Anomalies") 
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There is a clear trend which seems to be linear. Despite we have monthly data, 
there is no evident seasonality. This is not overly surprising, since we are 
considering a global mean, i.e. the season should not make for a big difference. 
But on the other hand, because the landmass is not uniformly distributed over both 
halves of the globe, it could still be present. It is natural to try a season-trend-
decomposition for this series. We will employ a parametric model featuring a linear 
trend plus a seasonal factor. 

2 [ " "] 12 [ " "]0 1 1 ... 1 ,· month Feb mont Dect h tt EY            

where 1, ,420t    and [ " "]1 month Feb  is a dummy variable that takes the value 1 if an 
observation is from month February, and zero else. Clearly, this is a time series 
regression model. The response tY  is the global temperature anomalies, and even 
the predictors, i.e. the time and the dummies, can be seen as time series, even if 
simple ones. 

As we have seen previously, the goal with such parametric decomposition models 
is to obtain a stationary remainder term tE . But stationary does not necessarily 
mean white noise, and in practice it often turns out that tE  shows some serial 
correlation. Thus, if the regression coefficients are obtained from the least squares 
algorithm, we apparently feature some violated assumption. 

This violation can be problematic, even in an applied setting: a question of utter 
importance with the above series is whether trend and seasonal effect are 
significantly present. It would be nice to answer such questions using the inference 
approaches that linear regression provides. However, for obtaining reliable 
inference results, we need to account for the correlation among the errors. We will 
show this below, after introducing some more examples and theory. 
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Example 2: Air Pollution 

In this second example, we consider a time series that is stationary, and where the 
regression aims at understanding the series, rather than decomposing it into some 
deterministic and random components. We examine the dependence of a 
photochemical pollutant (morning maximal value) on the two meteorological 
variables wind and temperature. The series, which constitute of 30 observations 
taken on consecutive days, come from the Los Angeles basin. They are not 
publicly available, but can be obtained from the lecturer upon request. 

> ## Importing the data 
> tmp <- read.table("pollute.dat", header=TRUE) 
> dat <- ts.union(Oxidant=ts(tmp$Oxidant), Wind=ts(tmp$Wind), 
                  Temp=ts(tmp$Temp)) 
> ## Visualizing the data 
> plot(dat, main="Air Pollution Data") 

 

There is no counterevidence to stationarity for all three series. What could be the 
goal here? Well, we aim for enhancing the understanding of how the pollution 
depends on the meteorology, i.e. what influence wind and temperature have on 
the oxidant values. We can naturally formulate the relation with a linear regression 
model: 

 1 2
0 1 2t t t tY x x E      . 

In this model, the response tY  is the oxidant, and as predictors we have 1
tx , wind, 

and 2
tx , the temperature. For the index, we have 1,...,30t  , and obviously, this is 

a time series regression model. 

For gaining some more insight with these data, it is also instructive to visualize the 
data using a pairs plot, as shown on the next page. There, a strong, positive linear 
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association is recognizable between pollutant and the temperature. In contrast, 
there is a negative linear relation between pollutant and wind. Lastly, between the 
predictors wind and temperature, there is not much of a correlation. This data 
structure is not surprising because wind causes a stronger movement of the air 
and thus the pollutant is "better" distributed. Also, the wind causes some cooling. 

 

For achieving our practical goals with this dataset, we require precise and 
unbiased estimates of the regression coefficients 1  and 2 . Moreover, we might 
like to give some statements about the significance of the predictors, and thus, we 
require some sound standard errors for the estimates. However, also with these 
data, it is well conceivable that the error term tE  will be serially correlated. Thus 
again, we will require some procedure that can account for this. 

Time Series Regression Model 

The two examples have shown that time series regression models do appear 
when decomposing series, but can also be important when we try to understand 
the relation between response and predictors with measurements that were taken 
sequentially. Generally, with the model  

1
0 1 ... p

t t p t tY x x E        

we assume that the influence of the series 1, , q
t tx x  on the response tY  is 

simultaneous. Nevertheless, lagged variables are also allowed, i.e. we can also 
use terms such as j

t kx   with 0k   as predictors. While this generalization can be 
easily built into our model, one quickly obtains models with many unknown 
parameters. Thus, when exploring the dependence of a response series to lags of 
some predictor series, there are better approaches than regression. In particular, 
this is the cross correlations and the transfer function model, which will be 
exhibited later in section Fehler! Verweisquelle konnte nicht gefunden 
werden..  
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In fact, there are not many restrictions for the time series regression model. As we 
have seen, it is perfectly valid to have non-stationary series as either the response 
or as predictors. However, it is crucial that there is no feedback from tY  to the j

tx . 
Additionally, the error tE  must be independent of the explanatory variables, but it 
may exhibit serial correlation. 

6.2 Finding Correlated Errors 

When dealing with a time series regression problem, we first always assume 
uncorrelated errors and start out with an ordinary least squares regression. Based 
on its residuals, the assumption can be verified, and if necessary, action can be 
taken. For identifying correlation among the residuals, we analyze their time series 
plot, ACF and PACF. 

Example 1: Global Temperature 

Our goal is the decomposition of the global temperature series into a linear trend 
plus some seasonal factor. First and foremost, we prepare the data: 

> num.temp <- as.numeric(my.temp) 
> num.time <- as.numeric(time(my.temp)) 
> mn01     <- c("Jan", "Feb", "Mar", "Apr", "May", "Jun") 
> mn02     <- c("Jul", "Aug", "Sep", "Oct", "Nov", "Dec") 
> month    <- factor(cycle(my.temp), labels=c(mn01, mn02)) 
> dat      <- data.frame(temp=num.temp, time=num.time, month) 

The regression model is the estimated with R’s function lm(). The summary 
function returns estimates, standard errors plus the results from some hypothesis 
tests. It is important to notice that all of these results are in question should the 
errors turn out to be correlated. 

> fit.lm <- lm(temp ~ time + season, data=dat) 
> summary(fit.lm) 
 
Call: 
lm(formula = temp ~ time + season, data = dat) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.36554 -0.07972 -0.00235  0.07497  0.43348  
 
Coefficients: 
              Estimate Std. Error t value Pr(>|t|)     
(Intercept) -3.603e+01  1.211e+00 -29.757   <2e-16 *** 
time         1.822e-02  6.089e-04  29.927   <2e-16 *** 
seasonFeb    6.539e-03  3.013e-02   0.217   0.8283     
seasonMar   -1.004e-02  3.013e-02  -0.333   0.7392     
seasonApr   -1.473e-02  3.013e-02  -0.489   0.6252     
seasonMay   -3.433e-02  3.013e-02  -1.139   0.2552     
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seasonJun   -2.628e-02  3.013e-02  -0.872   0.3836     
seasonJul   -2.663e-02  3.013e-02  -0.884   0.3774     
seasonAug   -2.409e-02  3.013e-02  -0.799   0.4245     
seasonSep   -3.883e-02  3.013e-02  -1.289   0.1982     
seasonOct   -5.212e-02  3.013e-02  -1.730   0.0844 .   
seasonNov   -6.633e-02  3.013e-02  -2.201   0.0283 *   
seasonDec   -4.485e-02  3.013e-02  -1.488   0.1374     
--- 
 
Residual standard error: 0.126 on 407 degrees of freedom 
Multiple R-squared: 0.6891, Adjusted R-squared:  0.68  
F-statistic: 75.18 on 12 and 407 DF,  p-value: < 2.2e-16 

As the next step, we need to perform some residual diagnostics. The plot() 
function, applied to a regression fit, serves as a check for zero expectation, 
constant variation and normality of the errors, and can give hints on potentially 
problematic leverage points. 

> par(mfrow=c(2,2)) 
> plot(fit.lm, pch=20) 

 

Except for some very slightly long tailed errors, which do not require any action, 
the residual plots look fine. What has not yet been verified is whether there is any 
serial correlation among the residuals. If we wish to see a time series plot, the 
following commands are useful: 
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> plot(dat$time, resid(fit.lm), type="l") 

 

It is fairly obvious from the time series plot that the residuals are correlated. Our 
main tool for describing the dependency structure is the ACF and PACF plots, 
however. These are as follows: 

> par(mfrow=c(1,2)) 
> acf(resid(fit.lm), main="ACF of Residuals") 
> pacf(resid(fit.lm), main="PACF of Residuals")  

 

The ACF shows a rather slow exponential decay, whereas the PACF shows a 
clear cut-off at lag 2. With these stylized facts, it might well be that an AR(2) model 
is a good description for the dependency among the residuals. We verify this: 
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> fit.ar2 <- ar.burg(resid(fit.lm)); fit.ar2 
 
Call: 
ar.burg.default(x = resid(fit.lm)) 
 
Coefficients: 
     1       2   
0.4945  0.3036   
 
Order selected 2  sigma^2 estimated as  0.00693 

When using Burg’s algorithm for parameter estimation and doing model selection 
by AIC, order 2 also turns out to be optimal. For verifying an adequate fit, we 
visualize the residuals from the AR(2) model. These need to look like white noise. 
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There is no contradiction to the white noise hypothesis for the residuals from the 
AR(2) model. Thus, we can summarize as follows: the regression model that was 
used for decomposing the global temperature series into a linear trend and a 
seasonal factor exhibit correlated errors that seem to originate from an AR(2) 
model. Theory tells us that the point estimates for the regression coefficients are 
still unbiased, but they are no longer efficient. Moreover, the standard errors for 
these coefficients can be grossly wrong. Thus, we need to be careful with the 
regression summary approach that was displayed above. And since our goal is 
inferring significance of trend and seasonality, we need to come up with some 
better suited method. 

Example 2: Air Pollution 

Now, we are dealing with the air pollution data. Again, we begin our regression 
analysis using the standard assumption of uncorrelated errors. Thus, we start out 
by applying the lm() function and printing the summary().  

> fit.lm <- lm(Oxidant ~ Wind + Temp, data=dat) 
> summary(fit.lm) 
 
Call: 
lm(formula = Oxidant ~ Wind + Temp, data = dat) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-6.3939 -1.8608  0.5826  1.9461  4.9661  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept) -5.20334   11.11810  -0.468    0.644     
Wind        -0.42706    0.08645  -4.940 3.58e-05 *** 
Temp         0.52035    0.10813   4.812 5.05e-05 *** 
--- 
 
Residual standard error: 2.95 on 27 degrees of freedom 
Multiple R-squared: 0.7773, Adjusted R-squared: 0.7608  
F-statistic: 47.12 on 2 and 27 DF,  p-value: 1.563e-09 

We will do without showing the 4 standard diagnostic plots, and here only report 
that they do not show any model violations. Because we are performing a time 
series regression, we also need to check for potential serial correlation of the 
errors. As before, this is done on the basis of time series plot, ACF and PACF: 

> plot(1:30, resid(fit.lm), type="l") 
> title("Residuals of the lm() Function") 
> par(mfrow=c(1,2)) 
> acf(resid(fit.lm), ylim=c(-1,1), main="ACF of Residuals") 
> pacf(resid(fit.lm), ylim=c(-1,1), main="PACF of Residuals") 
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Also in this example, the time series of the residuals exhibits serial dependence. 
Because the ACF shows an exponential decay and the PACF cuts off at lag 1, we 
hypothesize that an AR(1) model is a good description. While the AIC criterion 
suggests an order of 14p  , the residuals of an AR(1) show the behavior of white 
noise. Additionally, using an AR(14) would be spending too many degrees of 
freedom for a series with only 30 observations. 

Thus, we can summarize that also in our second example with the air pollution 
data, we feature a time series regression that has correlated errors. Again, we 
must not communicate the above regression summary and for sound inference, 
we require more sophisticated models. 
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6.2.1 Durbin-Watson Test 

For the less proficient user, hypothesis tests always seem like an attractive 
alternative to visual inspection of graphical output. This is certainly also the case 
when the task is identifying a potential serial correlation in a regression analysis. 
Indeed, there is a formal test that addresses the issue, called the Durbin-Watson 
test. While we will here briefly go into it, we do not recommend it for practical 
application.The Durbin-Watson test tests the null hypothesis 0 : (1) 0H    against 
the alternative : (1) 0AH   . The test statistic D̂  is calculated as follows 
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where ˆt t tyr y   is the residual from the regression model, observed at time t . 
There is an approximate relationship between the test statistic D̂  and the 
autocorrelation coefficient at lag 1: 

ˆ ˆ2(1 (1))D    

The test statistic takes values between 0 if 1t tr r  and 4 if 1t tr r . These extremes 
indicate perfect correlation of the residuals. Values around 2, on the other hand, 
are evidence for uncorrelated errors. The exact distribution of D̂  is rather difficult 
to derive. However, we do not need to bother with this. The R package lmtest 
holds an implementation of the Durbin-Watson test with function dwtest(), 
where the p-value is either (for large sample size) determined by a normal 
approximation, or (for short series) by an iterative procedure. 

Example 1: Global Temperature 

> dwtest(fit.lm) 
data:  fit.lm  
DW = 0.5785, p-value < 2.2e-16 
alt. hypothesis: true autocorrelation is greater than 0 

Example 2: Air Pollution 

> dwtest(fit.lm) 
data:  fit.lm  
DW = 1.0619, p-value = 0.001675 
alt. hypothesis: true autocorrelation is greater than 0 

Thus, the null hypothesis is rejected in both examples and we come to the same 
conclusion (“errors are correlated”) as with our visual inspection. It is very 
important to note that this is not necessary: In cases where the errors follow an 
AR(p) process where 1p   and | (1) |  is small, the null hypothesis will not be 
rejected despite the fact that the errors are correlated. 
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6.3 Generalized Least Squares 

The ordinary least squares regression model assumes that 2( )Var E I , i.e. the 
covariance matrix of the errors is diagonal with identical values on the diagonal 
itself. As we have seen in our examples above, this is not a good model for time 
series regression. There, we rather have 2( )Var E   , where   reports the 
correlation among the errors. Using a Cholesky decomposition, we can write 

TSS  , where S  is a triangular matrix. This allows us to rewrite the regression 
model in matrix notation as follows: 

1 1 1

y X E

S y S X S E

y X E






  

 
 

   
 

This transformation is successful, because in the prime model, we have 
uncorrelated errors again: 

 1 1 1 2 2( ) ( ) ( ) T T TVar E Var S E S Var E S S SS S I          

With some algebra, it is easy to show that the estimated regression coefficients for 
the generalized least squares approach turn out to be: 

 1 1ˆ ( )T TX X X y      

This is what is known as the generalized least squares estimator. Moreover, the 
covariance matrix of the coefficient vector is: 

 1 1 2ˆ( ) ( )TVar X X     

This covariance matrix then also contains standard errors in which the correlation 
of the errors has been accounted for, and with which sound inference is possible. 
However, while this all neatly lines up, we of course require knowledge about the 
error covariance matrix  , which is generally unknown in practice. What we can 
do is estimate it from the data, for which two approaches exist. 

Cochrane-Orcutt Method 

This method is iterative: it starts with an ordinary least squares (OLS) regression, 
from which the residuals are determined. For these residuals, we can then fit an 
appropriate ARMA(p,q) model and with its estimated model coefficients 1,..., p   
and ( ) ( )

1 ,...,MA q MA q
q  . This is exactly what we have done for our two examples: we 

fitted OLS regressions, and identified an AR(2), respectively an AR(1) dependency 
among the residuals. 

On the basis of the estimated AR(MA) model coefficients, an estimate of the error 
covariance matrix   can be derived. We denote it by ̂ , and plug it into the 
formulae presented above. This yields adjusted regression coefficients and correct 
standard errors for these regression problems. 
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While the Cochrane-Orcutt procedure has its historical importance and is nice for 
illustration, it lacks of a direct R implementation, and, as an iterative procedure, 
also of mathematical closeness and quality. Thus, we do without performing 
Cochrane-Orcutt with our examples. 

The gls() Procedure 

A better, yet more sophisticated approach is to estimate the regression coefficients 
and the ARMA parameters simultaneously. This can be done using the Maximum-
Likelihood principle. Even under the assumption of Gaussian errors, this is a 
nonlinear and numerically difficult problem. However, for practical application, we 
do not need to worry. The R package nlme features the gls() procedure which 
tackles this problem. Thus, we focus on correct application of the R function. 

Example 1: Global Temperature 

Every GLS regression analysis starts by fitting an OLS an analyzing the residuals, 
as we have done above. Remember that the only model violation we found were 
correlated residuals that were well described with an AR(2) model. Please note 
that for performing GLS, we need to provide a dependency structure for the errors. 
Here, this is the AR(2) model, in general, it is an appropriate ARMA(p,q). The 
syntax and output is as follows: 

> library(nlme) 
> corStruct <- corARMA(form=~time, p=2) 
> fit.gls <- gls(temp~time+season, data=dat, corr=corStruct) 
> fit.gls 
Generalized least squares fit by REML 
  Model: temp ~ time + season  
  Data: dat  
  Log-restricted-likelihood: 366.3946 
 
Coefficients: 
  (Intercept)          time     seasonFeb     seasonMar  
-39.896981987   0.020175528   0.008313205  -0.006487876  
    seasonApr     seasonMay     seasonJun     seasonJul  
 -0.009403242  -0.027232895  -0.017405404  -0.015977913  
    seasonAug     seasonSep     seasonOct     seasonNov  
 -0.011664708  -0.024637218  -0.036152584  -0.048582236  
    seasonDec  
 -0.025326174  
 
Correlation Structure: ARMA(2,0) 
 Formula: ~time  
 Parameter estimate(s): 
      Phi1       Phi2  
 0.5539900 -0.1508046  
Degrees of freedom: 420 total; 407 residual 
Residual standard error: 0.09257678 
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The result reports the regression and the AR coefficients. Using the summary() 
function, even more output with all the standard errors can be generated. We omit 
this here and instead focus on the necessary residual analysis for the GLS model. 
We can extract the residuals using the usual resid() command. Important: these 
residuals must not look like white noise, but as from a ARMA(p,q) process with 
orders p  and q  as provided in the corStruct object – which in our case, is an 
AR(2). 

> par(mfrow=c(1,2)) 
> acf(resid(fit.gls), main="ACF of GLS-Residuals") 
> pacf(resid(fit.gls), main="PACF of GLS-Residuals") 

 

The plots look similar to the ACF/PACF plots of the OLS residuals. This is often 
the case in practice, only for more complex situations, there can be a bigger 
discrepancy. And because we observe an exponential decay in the ACF, and a 
clear cut-off at lag 2 in the PACF, we conjecture that the GLS residuals meet the 
properties of the correlation structure we hypothesized, i.e. of an AR(2) model. 
Thus, we can now use the GLS fit for drawing inference. We first compare the 
OLS and GLS point estimate for the trend, along with its confidence interval: 

> coef(fit.lm)["time"] 
      time  
0.01822374  
> confint(fit.lm, "time") 
          2.5 %    97.5 % 
time 0.01702668 0.0194208 
> coef(fit.gls)["time"] 
      time  
0.02017553  
> confint(fit.gls, "time") 
          2.5 %     97.5 % 
time 0.01562994 0.02472112 
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We obtain a temperature increase of 0.0182 degrees per year with the OLS, and 
of 0.0202 with the GLS. While this may seem academic, the difference among the 
point estimates is around 10%, and theory tells us that the GLS result is more 
reliable. Moreover, the length of the confidence interval is 0.0024 with the OLS, 
and 0.0091 and thus 3.5 times as large with the GLS. Thus, without accounting for 
the dependency among the errors, the precision of the trend estimate is by far 
overestimated. Nevertheless, also the confidence interval obtained from GLS 
regression does not contain the value 0, and thus, the null hypothesis on no global 
warming trend is rejected (with margin!). 

Finally, we investigate the significance of the seasonal effect. Because this is a 
factor variable, i.e. a set of dummy variables, we cannot just produce a confidence 
interval. Instead, we have to rely on a significance test, i.e. a partial F-test. Again, 
we compare what is obtained from OLS and GLS: 

> drop1(fit.lm, test="F") 
Single term deletions 
 
Model: 
temp ~ time + season 
       Df Sum of Sq     RSS     AIC  F value  Pr(F)     
<none>               6.4654 -1727.0                     
time    1   14.2274 20.6928 -1240.4 895.6210 <2e-16 *** 
season 11    0.1744  6.6398 -1737.8   0.9982 0.4472     
 
> anova(fit.gls) 
Denom. DF: 407  
            numDF  F-value p-value 
(Intercept)     1 78.40801  <.0001 
time            1 76.48005  <.0001 
season         11  0.64371  0.7912 

As for the trend, the result is identical with OLS and GLS. The seasonal effect is 
non-significant with p-values of 0.45 (OLS) and 0.79 (GLS). Again, the latter is the 
value we must believe in. We conclude that there is no seasonality in global 
warming – but there is a trend. 

Example 2: Air Pollution 

For finishing the air pollution example, we also perform a GLS fit here. We 
identified an AR(1) as the correct dependency structure for the errors. Thus, we 
define it accordingly: 

> dat       <- cbind(dat, time=1:30) 
> corStruct <- corARMA(form=~time, p=1) 
> model     <- formula(Oxidant ~ Wind + Temp) 
> fit.gls   <- gls(model, data=dat, correlation=corStruct) 

The output then is as follows: 
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> fit.gls 
Generalized least squares fit by REML 
  Model: model  
  Data: dat  
  Log-restricted-likelihood: -72.00127 
 
Coefficients: 
(Intercept)        Wind        Temp  
 -3.7007024  -0.4074519   0.4901431  
 
Correlation Structure: AR(1) 
 Formula: ~time  
 Parameter estimate(s): 
      Phi  
0.5267549  
Degrees of freedom: 30 total; 27 residual 
Residual standard error: 3.066183 

Again, we have to check if the GLS residuals show the stylized facts of an AR(1): 

 

This is the case, and thus we can draw inference from the GLS results. The 
confidence intervals of the regression coefficients are: 

> confint(fit.lm, c("Wind", "Temp")) 
          2.5 %     97.5 % 
Wind -0.6044311 -0.2496841 
Temp  0.2984794  0.7422260 
 
> confint(fit.gls, c("Wind", "Temp")) 
          2.5 %     97.5 % 
Wind -0.5447329 -0.2701709 
Temp  0.2420436  0.7382426 
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Here the differences among point estimates and confidence intervals are not very 
pronounced. This has to do with the fact that the correlation among the errors is 
weaker than in the global temperature example. But we emphasize again that the 
GLS results are the one to be relied on and the magnitude of the difference 
between OLS and GLS can be tremendous. 

Simulation Study 

We provide further evidence for the importance of the GLS approach by 
performing a simulation study in which the resulting coefficients and standard 
errors are compared to the ones obtained from OLS regression. We consider the 
following model: 

2

/ 50

2( )
t

t t t t

x t

y x x E


  

 

where tE  is from an AR(1) process with 1 0.65   . The innovations are Gaussian 
with 0.1  . Regression coefficients and the true standard deviations of the 
estimators are known in this situation. However, we generate 100 realizations with 
series length 50n  , on each perform OLS and GLS regression and record both 
point estimate and standard error.  

 

The simulation outcome is displayed by the boxplots in the figure above. While the 
point estimator for 1  in the left panel is unbiased for both OLS and GLS, we 
observe that the standard error for 1̂  is very poor when the error correlation is not 
accounted for. We emphasize again that OLS regression with time series will 
inevitably lead to spuriously significant predictors and thus, false conclusions. With 
the next subsection, we conclude the chapter about time series regression by 
showing how correlated errors do appear, and what practice has to offer for 
deeper understanding of the problem. 
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6.4 Missing Predictor Variables 

The presence correlated errors is often due to missing predictors. For illustration, 
we consider a straightforward example of a ski selling company in the US. The 
quarterly sales tY  are regressed on the personal disposable income (PDI) which is 
the one and only predictor tx . We display the two time series in a scatterplot and 
enhance it with the OLS regression line. 

> ## Loading the data 
> ski        <- read.table("ski.dat",header=TRUE) 
> names(ski) <- c("time", "sales", "pdi", "season") 
>  
> ## Scatterplot 
> par(mfrow=c(1,1)) 
> plot(sales ~ pdi, data=ski, pch=20, main="Ski Sales") 
>  
> ## LS modeling and plotting the fit 
> fit <- lm(sales ~ pdi, data=ski) 
> abline(fit, col="red") 

 

The coefficient of determination is rather large, i.e. 2 0.801R   and the linear fit 
seems adequate, i.e. a straight line seems to correctly describe the systematic 
relation between sales and PDI. However, the model diagnostic plots (see the next 
page) show some rather special behavior, i.e. there are hardly any “small” 
residuals (in absolute value). Or more precisely, the data points almost lie on two 
lines around the regression line, with almost no points near or on the line itself. 

> ## Residual diagnostics 
> par(mfrow=c(2,2)) 
> plot(fit, pch=20) 
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As the next step, we analyze the correlation of the residuals and perform a Durbin-
Watson test. The result is as follows: 

> dwtest(fit) 
data:  fit  
DW = 1.9684, p-value = 0.3933 
alt. hypothesis: true autocorrelation is greater than 0 
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While the Durbin-Watson test does not reject the null hypothesis, the residuals 
seem very strongly correlated. The ACF exhibits some decay that may still qualify 
as exponential, and the PACF has a clear cut-off at lag 2. Thus, an AR(2) model 
could be appropriate. And because it is an AR(2) where 1  and (1)  are very 
small, the Durbin-Watson test fails to detect the dependence in the residuals. The 
time series plot is as follows: 

 

While we could now account for the error correlation with a GLS, it is always better 
to identify the reason behind the dependence. I admit this is suggestive here, but 
as mentioned in the introduction of this example, these are quarterly data and we 
might have forgotten to include the seasonality. It is not surprising that ski sales 
are much higher in fall and winter and thus, we introduce a factor variable which 
takes the value 0 in spring and summer, and 1 else. 

 

0 10 20 30 40

-4
-2

0
2

4

Index

re
si

d
(f

it)

Time Series Plot of OLS Residuals

120 140 160 180 200

3
0

3
5

4
0

4
5

5
0

5
5

pdi

sa
le

s

1

0

0

11

0
0

1
1

00

1
1

0

0

1 1

0
0

11

0
0

1
1

0
0

1 1

0 0

11

00

1
1

00

1

Ski Sales - Winter=1, Summer=0



 

 Page 80 

Introducing the seasonal factor variable accounts to fitting two parallel regression 
lines for the winter and summer term. Eyeballing already lets us assume that the fit 
is good. This is confirmed when we visualize the diagnostic plots: 

 

The unwanted structure is now gone, as is the correlation among the errors: 
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Apparently, the addition of the season as an additional predictor has removed the 
dependence in the errors. Rather than using GLS, a sophisticated estimation 
procedure, we have found a simple model extension that describes the data well 
and is certainly easier to interpret (especially when it comes to prediction) than a 
model that is built on correlated errors.  

We conclude by saying that using GLS for modeling dependent errors should only 
take place if care has been taken that no important and/or obvious predictors are 
missing in the model. 
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7 Non-Stationary Models 
As we have discovered previously, many time series are non-stationary due to 
deterministic trends and/or seasonal effects. While we have learned to remove 
these and then explain the remainder with some time series models, there are 
other processes that directly incorporate trend and seasonality. While they usually 
lack some transparency for the decomposition, their all-in-one approach allows for 
convenient forecasting, and also AIC-based decisions for choosing the right 
amount of trend and seasonality modeling become feasible. 

Time series may also be non-stationary because the variance is serially 
correlated, i.e. they are conditionally heteroskedastic. Such series, often from 
financial or economic background, usually exhibit periods of high and low volatility. 
Understanding the behavior of such series pays off, and the usual approach is to 
set up autoregressive models for the variance. These are the famous ARCH 
models, which we will discuss along with their generalized variant, the GARCH 
class. 

7.1 ARIMA Models 

ARIMA models are aimed at describing series which exhibit a deterministic trend 
that can be removed by differencing; and where these differences can be 
described by an ARMA(p,q) model. Thus, the definition of an ARIMA(p,d,q) 
process arises naturally: 

Definition: A series tX  follows an ARIMA(p,d,q) model if the d th order 
difference of tX  is an ARMA(p,q) process. If we introduce 

  (1 )d
t tY B X  , 

 where B  is the backshift operator, then we can write the ARIMA 
process using the characteristics polynomials, i.e. ( )   that accounts 
for the AR, and ( )   that stands for the MA part. 

   
( ) ( )

( )(1 ) ( )
t t

d
t t

B Y B E

B B X B E

  
   

 

Such series do appear in practice, as our example of the monthly prices for a 
barrel of crude oil (in US$) from January 1986 to January 2006 shows. To stabilize 
the variance, we decide to log-transform the data, and model these. 

> library(TSA) 
> data(oil.price) 
> lop <- log(oil.price) 
> plot(lop, ylab="log(Price)") 
> title("Logged Monthly Price for a Crude Oil Barrel") 
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The series does not exhibit any apparent seasonality, but there is a clear trend, so 
that it is non-stationary. We could assume a piecewise linear trend and try first-
order (i.e. 1d  ) differencing, and then check whether the result is stationary.  

> dlop <- diff(lop) 
> plot(dlop, ylab="Differences") 
> title("Differences of Logged Monthly Crude Oil Prices") 

 

The trend was successfully removed by taking differences. When we investigate 
ACF and PACF, we conclude that the differences are not iid, but dependent. There 
is a drop-off in the ACF at lag 1, and in the PACF at either lag 1 or 2, and thus for 
the logged differences, an ARMA(1,1) or an ARMA(1,2) could be appropriate. This 
means an ARIMA(1,1,1) or ARIMA(1,1,2) for the logged oil prices. 
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> par(mfrow=c(1,2)) 
> acf(dlop, main="ACF", ylim=c(-1,1), lag.max=24) 
> pacf(dlop, main="ACF", ylim=c(-1,1), lag.max=24) 

 

The fitting can be done with the arima() procedure that (by default) estimates the 
coefficients using Maximum Likelihood with starting values obtained from the 
Conditional Sum of Squares method. We can either let the procedure do the 
differencing: 

> arima(lop, order=c(1,1,2)) 
 
Call: 
arima(x = lop, order = c(1, 1, 2)) 
 
Coefficients: 
         ar1      ma1      ma2 
      0.8429  -0.5730  -0.3104 
s.e.  0.1548   0.1594   0.0675 
 
sigma^2 = 0.006598:  log likelihood = 261.88,  aic = -515.75 

Or, we can use the differenced series dlop as input and fit an ARMA(1,2). 
However, we need to tell R to not include an intercept – this is not appropriate 
when a piecewise linear trend was removed by taking differences. The command 
is: 

> arima(dlop, order=c(1,0,2), include.mean=FALSE) 

The output from this is exactly the same as above. The next step is to perform 
residual analysis – if the model is appropriate, they must look like white noise. This 
is (data not shown here) more or less the case. For decisions on the correct model 
order, also the AIC statistics can provide valuable information. 
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We finish this section by making some considerations on the model equation. We 
have: 

 
1 1 2

1 1 2 1 2

1 2 1 2

0.84 0.57 0.31

0.84 ( ) 0.57 0.31

1.84 0.84 0.57 0.31

t t t t t

t t t t t t t

t t t t t t

Y Y E E E

X X X X E E E

X X X E E E

  

    

   

      
        

        
 

Thus, the ARIMA(1,1,2) can be rewritten as a non-stationary ARMA(2,2). The non-
stationarity is due to the roots of the AR characteristic polynomial, which are within 
the unit circle. Finally, we give some recipe for fitting ARIMA models: 

1) Choose the appropriate order of differencing, usually 1d   or 2d  , 
such that the result is a stationary series. 

2) Analyze ACF and PACF of the differenced series. If the stylized facts of 
an ARMA process are present, decide for the orders p  and q . 

3) Fit the model using the arima() procedure. This can be done on the 
original series by setting d  accordingly, or on the differences, by setting 

0d   and argument include.mean=FALSE. 

4) Analyze the residuals; these must look like white noise. If several 
competing models are appropriate, use AIC to decide for the winner. 

The fitted ARIMA model can then be used to generate forecasts including 
prediction intervals. This will, however, only be discussed in section 8. 

7.2 SARIMA Models 

After becoming acquainted with the ARIMA models, it is quite natural to ask for an 
extension to seasonal series; especially, because we learned that differencing at a 
lag equal to the period s  does remove seasonal effects, too. Suppose we have a 
series tX  with monthly data. Then, series 

 12
12 (1 )t t t tY X X B X     

has the seasonality removed. However, it is quite often the case that the result has 
not yet constant mean, and thus, some further differencing at lag 1 is required to 
achieve stationarity: 

 12
1 1 12 13(1 ) (1 )(1 )t t t t t t t t tZ Y Y B Y B B X X X X X               

We illustrate this using the Australian beer production series that we had already 
considered in section 4. It has monthly data that range from January 1958 to 
December 1990. Again, a log-transformation to stabilize the variance is indicated. 
On the next page, we display the original series tX , the seasonally differenced 
series tY  and finally the seasonal-trend differenced series tZ . 
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> www       <- "http://www.massey.ac.nz/~pscowper/ts/cbe.dat" 
> dat       <- read.table(www, header=TRUE) 
> beer      <- ts(dat$beer, start=1958, freq=12) 
> d12.lbeer <- diff(log(beer), lag=12) 
> d.d12.lbeer <- diff(d12.lbeer) 
> plot(log(beer)) 
> plot(d12.lbeer) 
> plot(d.d12.lbeer)) 
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While the two series tX  and tY  are non-stationary, the last one, tZ  may be, 
although it is a bit debatable whether the assumption of constant variation is 
violated or not. We proceed by analyzing ACF and PACF of series tZ . 

> par(mfrow=c(1,2)) 
> acf(d.d12.lbeer, ylim=c(-1,1)) 
> pacf(d.d12.lbeer, ylim=c(-1,1), main="PACF") 

 

There is very clear evidence that series tZ  is serially dependent, and we could try 
an ARMA(p,q) to model this dependence. As for the choice of the order, this is not 
simple on the basis of the above correlograms. They suggest that high values for 
p  and q  are required, and model fitting with subsequent residual analysis and 

AIC inspection confirm this: 14p   and 11q   yield a good result. 

It is (not so much in the above, but generally when analyzing data of this type) 
quite striking that the ACF and PACF coefficient that large values at multiples of 
the period s . This is very typical behavior for seasonally differenced series, in fact 
it originates from the evolution of the seasonality over the years. A simple model 
accounting for this is the so-called airline model: 

 

12
1 1

12 13
1 1 1 1

1 1 1 12 1 1 13

(1 )(1 )

(1 )
t t

t

t t t t

Z B B E

B B B E

E E E E

 
   
     

  
   
   

 

This is a MA(13) model, where many of the coefficients are equal to 0. Because it 
was made up of an MA(1) with B  as an operator in the characteristic polynomial, 
and another one with sB  as the operator, we call this a SARIMA(0,1,1)(0,1,1)12. 
This idea can be generalized: we fit AR and MA parts with both B  and sB  as 
operators in the characteristic polynomials, which again results in a high order 
ARMA model for tZ .  
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Definition: A series tX  follows a SARIMA(p,d,q)(P,D,Q)s process if the following 
equation holds: 

 ( ) ( ) ( ) ( )s s
S t S tB B Z B B E     , 

 where series tZ  originated from tX  after appropriate seasonal and 
trend differencing, i.e. (1 ) (1 )d s D

tZ B B   . 

Fortunately, it turns out that usually 1d D   is enough. As for the model orders 
, , ,p q P Q , the choice can be made on the basis of ACF and PACF, by searching 

for cut-offs. Mostly, these are far from evident, and thus, an often applied 
alternative is to consider all models with , , , 2p q P Q   and doing an AIC-based 
grid search.  

For our example, the SARIMA(2,1,2)(2,1,2)12 has the lowest value and also shows 
satisfactory residuals, although it seems to perform slightly less well than the 
SARIMA(14,1,11)(0,1,0)12. The R-command for the former is: 

> fit <- arima(log(beer), order=c(2,1,2), seasonal=c(2,1,2)) 

 

As it was mentioned in the introduction to this section, one of the main advantages 
of ARIMA and SARIMA models is that they allow for quick and convenient 
forecasting. While this will be discussed in depth later in section 8, we here 
provide a first example to show the potential.  

From the logged beer production data, the last 2 years were omitted before the 
SARIMA model was fitted to the (shortened) series. On the basis of this model, a 
2-year-forecast was computed, which is displayed by the red line in the plot above. 
The original data are shown as a solid (insample, 1958-1988) line, respectively as 
a dotted (out-of-sample, 1989-1990) line. We see that the forecast is reasonably 
accurate. 
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To facilitate the fitting of SARIMA models, we finish this chapter by providing some 
guidelines: 

1) Perform seasonal differencing on the data. The lag s  is determined by the 
periodicity of the data, for the order, in most cases 1D   is sufficient. 

2) Do a time series plot of the output of the above step. Decide whether it is 
stationary, or whether additional differencing at lag 1 is required to remove 
a potential trend. If not, then 0d  , and proceed. If yes, 1d   is enough for 
most series. 

3) From the output of step 2, i.e. series tZ , generate ACF and PACF plots to 
study the dependency structure. Look for coefficients/cut-offs at low lags 
that indicate the direct, short-term dependency and determine orders p  
and q . Then, inspect coefficients/cut-offs at multiples of the period s , which 
imply seasonal dependency and determine P  and Q . 

4) Fit the model using procedure arima(). In contrast to ARIMA fitting, this is 
now exclusively done on the original series, with setting the two arguments 
order=c(p,d,q) and seasonal=c(P,D,Q) accordingly. 

5) Check the accuracy of the fitted model by residual analysis. These must 
look like white noise. If thus far, there is ambiguity in the model order, AIC 
analysis can serve to come to a final decision. 

Next, we turn our attention to series that have neither trend nor seasonality, but 
show serially dependent variance. 

7.3 ARCH/GARCH Models 

In this chapter, we consider the SMI log-returns that were already presented in 
section 1.2.4. By closer inspection of the time series plot, we observe some long-
tailedness, and also, the series exhibits periods of increased variability, which is 
usually termed volatility in the (financial) literature. We had previously observed 
series with non-constant variance, such as the oil prices and beer production in 
the previous sections. Such series, where the variance increases with increasing 
level of the series, are called heteroskedastic, and can often be stabilized using a 
log-transformation. 

However, that matter is different with the SMI log-returns: here, there are periods 
of increased variation, and thus the variance of the series is serially correlated, a 
phenomenon that is called conditional heteroskedasticity. This is a violation of the 
stationarity assumption, and thus, some special treatment for this type of series is 
required. Furthermore, the ACF of such series typically does not differ significantly 
from white noise. Still, the data are not iid, which can be shown with the ACF of 
the squared observations. With the plots on the next page, we illustrate the 
presence of these stylized facts for the SMI log-returns: 
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7.3.1 The ARCH and GARCH Models 

In order to account for volatility, we require a model that allows for conditional 
changes in the variance. The most simple and intuitive way of doing this is to use 
an autoregressive model for the variance process. Thus, a series tE  is first-order 
autoregressive conditional heteroskedastic, denoted as ARCH(1), if: 

 2
0 1 1t t tE W E    . 

Here, tW  is a white noise process with mean zero and unit variance. The two 
parameters 0 1,   are the model coefficients. An ARCH(1) process shows 
volatility, as can easily be derived: 
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Note that this derivation is based on 2[ ] 1tE W   and [ ] [ ] 0t tE E E W  . As we had 
aimed for, the variance of an ARCH(1) process behaves just like an AR(1) model. 
Hence, the decay in the autocorrelations of the squared residuals should indicate 
whether an ARCH(1) is appropriate or not. 
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In our case, the analysis of ACF and PACF of the squared log-returns suggests 
that the variance may be well described by an AR(2) process. This is not what we 
had discussed above, but the extension exists. An ARCH(p) process is defined by: 

 2
0

1

p

t t p t i
i

E W E  


   

Fitting in R can be done using procedure garch(). This is a more flexible tool, 
which also allows for fitting GARCH processes, as discussed below. The 
command in our case is as follows: 

> fit <- garch(lret.smi, order = c(0,2), trace=FALSE)  
> fit 
 
Call: garch(x = lret.smi, order = c(0, 2), trace = FALSE) 
 
Coefficient(s): 
       a0         a1         a2   
6.568e-05  1.309e-01  1.074e-01 

For verifying appropriate fit of the ARCH(2), we need to check the residuals of the 
fitted model. This includes inspecting ACF and PACF for both the “normal” and the 
squared residuals. We here do without showing plots, but the ARCH(2) is OK. 

A nearby question is whether we can also use an ARMA(p,q) process for 
describing the dependence in the variance of the process. The answer is yes. This 
is what a GARCH(q,p) model does. A series t t tE W H  is GARCH(q,p) if: 

 2
0

1 1

p q

t i t i j t j
i j

H E H   
 

     

0 5 10 15 20 25 30

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Lag

A
C

F
ACF of Squared Log-Returns

0 5 10 15 20 25 30

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Lag
P

a
rt

ia
l A

C
F

PACF of Squared Log-Returns



 

 Page 92 

7.3.2 Use of GARCH Models 

GARCH models are useless for the prediction of the level of a series, i.e. for the 
SMI log-returns, they do not provide any idea whether the stocks’ value will 
increase or decrease on the next day. However, they allow for a more precise 
understanding in the (up or down) changes that might be expected during the next 
day(s). This allows stockholders to adjust their position, so that they do not take 
any unduly risks. 
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8 Forecasting 
One of the principal goals with time series analysis is to produce predictions which 
show the future evolution of the data. This is what it is: an extrapolation in the time 
domain. And as we all know, extrapolation is always (at least slightly) problematic 
and can lead to false conclusions. Of course, this is no different with time series 
forecasting. 

The saying is that the task we are faced with can be compared to driving a car by 
looking through the rear window mirror. While this may work well on a wide 
motorway that runs mostly straight and has a few gentle bends only, things get 
more complicated as soon as there are some sharp and unexpected bends in the 
road. Then, we would need to drive very slowly to stay on track. This all translates 
directly to time series analysis. For series where the signal is much stronger than 
the noise, accurate forecasting is possible. However, for noisy series, there is a 
great deal of uncertainty in the predictions, and they are at best reliable for a very 
short horizon. 

From the above, one might conclude that the principal source of uncertainty is 
inherent in the process, i.e. comes from the innovations. However, in practice, this 
is usually different, and several other factors can threaten the reliability of any 
forecasting procedure. In particular: 

 We need to be certain that the data generating process does not change 
over time, i.e. continues in the future as it was observed in the past. 

 When we choose/fit a model based on a realization of data, we have no 
guarantee that it is the correct, i.e. data-generating one. 

 Even if we are so lucky to find the correct data-generating process (or in 
cases we know it), there is additional uncertainty arising from the estimation 
of the parameters. 

Keeping these general warnings in mind, we will now present several approaches 
to time series forecasting. First, we deal with stationary processes and present, 
how AR, MA and ARMA processes can be predicted. These principles can be 
extended to the case of ARIMA and SARIMA models, such that forecasting series 
with either trend and/or seasonality is also possible. 

As we had seen in section 4.2, the decomposition approach for non-stationary 
time series helps a great deal for visualization and modeling. Thus, we will present 
some heuristics about how to produce forecasts with series that were decomposed 
into trend, seasonal pattern and a stationary remainder. Last but not least, we 
present the method of exponential smoothing. This was constructed as a model-
free, intuitive weighting scheme that allows forecasting of time series. Due to its 
simplicity and the convenient implementation in the HoltWinters() procedure in 
R, it is very popular and often used in applied sciences. 
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8.1 Forecasting ARMA 

We suppose that we are given a time series, for which an appropriate AR, MA or 
ARMA model was identified, the parameters were successfully estimated and 
where the residuals exhibited the required properties, i.e. looked like white noise. 
Under these circumstances, forecasts may be readily computed. Given data up to 
time n , the forecasts will involve either involve the past observations, and/or the 
residuals. 

In mathematical statistics, many forecasting methods have been studied on a 
theoretical basis with the result that the minimum mean squared error forecast 

,1:
ˆ

n k nX   for k  steps ahead is given by the conditional expectation, i.e.: 

 ,1: 1
ˆ [ | ,..., ]n k n n k nX E X X X   

In evaluating this term, we use the fact that the best forecast of all future 
innovation terms ,tE t n  is simply zero. We will be more specific in the following 
subsections. 

8.1.1 Forecasting AR(1) 

For simplicity, we first consider a mean-zero, stationary AR(1) process with model 
equation: 

 1 1t t tX X E   , 

where tE  is the innovation, for which we do not need to assume a particular 
distribution. As we will see below, it is convenient to assume Gaussian tE , 
because this allows for an easy derivation of a prediction interval. The conditional 
expectation at time 1n   is given by: 

 1 1 1[ | ,..., ]n n nE X X X x  . 

Thus, we can forecast the next instance of a time series with the observed value of 
the previous one, in particular: 

 1,1: 1
ˆ

n n nX x  . 

For the k -step forecast with 1k  , we just need to repeatedly plug-in the model 
equation, and as use the fact that the conditional expectation of the innovations is 
zero: 

 

,1: 1
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For any stationary AR(1) process, the k -step forecast beyond the end of a series 
depends on the last observation nx  only and goes to zero exponentially quickly. 
For practical implementation with real data, we would just plug-in the estimated 
model parameter 1̂  and can so produce a forecast for any desired horizon. 

As always, a prediction is much more useful in practice if one knows how precise it 
is. Under the assumption of Gaussian innovations, a 95% prediction interval can 
be derived from the conditional variance 1( | ,..., )n k nVar X X X . For the special case 
of 1k   we obtain: 

 1 1.96n Ex   . 

Again, for practical implementation, we need to plug-in 1̂  and ˆE . For a k -step 
prediction, the 95% prognosis interval is: 

  1 2
1 11

1.96 1
k j

n Ej
x  


    . 

For increasing prediction horizon k , the conditional variance goes to 2 2
1/ (1 )E  , 

which is the process variance 2
X . Thus, for the 1-step forecast, the uncertainty in 

the prediction is given by the innovation variance E  alone, while for increasing 
horizon k  the prognosis interval gets wider is finally determined by the process 
variance. 

Practical Example 

We now turn our attention to a practical example, where we apply the R functions 
which implement the above theory. This is the Beaver data we had already 
discussed in section 4.3.3. An AR(1) model is appropriate, and for estimating the 
coefficients, we omit the last 14 observations from the data. These will be 
predicted, and the true values are needed for verifying the prediction. 
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The R commands for fitting the model on the training data and producing the 14-
step prediction are as follows: 

> btrain   <- window(beaver, 1, 100) 
> fit      <- ar.burg(btrain, order=1) 
> forecast <- predict(fit, n.ahead=14) 

The forecast object is a list that has two components, pred and se, which 
contain the point predictions and the standard error, respectively. We now turn our 
attention to how the forecast is visualized: 

> plot(beaver, lty=3) 
> lines(btrain, lwd=2) 
> lines(pred$pred, lwd=2, col="red") 
> lines(pred$pred+pred$se*1.96, col="red") 
> lines(pred$pred-pred$se*1.96, col="red") 

One more issue requires some attention here: for the Beaver data, a pure AR(1) 
process is not appropriate, because the global series mean is clearly different from 
zero. The way out is to de-mean the series, then fit the model and produce 
forecasts, and finally re-adding the global mean. R does all this automatically.  

We conclude by summarizing what we observe in the example: the forecast is 
based on the last observed value 100 36.76x  , and from there approaches the 
global series mean ˆ 36.86   exponentially quick. Because the estimated 
coefficient is 1ˆ 0.87  , and thus relatively close to one, the approach still takes 
some time. 

8.1.2 Forecasting AR(p) 

Forecasting from AR(p) processes works based on the same principles as 
explained above for the AR(1), i.e. we use the conditional expected value. The 
algebra for writing the forecasting formulae is somewhat more laborious, but not 
more difficult. Thus, we do without displaying it here, and directly present the 1-
step-forecast: 

 1,1: 1 2 1
ˆ ...n n n n p n pX x x x         

The question is, what do we do for longer forecasting horizons? There, the 
forecast is again based on the linear combination of the p  past instances. For the 
ones with an index between 1 and n , the observed value tx  is used. Else, if the 
index exceeds n , we just plug-in the forecasted values ,1:ˆt nx . Thus, the general 
formula is: 

 ,1: 1 1,1: ,1:
ˆ ˆ ˆ...n k n n k n p n k p nX X X        , 

where ,1:
ˆ

t n tX x  in all cases where t n , i.e. an observed value is available. 
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Practical Example 

We consider the lynx data for which we had identified an AR(11) as a suitable 
model. Again, we use the first 100 observations for fitting the model and lay aside 
the last 14, which are in turn used for verifying the result. Also, we do without 
showing the R code, because it is identical to the one from the previous example. 

 

We observe that the forecast tracks the general behavior of the series well, though 
the level of the series is underestimated somewhat. This is, however, not due to 
an “error” of ours, it is just that the values were higher than the past observations 
suggested. We finish this section with some remarks: 

 Forecasting from an AR(p) only requires knowledge about the last p  
instances of the series, plus the model parameters 1,..., p   and the global 
series mean  . Earlier values of the series are not required, the model thus 
has a Markov property of order p . 

 The prediction intervals only account for the uncertainty caused by the 
innovation variance, but not for the one caused by model misconception, 
and the plug-in of estimated parameters. Thus in practice, a true 95% 
interval would most likely be wider than shown above. 

8.1.3 Forecasting MA(1) 

We here consider an invertible MA(1) process, where the model equation is as 
follows: 

 1 1t t tX E E   , 

where tE  is an innovation with expectation zero and constant variance.  
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As above, the forecast ,1:
ˆ

n k nX   will again be based on the conditional expectation 

1[ | ,..., ]n k nE X X X . We get to a solution if we plug-in the model equation. First, we 
assume that 2k  , i.e. predict at least 2 time steps ahead. 

 

,1: 1

1 1 1

1 1 1 1

ˆ [ | ,..., ]

[ | ,..., ]

[ | ,..., ] [ | ,..., ]

0

n k n n k n

n k n k n

n k n n k n

X E X X X

E E E X X

E E X X E E X X




 

  

  


 
 


 

The best forecast MA(1) forecast for horizons 2 and up is thus zero. Remember 
that we require tE  being an innovation, and thus independent from previous 
instances ,sX s t  of the time series process. Next, we address the 1-step 
forecast. This is more problematic, because the above derivation leads to: 

 
1,1:

1 1

ˆ ...

[ | ,..., ]

0 ( )

n n

n n

X

E E X X

generally


 




 

The 1-step forecast thus generally is different from zero. Moreover, the term 

1[ | ,..., ]n nE E X X  is difficult to determine. Using some mathematical trickery, we can 
at least propose an approximate value. This trick is to move the point of reference 
into the infinite past, i.e. conditioning on all previous instances of the MA(1) 
process. We denote 

 : [ | ]n
n ne E E X  . 

By successive substitution, we then write the MA(1) as an AR( ). This yields 

 1
0

( ) j
n n j

j

E X





  . 

If we condition the expectation of nE  on the infinite past of the series tX , we can 
plug-in the realizations tx  and obtain: 

 1
0

[ | ] ( )n j
n n n j

j

E E X e x


 


   . 

This is of course somewhat problematic for practical implementation, because we 
only have realizations for 1,..., nx x . However, because for invertible MA(1) 
processes, 1 1  , the impact of early observations dies out exponentially quickly. 
Thus, we let 0tx   for 1t  , and thus also have that 0te   for 1t  . Also, we plug-
in the estimated model parameter 1̂ , and thus, the 1-step forecast for an MA(1) is: 

 
1

1,1: 1 1
0

ˆ ˆˆ ( )
n

j
n n n j

j

X x 


 


   

This is a sum of all observed values, with exponentially decaying weights. 
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8.1.4 Forecasting MA(q) 

When forecasting from MA(q) processes, we encounter the same difficulties as 
above. The prediction for horizons exceeding q  are all zero, but anything below 
contains terms for which the considerations in section 8.1.3 are again necessary. 
We do without displaying this, and proceed to giving the formulae for ARMA(p,q) 
forecasting, from which the ones for MA(q) can be learned. 

8.1.5 Forecasting ARMA(p,q) 

We are considering stationary and invertible ARMA(p,q) processes. The model 
equation for 1nX   then is: 

1 1 1 1 1 1n n p n p n n q n qX X X E E E              

As this model equation contains past innovations, we face the same problems as 
in section 8.1.3 when trying to derive the forecast for horizons q . These can be 
mitigated, if we again condition on the infinite past of the process. 

 1 1 1
1 1

1
1 1

1,1: 1
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ˆ [ | ]

] ] ]
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If we are aiming for k -step forecasting, we can use a recursive prediction scheme: 

 ,1:
1 1

ˆ ] ][ | [ |
p q

n n
i n kn k n i j n k j

i j

E X X E EX X      





   , 

where for the AR- and MA-part the conditional expectations are: 

 
,1:

,
[ | ] ˆ ,

tn
t

t n

x if t n
E X X

X if t n

 


 

 
,

[ | ]
0,

tn
t

e if t n
E E X

if t n


  

 

The terms te  are then determined as outlined above in section 8.1.3, and for the 
model parameters, we are plugging-in the estimates. This allows us to generate 
any forecast from an ARMA(p,q) model that we wish. The procedure is also known 
as Box-Jenkins procedure, after the two researchers who first introduced it. 

Next, we illustrate this with a practical example, though in R, things are quite 
unspectacular. It is again the predict() procedure that is applied to a fit from 
arima(), the Box-Jenkins scheme that is employed runs in the background. 
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Practical Example 

We here consider the Douglas Fir data which show the width of the year rings over 
a period from 1107 to 1964. Because the data are non-stationary, we take 
differences and model these. An ARMA(1,1) seems appropriate. We put the last 
64 observations aside so that we can verify our predictions. Then, the model is 
fitted and the Box-Jenkins predictions are obtained. The result, including a 95% 
prognosis interval, is shown below. 

 

We observe that the forecast goes to zero exponentially quickly. However, it is in 
fact different from zero for all times. Moreover, all observations down to the very 
first one are used for obtaining the predictions. Again, the ARMA model combines 
the properties from pure AR and MA processes. 

8.2 ARIMA/SARIMA 

8.3 Exponential Smoothing 

8.3.1 Simple Exponential Smoothing 

The objective in this section is to predict some future values n kX   given an 
observed series 1{ ,..., }nX X , and thus no different than before. We first assume 
that the data do not exhibit any deterministic trend or seasonality, or that these 
have been identified and removed. The (conditional) expected value of the 
process can change from one time step to the next, but we do not have any 
information about the direction of this change. A typical application is forecasting 
sales of a well-established product in a stable market. The model is: 
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 t t tX E  , 

where t  is the non-stationary mean of the process at time t , and tE  are 
independent random innovations with expectation zero and constant variance 2

E . 
We will here use the same notation as R does, and let ta , called level of the series, 
be our estimate of t . By assuming that there is no deterministic trend, an intuitive 
estimate for the level at time t  is to take a weighted average of the current time 
series observation and the previous mean: 

 1(1 )t t ta x x     , with 0 1  . 

Apparently, the value of   determines the amount of smoothing: if it is near 1, 
there is little smoothing and the level ta  closely tracks the series tx . This would be 
appropriate if the changes in the mean of the series are large compared to the 
innovation variance 2

E . At the other extreme, an  -value near 0 gives highly 
smoothed estimates of the current mean which take little account of the most 
recent observation. This would be the way to go for series with a large amount of 
noise compared to the signal size. A typical default value is 0.2  , chosen in the 
light that for most series, the change in the mean between t  and 1t   is smaller 
than 2

E . Alternatively, it is (with R) also possible to estimate  , see below. 

Because we assume absence of deterministic trend and seasonality, the best 
forecast at time n  for the future level of the series, no matter what horizon we are 
aiming for, is given by the level estimate at time n , i.e. 

 ,1:
ˆ

n k n nX a  , for all 1,2,...k  . 

We can rewrite the weighted average equation in two further ways, which yields 
insight into how exponential smoothing works. Firstly, we can write the level at 
time t  as the sum of 1ta   and the 1-step forecasting error and obtain the update 
formula: 

 1 1( )t t t ta x a a      

Now, if we repeatedly apply back substitution, we obtain: 

 2
1 2(1 ) (1 ) ...t t t ta x x x            

When written in this form, we see that the level ta  is a linear combination of the 
current and all past observations with more weight given to recent observations. 
The restriction 0 1   ensures that the weights (1 )i   become smaller as i  
increases. In fact, they are exponentially decaying and form a geometric series. 
When the sum over these terms is taken to infinity, the result is 1. In practice, the 
infinite sum is not feasible, but can be avoided by specifying 1 1a x . 

For any given smoothing parameter  , the update formula plus the choice of 

1 1a x  as a starting value can be used to determine the level ta  for all times
2,3,...t  . The 1-step prediction errors te  are given by: 



 

 Page 102 

 ,1:( 1) 1ˆt t t t t te x x x a     . 

By default, R obtains a value for the smoothing parameter   by minimizing the 
sum of squared 1-step prediction errors, called 1SS PE : 

 2

2

1
n

t
t

SS PE e


  . 

There is some mathematical theory that examines the quality of the 1SS PE -
minimizing  . Not surprisingly, this depends very much on the true, underlying 
process. However in practice, this value is reasonable and allows for good 
predictions. 

Practical Example 

We here consider a time series that shows the number of complaint letters that 
were submitted to a motoring organization over the four years 1996-1999. At the 
beginning of year 2000, the organization wishes to estimate the current level of 
complaints and investigate whether there was any trend in the past. We import the 
data and do a time series plot: 

> www  <- "http://www.massey.ac.nz/~pscowper/ts/motororg.dat" 
> dat  <- read.table(www, header=TRUE) 
> cmpl <- ts(dat$complaints, start=c(1996,1), freq=12) 
> plot(cmpl, ylab="", main="Complaints ...") 

 

The series is rather short, and there is no clear evidence for a deterministic trend 
and/or seasonality. Thus, it seems sensible to use exponential smoothing here. 
The algorithm that was described above is implemented in R’s HoltWinters() 
procedure. Please note that HoltWinters() can do more than plain exponential 
smoothing, and thus we have to set arguments beta=FALSE and gamma=FALSE. 
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If we do not specify a value for the smoothing parameter   with argument alpha, 
it will be estimated using the 1SS PE  criterion. 

> fit  <- HoltWinters(cmpl, beta=FALSE, gamma=FALSE); fit 
Holt-Winters exponential smoothing without trend and without 
seasonal component. 
 
Call: 
 HoltWinters(x = cmpl, beta = FALSE, gamma = FALSE)  
 
Smoothing parameters: 
 alpha:  0.1429622  
 beta :  FALSE  
 gamma:  FALSE  
 
Coefficients: 
      [,1] 
a 17.70343 
> plot(fit) 

 

The output shows that the level in December 1999, this is 48a , is estimated as 
17.70. The optimal value for   according to the 1SS PE  criterion is 0.143, and the 
sum of squared prediction errors was 2502. Any other value for   will yield a 
worse result, thus we proceed and display the result visually. 

8.3.2 The Holt-Winters Method 

The simple exponential smoothing approach from above can be generalized for 
series which exhibit deterministic trend and/or seasonality. As we have seen in 
many examples, such series are the norm rather than the exception and thus, 
such a method comes in handy. It is based on these formulae: 
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In the above equations, ta  is again the level at time t , tb  is called the slope and ts  
is the seasonal effect. There are now three smoothing parameters , ,    which 
are aimed at level, slope and season. The explanation of these equations is as 
follows: 

 The first updating equation for the level takes a weighted average of the 
most recent observation with the existing estimate of the appropriate 
seasonal effect subtracted, and the 1-step level forecast at 1t  , which is 
given by level plus slope. 

 The second updating equation takes a weighted average of the difference 
between the current and the previous level with the estimated slope at time 

1t  . Note that this can only be computed if ta  is available. 

 Finally, we obtain another estimate for the respective seasonal term by 
taking a weighted average of the difference between observation and level 
with the previous estimate of the seasonal term for the same unit, which 
was made at time t p .  

If nothing else is known, the typical choice for the smoothing parameters is 
0.2     . Moreover, starting values for the updating equations are required. 

Mostly, one chooses 1 1a x , the slope 1 0b   and the seasonal effects 1,..., ps s  are 
either also set to zero or to the mean over the observations of a particular season. 
When applying the R function HoltWinters(), the starting values are obtained 
from the decompose() procedure, and it is possible to estimate the smoothing 
parameters through 1SS PE  minimization. The most interesting aspect are the 
predictions, though: the k -step forecasting equation for n kX   at time n  is: 

 ,1:
ˆ

n k n n n n k pX a kb s     , 

i.e. the current level with linear trend extrapolation plus the appropriate seasonal 
effect. The following practical example nicely illustrates the method. 

Practical Example 

We here discuss the series of monthly sales (in thousands of litres) of Australian 
white wine from January 1980 to July 1995. This series features a deterministic 
trend, the most striking feature is the sharp increase in the mid-80ies, followed by 
a reduction to a distinctly lower level again. The magnitude of both the seasonal 
effect and the errors seem to be increasing with the level of the series, and are 
thus multiplicative rather than additive. We will cure this by a log-transformation of 
the series, even though there exists a multiplicative formulation of the Holt-Winters 
algorithm, too.  
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> www  <- "http://www.massey.ac.nz/~pscowper/ts/wine.dat" 
> dat  <- read.table(www, header=TRUE) 
> aww  <- ts(dat$sweetw, start=c(1980,1), freq=12) 
> plot(aww, ylab="", main="Sales of Australian White Wine") 

 

> plot(log(aww), ylab="", main="Logged Sales ...") 

 

The transformation seems successful, thus we proceed to the Holt-Winters 
modeling. When we apply parameter estimation by 1SS PE , this is straightforward. 
The fit contains the current estimates for level, trend and seasonality. Note that 
these are only valid for time n , and not for the entire series. Anyhow, it is much 
better to visualize the sequence of ,t ta b  and t  graphically. Moreover, plotting the 
fitted values along with the time series is informative, too. 
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> fit 
Holt-Winters exponential smoothing with trend and additive 
seasonal component. 
 
Call: 
 HoltWinters(x = log(aww))  
 
Smoothing parameters: 
 alpha:  0.4148028  
 beta :  0  
 gamma:  0.4741967  
 
Coefficients: 
a    5.62591329 
b    0.01148402 
s1  -0.01230437 
s2   0.01344762 
s3   0.06000025 
s4   0.20894897 
s5   0.45515787 
s6  -0.37315236 
s7  -0.09709593 
s8  -0.25718994 
s9  -0.17107682 
s10 -0.29304652 
s11 -0.26986816 
s12 -0.01984965 

The coefficient values (at time n ) are also the ones which are used for forecasting 
from that series with the formula given above. We produce a prediction up until the 
end of 1998, which is a 29-step forecast. The R commands are: 

> plot(fit, xlim=c(1980, 1998)) 
> lines(predict(fit, n.ahead=29), col="blue", lty=3) 
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It is also very instructive to plot how level, trend and seasonality evolved over time. 
This can be done very simply in R: 

> plot(fit$fitted, main="Holt-Winters-Fit") 

 

Since we are usually more interested in the prediction on the original scale, i.e. in 
liters rather than log-liters of wine, we just re-exponentiate the values. Please note 
that the result is an estimate of the median rather than the mean of the series. 
There are methods for correction, but the difference is usually only small. 

> plot(aww, xlim=c(1980, 1998)) 
> lines(exp(fit$fitted[,1]), col="red") 
> lines(exp(predict(fit, n.ahead=29)), col="blue", lty=3) 
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Also, we note that the (insample) 1-step prediction error is equal to 50.04, which is 
quite a reduction when compared to the series’ standard deviation which is 121.4. 
Thus, the Holt-Winters fit has substantial explanatory power. Of course, it would 
now be interesting to test the accuracy of the predictions. We recommend that 
you, as an exercise, put aside the last 24 observations of the Australian white wine 
data, and run a forecasting evaluation where all the methods (SARIMA, 
decomposition approaches, Holt-Winters) compete against each other. 

 

8.4 Forecasting Decomposed Series 
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9 Multivariate Time Series Analysis 
While the header of this section says multivariate time series analysis, we will here 
restrict to two series series 1 1,( )tX X  and 2 2,( )tX X , and thus bivariate time 
series analysis, because an extension to more than two series is essentially 
analogous. Please note that a prerequisite for all the theory in this section is that 
the series 1X  and 2X  are stationary. 

Generally speaking, the goal of this section is to describe and understand the 
(inter)dependency between two series. We introduce the basic concepts of cross 
correlation and transfer function models, warn of arising difficulties in interpretation 
and show how these can be mitigated.  

9.1 Practical Example 

We will illustrate the theory on multivariate time series analysis with a practical 
example. The data were obtained in the context of the diploma thesis of Evelyn 
Zenklusen Mutter, a former WBL student who works for the Swiss Institute for 
Snow and Avalanche Research SLF. The topic is how the ground temperature in 
permafrost terrain depends on the ambient air temperature. The following section 
gives a few more details. 

Ambient air temperatures influence ground temperatures with a certain temporal 
delay. Borehole temperatures measured at 0.5m depth in alpine permafrost 
terrain, as well as air temperatures measured at or nearby the boreholes will be 
used to model this dependency. The reaction of the ground on the air temperature 
is influenced by various factors such as ground surface cover, snow depth, water 
or ground ice content. To avoid complications induced by the insulating properties 
of the snow cover and by phase changes in the ground, only the snow-free 
summer period when the ground at 0.5m is thawed will be considered. 

We here consider only one single borehole, it is located near the famous Hörnli hut 
at the base of Matterhorn near Zermatt/CH on 3295m above sea level. The air 
temperature was recorded on the nearby Platthorn at 3345m of elevation and 
9.2km distance from the borehole. Data are available from beginning of July 2006 
to the end of September 2006. After the middle of the observation period, there is 
a period of 23 days during which the ground was covered by snow, highlighted in 
grey color in the time series plots on the next page.  

Because the snow insulates the ground, we do not expect the soil to follow the air 
temperature during that period. Hence, we set all values during that period equal 
to NA. The time series plots, and especially the indexed plot where both series are 
shown, clearly indicate that the soil temperature reacts to the air temperature with 
a delay of a few days. We now aim for analyzing this relationship on a more 
quantitative basis, for which the methods of multivariate time series analysis will 
be employed. 
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As we had stated above, multivariate time series analysis requires stationarity. Is 
this met with our series? The time series plot does not give a very clear answer. 
Science tells us that temperature has a seasonal pattern. Moreover, the 
correlogram of the two series is enlightening. 
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The ACF exhibits a slow decay, especially for the soil temperature. Thus, we 
decide to perform lag 1 differencing before analyzing the series. This has another 
advantage: we are then exploring how changes in the air temperature are 
associated with changes in the soil temperature and if so, what the time delay is. 
These results are easier to interpret than a direct analysis of air and soil 
temperatures. Next, we display the differenced series with their ACF and PACF. 
The observations during the snow cover period are now omitted. 

 

 

The differenced air temperature series seems stationary, but is clearly not iid. 
There seems to be some strong negative correlation at lag 4. This may indicate 
the properties of the meteorological weather patterns at that time of year in that 
part of Switzerland. We now perform the same analysis for the changes in the soil 
temperature. 
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In the course of our discussion of multivariate time series analysis, we will require 
some ARMA(p,q) models fitted to the changes in air and soil temperature. For the 
former series, model choice is not simple, as in both ACF and PACF, the 
coefficient at lag 4 sticks out. A grid search shows that an AR(5) model yields the 
best AIC value, and also, the residuals from this model do look as desired, i.e. like 
white noise. 

For the changes in the soil temperature, model search is easier. ACF and PACF 
suggest either a MA(1), an ARMA(2,1) or an AR(2). From these three models, the 
first one, MA(1) shows both the lowest AIC value as well as the “best looking” 
residuals. 
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9.2 Cross Correlation 

To begin with, we consider the (theoretical) cross covariance, the measure that 
describes the amount of linear dependence between the two time series 
processes. Firstly, we recall the definition of the within-series autocovariances, 
denoted by 11( )k  and 22 ( )k : 

 11 1, 1,( ) ( , ) t k tk Cov X X  , 22 2, 2,( ) ( , ) t k tk Cov X X   

The cross covariances between the two processes 1X  and 2X  are given by: 

12 1, 2,( ) ( , )t k tk Cov X X  , 21 2, 1,( ) ( , )t k tk Cov X X   

Note that owing to the stationarity of the two series, the cross covariances 12 ( )k  
and 21( )k  both do not depend on the time t . Moreover, there is some obvious 
symmetry in the cross covariance: 

12 1, 2, 1, 2, 21( ) ( , ) ( , ) ( )t k t t t kk Cov X X Cov X X k       

Thus, for practical purposes, it suffices to consider 12 ( )k  for positive and negative 
values of k . Note that we will preferably work with correlations rather than 
covariances, because they are scale-free and thus easier to interpret. We can 
obtain the cross correlations by standardizing the cross covariances: 

12
12

11 22

( )
( )

(0) (0)

k
k


 

 , 21
21

11 22

( )
( )

(0) (0)

k
k


 

 . 

Not surprisingly, we also have symmetry here, i.e. 12 21( ) ( )k k   . Additionally, 
the cross correlations are limited to the interval between -1 and +1, i.e. 12| ( ) | 1k  . 
As for the interpretation, 12 ( )k  measures the linear association between two 
values of 1X  and 2,X  if the value of the first time series is k  steps ahead. 
Concerning estimation of cross covariances and cross correlations, we apply the 
usual sample estimators: 

 12 1, 1 2, 2

1
ˆ ( ) ( )( )t k t

t

k x x x x
n

     and 21 2, 2 1, 1

1
ˆ ( ) ( )( )t k t

t

k x x x x
n

    ,  

where the summation index t  for 0k   goes from 1 to n k  and for 0k   goes 
from 1 k  to n . With 1x  and 2x  we denote the mean values of 1,tx  and 2,tx , 
respectively. We define the estimation of the cross-correlations as 

 12
12

11 22

ˆ ( )
ˆ ( )

ˆ ˆ(0) (0)

k
k


 

 , 21
21

11 22

ˆ ( )
ˆ ( )

ˆ ˆ(0) (0)

k
k


 

 . 

The plot of 12ˆ ( )k  against k  is called the cross-correlogram. Note that this must be 
viewed for both positive and negative k . In R, we the job is done by the acf() 
function, applied to a multiple time series object. 
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> both <- ts.union(diff(air.na), diff(soil.na)) 
> acf(both, na.action=na.pass, ylim=c(-1,1)) 

 

The top left panel shows the ACF of the differenced air temperature, the bottom 
right one holds the pure autocorrelations of the differenced soil temperature. The 
two off-diagonal plots contains estimates of the cross correlations: The top right 
panel has 12ˆ ( )k  for positive values of k , and thus shows how changes in the air 
temperature depend on changes in the soil temperature.  

Note that we do not expect any significant correlation coefficients here, because 
the ground temperature has hardly any influence on the future air temperature at 
all. Conversely, the bottom left panel shows 12ˆ ( )k  for negative values of k , and 
thus how the changes in the soil temperature depend on changes in the air 
temperature. Here, we expect to see significant correlation. 

9.2.1 Interpreting the Cross Correlogram 

Interpreting the cross correlogram is tricky, because the within-series dependency 
results in a mixing of the correlations. It is very important to note that the 
confidence bounds shown in the above plots are usually wrong and can thus be 
strongly misleading. If not the additional steps to be discussed below are taken, 
interpreting the raw cross correlograms will lead to false conclusions.  

The reason for these problems is that the variances and covariances of the 12ˆ ( )k  
are very complicated functions of 11 22( ), ( )j j   and 12 ( ),j j  . For illustrative 
purposes, we will treat some special cases explicitly. 
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Case 1: No correlation between the two series for large lags 

In the case where the cross correlation 12 ( ) 0j   for | |j m , we have for | |k m :  

 12 11 22 12 12

1
ˆ( ( )) { ( ) ( ) ( ) ( )}

j

Var k j j j k j k
n

    




    . 

Thus, the variance of the estimated cross correlation coefficients goes to zero for 
$n \rightarrow \infty$, but for a deeper understanding with finite sample size, we 
must know all true auto and cross-correlations, which is of course impossible in 
practice. 

Case 2: No correlation between the series for all lags 

If the two processes 1X  and 2X  are independent, i.e. 12 ( ) 0j   for all j , then the 
variance of the cross correlation estimator simplifies to: 

 12 11 22

1
ˆ( ( )) ( ) ( )

j

Var k j j
n

  




  . 

If, for example, 1X  and 2X  are two independent AR(1) processes with parameters 

1  and 2 , then | | | |
11 1 22 2( ) , ( )j jj j      and 12 ( ) 0j  . For the variance of 12ˆ ( )k  

we have, because the autocorrelations form a geometric series: 

| | 1 2
12 1 2

1 2

1 1 1
ˆ( ( )) ( ) ·

1
j

j

Var k
n n

   
 






 

 . 

For 1 1   and 2 1   this expression goes to  , i.e. the estimator 12ˆ ( )k  can, for 
a finite time series, differ greatly from the true value 0 . We would like to illustrate 
this with two simulated AR(1) processes with 1 2 0.9   . According to theory all 
cross-correlations are 0. However, as we can see in the figure on the next page, 
the estimated cross correlations differ greatly from 0, even though the length of the 
estimated series is 200. In fact, 12ˆ2 ( ( )) 0.44Var k   , i.e. the 95% confidence 
interval is $\pm 0.44$. Thus even with an estimated cross-correlation of 0.4 the 
null hypothesis “true cross-correlation is equal to 0” cannot be rejected. 

Case 3: No cross correlations for all lags and one series uncorrelated 

Only now, in this special case, the variance of the cross correlation estimator is 
significantly simplified. In particular, if 1X  is a white noise process which is 
independent of 2X , we have, for large n  and small k : 

 12

1
ˆ( ( ))Var k

n
  . 

Thus, in this special case, the rule of thumb 2 / n  yields a valid approximation to 
a 95% confidence interval for the cross correlations and can help to decide 
whether they are significantly or just randomly different from zero.  
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to get an approximate $95\%$ confidence interval that helps to decide whether an 
estimated cross-correlation is only randomly different from 0. 

 

 

In most practical examples, however, the data will be auto- and also cross 
correlated. Thus, the question arises whether it is at all possible to do something 
here. Fortunately, the answer is yes: with the method of prewhitening, described in 
the next chapter, we do obtain a theoretically sound and practically useful cross 
correlation analysis.  

9.3 Prewhitening 

The idea behind prewhitening is to transform one of the two series such that it is 
uncorrelated, i.e. a white noise series, which also explains the name of the 
approach. Formally, we assume that the two stationary processes 1X  and 2X  can 
be transformed as follows: 
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Thus, we are after coefficients ia  and ib  such that an infinite linear combination of 
past terms leads to white noise. We know from previous theory that such a 
representation exists for all stationary and invertible ARMA(p,q) processes, it is the 
AR( ) representation. For the cross-correlations between tU  and tV  and between 

tX  and tY , the following relation holds: 

 
1 2

0 0

( ) ( )UV i j X X
i j

k a b k i j 
 

 

    

We conjecture that for two independent processes 1X  and 2X , where all cross 
correlation coefficients 

1 2
( ) 0X X k  , also all ( ) 0UV k  . Additionally, the converse 

is also true, i.e. it follows from “ tU  and tV  uncorrelated” that the original processes 

1X  and 2X  are uncorrelated, too. Since tU  and tV  are white noise processes, we 
are in the above explained case 3, and thus the confidence bounds in the cross 
correlograms are valid. Hence, any cross correlation analysis on “real” time series 
starts with representing them in terms of tu  and tv . 

Example: AR(1) Simulations 

For our example with the two simulated AR(1) processes, we can estimate the AR 
model coefficients with the Burg method and plug them in for prewhitening the 
series. Note that this amounts considering the residuals from the two fitted models! 

1, 1 1, 1ˆt t txu x   , where 1ˆ 0.889  , and 

2, 2 2, 1ˆt t txv x   , where 2ˆ 0.917  . 
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The figure on the previous page shows both the auto and cross correlations of the 
prewhitened series. We emphasize again that we here consider the residuals from 
the AR(1) models that were fitted to series 1X  and 2X . We observe that, as we 
expect, there are no significant autocorrelations, and there is just one cross 
correlation coefficient that exceeds the 95% confidence bounds. We can attribute 
this to random variation. 

The theory suggests, because tU  and tV  are uncorrelated, that also 1X  and 2X  
do not show any linear dependence. Well, owing to how we set up the simulation, 
we know this for a fact, and take the result as evidence that the prewhitening 
approach works in practice. 

Example: Air and Soil Temperatures 

For verifying whether there is any cross correlation between the changes in air and 
soil temperatures, we have to perform prewhitening also for the two differenced 
series. Previously, we had identified an AR(5) and a MA(1) model as. We can now 
just take their residuals and perform a cross correlation analysis: 

> fit.air  <- arima(diff(air.na), order=c(5,0,0)) 
> fit.soil <- arima(diff(soil.na), order=c(0,0,1)) 
> u.air    <- resid(fit.air) 
> v.soil   <- resid(fit.soil) 
> acf(ts.union(u.air, v.soil), na.action=na.pass) 

 

The bottom left panel shows some significant cross correlations. A change in the 
air temperature seems to induce a change in the soil temperature with a lag of 1 or 
2 days. 
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9.4 Transfer Function Models 

In the previous section we had observed significant cross correlations between the 
prewhitened air and soil temperature changes. This means that the cross 
correlations between the original air and soil temperature changes will also be 
different from zero. However, due to the prewhitening, inferring the magnitude of 
the linear association is different. The aim of this section is to clarify this issue. 

The transfer function models are a possible way to capture the dependency 
between two time series. We must assume that the first series influences the 
second, but the second does not influence the first. Furthermore, the influence 
occurs only at simultaneously or in the future, but not on past values. Both 
assumptions are met in our example. The transfer function model is: 

2, 2 1, 1
0

( )t j t j t
j

X X E  





     

We call 1X  the input and correspondingly, 2X  is named the output. For the error 
term tE  we require zero expectation and that they are independent from the input 
series, in particular: 

[ ] 0tE E   and 1,,( ) 0t sCov E X   for all t  and s .  

However, the errors tE  are usually autocorrelated. Note that this model is very 
similar to the time series regression model. However, here we have infinitely many 
unknown coefficients j , i.e. we do not know (a priori) on which lags to regress the 
input for obtaining the output. For the following theory, we assume (w.l.o.g.) that 

1 2 0   , i.e. the two series were adjusted for their means. In this case the cross 
covariances 21( )k  are given by: 

21 2, 1, 1, 1, 11
0 0

( ) ( , ) ( , ) ( )t k t j t k j t j
j j

k Cov X X Cov X X k j   
 

  
 

     . 

In cases where the transfer function model has a finite number of coefficients j  
only, i.e. 0j   for j K , then the above formula turns into a linear system of 

1K   equations that we could theoretically solve for the unknowns , 0, ,j j K   . 

If we replaced the theoretical 11  and 21  by the empirical covariances 11̂  and 21̂ , 
this would yield, estimates ˆ j . However, this method is statistically inefficient and 
the choice of K  proves to be difficult in practice. We again resort to some special 
case, for which the relation between cross covariance and transfer function model 
coefficients simplifies drastically.  

Special Case: Uncorrelated input series 1X  

In this case, 11( ) 0k   for 0k   and we have 21 11( ) (0)kk   . For the coefficients 

k  this results in the simplified transfer function model: 
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21 22
21

11 11

( ) (0)

(0) (0)k

k  
 

  , for 0k  .  

However, 1X  generally is not a white noise process. We can resort to prewhitening 
the input series. As we will show below, we can obtain an equivalent transfer 
function model with identical coefficients if a smart transformation is applied to the 
output series. Namely, we have to filter the output with the model coefficients from 
the input series. 

1, 1, 1 1, 2 1, 3 1, 4 1, 50.296· 0.242· 0.119· 0.497· 0.216·t t t t t t tX X X X X X D          , 

where tD  is the innovation, i.e. a white noise process, for which we estimate the 
variance to be 2ˆ 2.392D  . We now solve this equation for tD  and get: 

1, 1, 1 1, 2 1, 3 1, 4 1, 5
2 3 4 5

1,

0.296· 0.242· 0.119· 0.497· 0.216·

(1 0.296 0.242 0.119 0.497 0.216 )
t

t

t t t t t tX X X X X X

B B B B B X

D         
    




 

We now apply this same transformation, i.e. the characteristic polynomial of the 
AR(5) also on the output series 2X  and the transfer function model errors tE : 

 2 3 4 5
2,(1 0.296 0.242 0.119 0.497 0.216 )t tZ B B B B B X       

 2 3 4 5(1 0.296 0.242 0.119 0.497 0.216 ) tt BU B B B B E     . 

We can now equivalently write the transfer function model with the new processes

tD , tZ  and tU . It takes the form: 

 
0

t j t j t
j

Z D U





  , 

where the coefficients j  are identical than for the previous formulation of the 
model. The advantage of this latest formulation, however, is that the input series 

tD  is now white noise, such that the above special case applies, and the transfer 
function model coefficients can be obtained by a straightforward computation from 
the cross correlations: 

 21
212

ˆ ˆ( )
ˆ ˆ ( )

ˆ ˆ
Z

k
D D

k
k

  
 

  , where 0k  . 

where 21̂  and 21̂  denote the empirical cross covariances and cross correlations 
of tD  and tZ . However, keep in mind that tZ  and tU  are generally correlated. 
Thus, the outlined method is not a statistically efficient estimator either. While 
efficient approaches exist, we will not discuss them in this course and scriptum. 
Furthermore, for practical application the outlined procedure usually yields reliable 
results. We conclude this section by showing the results for the permafrost 
example. 
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The transfer function model coefficients in the example are based on the cross 
correlation between the AR(5) residuals of the air temperature changes and the 
soil temperature changes that had been filtered with the air’s AR(5) coefficients. 

> dd.air  <- resid(fit.air) 
> coefs   <- coef(fit.air)[1:5]) 
> zz.soil <- filter(diff(soil.na), c(1, -coefs, sides=1) 
> as.int  <- ts.intersect(dd.air, zz.soil) 
> acf.val <- acf(as.int, na.action=na.pass) 

 

Again, in all except for the bottom left panel, the correlation coefficients are mostly 
zero, respectively only insignificantly or by chance different from that value. This is 
different in the bottom left panel. Here, we have substantial cross correlation at 
lags 1 and 2. Also, these values are proportional to the transfer function model 
coefficients. We can extract these as follows: 

> multip  <- sd(zz.soil, na.rm=TRUE)/sd(dd.air, na.rm=TRUE) 
> multip*acf.val$acf[,2,1] 
 [1]  0.054305137  0.165729551  0.250648114  0.008416697 
 [5]  0.036091971  0.042582917 -0.014780751  0.065008411 
 [9] -0.002900099 -0.001487220 -0.062670672  0.073479065 
[13] -0.049352348 -0.060899602 -0.032943583 -0.025975790 

Thus, the soil temperature in the permafrost boreholes reacts to air temperature 
changes with a delay of 1-2 days. An analysis of further boreholes has suggested 
that the delay depends on the type of terrain in which the measurements were 
made. Fastest response times are found for a very coarse-blocky rock glacier site, 
whereas slower response times are revealed for blocky scree slopes with smaller 
grain sizes. 
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10 Spectral Analysis 
During this course, we have encountered several time series which show periodic 
behavior. Prominent examples include the number of shot lynx in the Mackenzie 
River district in Canada, as well as the wave tank data from section 4.3. In these 
series, the periodicity is not deterministic, but stochastic. An important goal is to 
understand the cycles at which highs and lows in the data appear. 

In this chapter, we will introduce spectral analysis as a descriptive means for 
showing the character of, and the dependency structure within a time series. This 
will be based on interpreting the series as a superposition of cyclic components, 
namely as a linear combination of harmonic oscillations. We will introduce the 
periodogram, where the aim is to show which frequencies contribute most 
importantly to the variation in the series. 

In spirit, such an analysis is related to the correlogram. In fact, one can show that 
the information in the correlogram and the periodogram are mathematically 
equivalent. However, the two approaches still provide different, complementary 
views on a series and it is thus often worthwhile to pursue both approaches. 
Finally, we here also mention that in some areas time series are preferably 
analyzed in the time domain, whereas in other applied fields, e.g. electrical 
engineering, geophysics and econometrics, the frequency approach 
predominates. 

10.1 Decomposing in the Frequency Domain 

We will here first introduce some background and theory on how to decompose 
time series into cyclic components and then lay the focus on the efficient 
estimation of these. 

10.1.1 Harmonic Oscillations 

The simplest and best known periodic functions are sine and cosine. It is thus 
appealing to use these as a basis for decomposing time series. A harmonic 
oscillation is of the form 

 ( ) cos(2 )y t a t    . 

Here, we call a  the amplitude, v  is the frequency and   is the phase. Apparently, 
the function ( )y t  is periodic, and the period is 1/T  . It is common to write the 
above harmonic oscillation in a different form, i.e.: 

 ( ) cos(2 ) sin(2 )y t t t       , 

where in fact cos( )a   and sin( )a  . The advantage of this latter form is that 
if we want to fit a harmonic oscillation with fixed frequency to data, which means 
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estimating amplitude and phase, we face a linear problem instead of a non-linear 
one, as it was the case in the previous formulation. The time can be either 
continuous or discrete. In the context of our analysis of discrete time series, only 
the latter will be relevant. 

Now, if fitting a harmonic oscillation to discrete data, we face an identification 
problem: If frequency   fits, then all higher frequencies such as 1, 2, ...    will 
fit as well. This phenomenon is now as aliasing. The plot below shows harmonics 
where 1a   and 0  . As frequencies, we choose both 1/ 6   and 1 1/ 6   . 
We observe that we cannot decide upon which of the two frequencies generated 
our discrete time observations. Naturally, the time resolution of our series 
determines which frequencies we can identify. Or more clearly: we take the point 
that our data do not allow to identify periodicities with frequency 1/ 2  , i.e. that 
harmonics which oscillate more than once between two observations. 

10.1.2 Superposition of Harmonics 

In a real-world stationary time series, it is rare to inexistent that only one single 
periodicity that can be attributed to a single frequency makes up for all the 
variation that is observed. Thus, for a decomposition of the series into a number of 
periodicities with different frequency, we choose the following regression-type 
approach: 

 0
1

( cos(2 ) sin(2 ))
m

t k k k k t
k

X t t E    


    , 

where ,k k   are interpreted as the unknown parameters, tE  is an iid error term 
with expectation zero and 1, ..., m   is a set of pre-defined frequencies. Under 
these assumptions, we can obtain estimates ˆˆ ,k k   with the ordinary least squares 
algorithm. As for the frequencies, we choose multiples of 1/ n , i.e. 

 /k k n  , for 1, ...,k m  with / 2m n    . 

These are called the Fourier frequencies. Using some mathematics, one can 
prove that the above regression problem has orthogonal design. Thus, the 
estimated coefficients ˆˆ ,k k   are uncorrelated and (for 0k  ) have variance 

22 / 2E . Because we are also spending n  parameters for the n  observations, the 
frequency decomposition model fits perfectly, i.e. all residuals are zero. Another 
very important result is that the 

sum of squared residuals 2

1

n

i
i

r

  increases by 2 2ˆˆ( )

2 k k

n    

if the frequency k  is omitted from the model. We can use this property to gauge 
the prominence of a particular frequency in the decomposition model. This is what 
is done with the periodogram, which we will discuss in detail in the following 
section. 
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10.1.3 The Periodogram 

The periodogram quantifies the presence of periodicities in a time series. It is 
based on half of the increase in sum of squared residuals in the decomposition 
model if a particular frequency is omitted. We can rewrite that directly as a function 
of the observations: 

 

2 2

2 2

1 1

ˆˆ( ) ( )
4

1 1
cos(2 ) sin(2 )

n k k k

n n

t k t k
t t

n
I

x t x t
n n

  

 
 

 

   
    

   
 

 

The result is then plotted versus the frequency k , and this is known as the raw 
periodogram. In R, we can use the convenient function spec.pgram(). We 
illustrate its use with the lynx and the wave tank data: 

> spec.pgram(log(lynx), log="no", type="h") 
> spec.pgram(wave, log="no", type="h") 

 

The periodogram of the logged lynx data is easy to read: the most prominent 
frequencies in this series with 114 observations are the ones near 0.1, more 
exactly, these are 11 11/114 0.096    and 12 12 /114 0.105   . The period of these 
frequencies is 1/ k  and thus, 114 /11 10.36  and 114 /12 9.50 . This suggests that 
the series shows a peak at around every 10th observation which is clearly the case 
in practice. We can also say that the highs/lows appear between 11 and 12 times 
in the series. Also this can easily be verified in the time series plot. 

Time Series Plot of log(lynx)
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Then, there is a secondary peak at 3 3 /114  . This must be a cyclic component 
that appears three times in our data, and the period is 114 / 3 38 . Thus, these are 
the 40-year-superhighs and -lows that we had identified already earlier.  

For the wave tank data, we here consider the first 120 observations only. The 
periodogram is not as clean as for the logged lynx data, but we will try with an 
interpretation, too. The most prominent peaks are at 12, 17k  and 30 . Thus we 
have a superposition of cycles which last 4, 7 and 10 observations. The 
verification is left to you. 

10.1.4 Leakage 

While some basic inspections of the periodogram can and sometimes do already 
provide valuable insight, there are a few issues which need to be taken care of. 
The first one which is discussed here is the phenomenon called leakage. It 
appears if there is no Fourier frequency that corresponds to the true periodicity in 
the data. Usually, the periodogram then shows higher values in the vicinity of the 
true frequency. The following simulation example is enlightening: 

 
2 13 2 20

cos 0.8 cos
140 140t

t t
X

            
   

, for 0, ..., 139t   

We have a series of 140 observations which is made up as the superposition of 
two harmonic oscillations with frequencies 13 /140  and 20 /140 . These correspond 
to periods of 7.00  and 10.77 , and both are Fourier frequencies. We display the 
time series plot, as well as the periodogram: 
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Now if we shorten this very same series by 16 data points so that 124 
observations remain, the true frequencies 20 /140  and 13 /140  do no longer 
appear in the decomposition model, i.e. are not Fourier frequencies anymore. The 
periodogram now shows leakage: 

 

If not all of the true frequencies in the data generating model are Fourier 
frequencies, then, ˆˆ ,k k   from the decomposition model are only approximations 
to the true contribution of a particular frequency for the variation in the series. 

 
  

0 10 20 30 40 50 60

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

1:62

Raw Periodogram of Shortened Series



 

 Page 127 

11 State Space Models 
State space modeling is a very flexible tool that can be applied in almost all 
applied fields. It would certainly merit a full course focusing on applied aspects on 
its own. Due to restrictions in time, we here provide only a small overview on the 
potential of the method. While it is possible to write most time series models in 
state space formulation, it is usually simpler to do without and use their own 
genuine notation. The real benefits of state space models only become unveiled 
when one has to deal with observations that are blurred with additional noise, or 
with situations, where some parameters are required to adapt over time. 

We will here first introduce the general formulation of state space models, and 
then illustrate with a number of examples. The first two concern AR processes with 
additional observation noise, and the latter two are dynamic linear models, i.e. 
regression problems with time-varying coefficients, and the growth model.  

The coefficients of state space models are usually estimated with the Kalman 
Filter. Because this is mathematically rather complex and in the primary focus of 
the user, this scriptum does not provide many details about it. 

11.1 State Space Formulation 

State space models are built on two equations. One is the state equation, and the 
other is the observation equation. We here introduce the general notation; their 
meaning will become clearer with examples discussed below. 

State Equation 

The values of the state at time t  are represented by a column matrix tX , and are 
a linear combination of the values of the state at time 1t   and random variation 
(system noise) from a multivariate normal distribution. The linear combination of 
values of the state at time 1t   is defined with a matrix tG , and the covariance 
matrix of the multivariate normal is denoted with tw . 

 1t t t tX G X W  , where ~ (0, )t tW N w  

Observation Equation 

The observation at time t  is denoted by a column matrix tY  that is a linear 
combination of the states, determined by a matrix tF , and random variation 
(measurement noise) from a normal distribution with covariance matrix tv . 

 t t t tY F X V  , where ~ (0, )t tV N v  

Note that in this general formulation, all matrices can be time varying, but in most 
of our examples, they will be constant. Also, the nomenclature is different 
depending on the reference, but we here adopt the notation of R.  
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11.2 AR Processes with Measurement Noise 

We are interested in a stochastic process tX  (which may be an AR process). 
Then, one usually makes measurements to obtain observations, i.e. acquires a 
realization of the process. So far, we operated under the assumption that the 
measurements were error-free, i.e. that there was no measurement noise. In many 
cases, this is hardly realistic, and we may rather have realizations of some random 
variable 

 t t tY X V  , where 2~ (0, )t VV N  . 

Thus, the realizations of the process of interest, tX  are latent, i.e. hidden under 
some random noise. We will now discuss how this issue can be solved in practice. 

Example: AR(1) 

As the simplest example of a state space model, we consider an AR(1) process 
which is superposed with some additional measurement noise. The state equation 
is as follows: 

 1 1t t tX X W   . 

We assume that tW  is an iid innovation with Gaussian distribution, i.e. 
2~ (0, )t WW N  . Also note that matrix tG  has dimension 1 1 , is time-constant and 

equal to 1 . Under some additional measurement noise, our observations can be 
perceived as realizations of the random variable tY : 

t t tY X V  , where 2~ (0, )t VV N  . 

This is the observation equation, note that tF  is also time-constant and equal to 
the 1 1  identity matrix. We here assume that the errors tV  are iid, and also 
independent of sX  and sW  for all t  and s . It is important to note that tW  is the 
process innovation that impacts future instances t kX  . In contrast, tV  is pure 
measurement noise with no influence on the future of process tX . 

For illustration, we consider a simulation example. We use 1 0.7  , the innovation 
variance 2

W  is 0.1 and the measurement error variance 2
V  is 0.5. The length of 

the simulated series is 100 observations. On the next page, we show a number of 
plots. They include a time series plot with both series tX  and tY , and the individual 
plots of tX  with its ACF/PACF, and of tY  with ACF/PACF. 

We clearly observe that the appearance of the two processes is very different. 
While tX  looks like an autoregressive process, and has ACF and PACF showing 
the stylized facts very prominently, tY  almost appears to be White Noise. Please 
note that this is not true. There is some dependency also in tY , but it is blurred by 
some very strong noise component. 

 



 

 Page 129 

 

 

We here emphasize, that the state space formulation allowed to write a model 
comprised of a true signal plus additional noise. However, if we face an observed 
series of this type, we are not any further yet. We need some means to separate 
the two components. Kalman filtering allows doing so. In R package sspir, there 
are procedures that do the job, but they require a correctly formulated state space 
model as an input. The next page shows the details. 
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## Load the package for Kalman filtering 
library(sspir) 
 
## State Space Formulation 
ssf <- SS(y = as.matrix(obs),  
          Fmat = function(tt,x,phi) { return(matrix(1)) }, 
          Gmat = function(tt,x,phi) { return(matrix(0.7)) }, 
          Vmat = function(tt,x,phi) { return(matrix(0.5)) }, 
          Wmat = function(tt,x,phi) { return(matrix(0.1)) }, 
          m0 = matrix(0), 
          C0 = matrix(0.1)) 
 
## Kalman Filtering 
fit  <- kfilter(ssf) 
plot(fit$m, col="blue", lwd=2, ...) 

Kalman filter in R requires to specifiy the state space model first. We need to 
supply argument y which stands for the observed time series data. They have to 
come in the form of a matrix. Moreover, we have to specify the matrices ,t tF G , as 
well as the covariance structures ,t tv w . In our case, these are all simple 1 1  
matrices. Finally, we have to provide m0, the starting value of the initial state, and 
C0, the variance of the initial state. 

 

We can then employ the Kalman filter to recover the original signal tX . It was 
added as the blue line in the above plot. While it is not 100% accurate, it still does 
a very good job of filtering the noise out. However, note that with this simulation 
example, we have some advantage over the real simulation. It was easy for us to 
specify the correct state space formulation. In practice, we might have problems to 
identify good values for tG  (the true AR(1) parameter) and the variances in ,t tv w . 
On the other hand, in practice the precision of many measurement devices is more 
or less known, and thus some educated guess is possible. 
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Example: AR(2) 

Here, we demonstrate the formulation of a state space model for an AR(2) process 
that is superimposed with some measurement error. This example is important, 
because now, we need to use matrices in the state equation. It is as follows: 

 11 2

1 21 0 0
t t t

t t

X X W

X X

  

 

      
       
      

 

Apparently, this is a two-dimensional model. The observation equation is: 

 
1

(1 0) t
t t

t

X
Y V

X 

 
   

 
 

Once the equations are set up, it is straightforward to derive the matrices: 

 1 2

0 0tG G
  

   
 

, (1 0)tH H  , 
2 0

0 0
W

tw
 

  
 

, 2
t Vv   

Similar to the example above, we could now simulate from an AR(2) process, add 
some artificial measurement noise and then try to uncover the signal using the 
Kalman filter. This is left as an exercise. 

11.3 Dynamic Linear Models 

A specific, but very useful application of state space models is to generalize linear 
regression such that the coefficients can vary over time. We consider a very 
simple example where the sales manager in a house building company uses the 
following model: the company’s house sales at time t , denoted as tS , depends on 
the general levels of sales in that area tL  and the company’s pricing policy tP .  

 t t t t tS L P V    

This is a linear regression model with price as the predictor, and the general level 
as the intercept. The assumption is that their influence varies over time, but 
generally only in small increments. We can use the following notation: 

 1t t tL L L    

 1t t t      

In this model, we assume that tv , tL  and t  are random deviations with mean 
zero that are independent over time. While we assume independence of tL  and 

t , we could also allow for correlation among the two. The relative magnitudes of 
these perturbations are accounted for with the variances in the matrices tV  and tW  
of the state space formulation. Note that if we set 0tW  , then we are in the case 
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of plain OLS regression with constant parameters. Hence, we can also formulate 
any regression models in state space form. Here, we have: 

 t tY S , t
t

t

L
X


 

  
 

, t
t

t

L
W


 

   
, 

1
t

t

F
P

 , 
1 0

0 1
G

 
  
 

 

Because we do not have any data for this sales example, we again rely on a 
simulation. Apparently, this also features the advantage that we can evaluate the 
Kalman filter output versus the truth. Thus, we let 

 t t ty a bx z    

 2 /10tx t   

We simulate 30 data points from 1,...,30t   and assume errors which are standard 
normally distributed, i.e. ~ (0,1)tz N . The regression coefficients are 4a   and 

2b   for 1,...,15t   and 5a   and 1b    for 16,...,30t  . We will fit a straight line 
with time-varying coefficients, as this is the model that matches what we had found 
for the sales example above. 

## Simulation 
set.seed(1) 
x1    <- 1:30 
x1    <- x1/10+2 
aa    <- c(rep(4,15), rep( 5,15)) 
bb    <- c(rep(2,15), rep(-1,15)) 
nn    <- length(x1) 
y1    <- aa+bb*x1+rnorm(nn) 
x0    <- rep(1,nn) 
xx    <- cbind(x0,x1) 
x.mat <- matrix(xx, nrow=nn, ncol=2) 
y.mat <- matrix(y1, nrow=nn, ncol=1) 
 
## State Space Formulation 
ssf <- SS(y=y.mat, x=x.mat, 
          Fmat=function(tt,x,phi) 
            return(matrix(c(x[tt,1],x[tt,2]),2,1)), 
          Gmat=function(tt,x,phi) return(diag(2)), 
          Wmat=function(tt,x,phi) return(0.1*diag(2)), 
          Vmat=function(tt,x,phi) return(matrix(1)), 
          m0=matrix(c(5,3),1,2), 
          C0=10*diag(2)) 
 
## Kalman-Filtering 
fit <- kfilter(ssf) 
par(mfrow=c(1,2)) 
plot(fit$m[,1], type="l", xlab="Time", ylab="") 
title("Kalman Filtered Intercept") 
plot(fit$m[,2], type="l", xlab="Time", ylab="") 
title("Kalman Filtered Slope") 
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The plots show the Kalman filter output for intercept and slope. The estimates pick 
up the true values very quickly, even after the change in the regime. It is worth 
noting that in this example, we had a very clear signal with relatively little noise, 
and we favored recovering the truth by specifying the state space formulation with 
the true error variances that are generally unknown in practice. 
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