

Ap

FS

Dr.

Instit

Zuric

CH-8

pplied

S 2012

Marcel D

tute for Da

ch Univers

8401 Winte

d Tim

Dettling

ata Analysi

sity of Appl

erthur

me Se

s and Proc

ied Scienc

eries A

cess Desig

ces

Analy

gn

ysis

 Page 1

1 Introduction

1.1 Purpose

Time series data, i.e. records which are measured sequentially over time, are
extremely common. They arise in virtually every application field, such as e.g.:

 Business
Sales figures, production numbers, customer frequencies, ...

 Economics
Stock prices, exchange rates, interest rates, ...

 Official Statistics
Census data, personal expenditures, road casualties, ...

 Natural Sciences
Population sizes, sunspot activity, chemical process data, ...

 Environmetrics
Precipitation, temperature or pollution recordings, ...

The purpose of time series analysis, simply put, is to understand the past data,
and to forecast future values. While some simple descriptive techniques do often
considerably enhance the understanding of the data, a full analysis usually
involves modeling the stochastic mechanism that gives rise to the observed series.

Once a good model is found and fitted to data, the analyst can use that model to
forecast future values and produce prediction intervals, or he can generate
simulations, for example to guide planning decisions. Moreover, fitted models are
used as a basis for statistical tests: they allow determining whether fluctuations in
monthly sales provide evidence of some underlying change, or whether they are
still within the range of usual random variation.

The dominant main features of many time series are trend and seasonal variation,
both of which can be modeled deterministically by mathematical functions of time.
Yet another key feature of most time series is that adjacent observations tend to
be correlated, i.e. serially dependent. Much of the methodology in time series
analysis is aimed at explaining this correlation using appropriate statistical models.

While the theory on mathematically oriented time series analysis is vast and may
be studied without necessarily fitting any models to data, the focus of our course
will be applied and directed towards data analysis. We study some basic
properties of time series processes and models, but mostly focus on how to
visualize and describe time series data, on how to fit models to data correctly, on
how to generate forecasts, and on how to adequately draw conclusions from the
output that was produced.

 Page 2

1.2 Examples

1.2.1 Air Passenger Bookings

The numbers of international passenger bookings (in thousands) per month on an
airline (PanAm) in the United States were obtained from the Federal Aviation
Administration for the period 1949-1960. The company used the data to predict
future demand before ordering new aircraft and training aircrew. The data are
available as a time series in R. Here, we here show how to access them, and how
to first gain an impression.

> data(AirPassengers)
> AirPassengers
 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1949 112 118 132 129 121 135 148 148 136 119 104 118
1950 115 126 141 135 125 149 170 170 158 133 114 140
1951 145 150 178 163 172 178 199 199 184 162 146 166
1952 171 180 193 181 183 218 230 242 209 191 172 194
1953 196 196 236 235 229 243 264 272 237 211 180 201
1954 204 188 235 227 234 264 302 293 259 229 203 229
1955 242 233 267 269 270 315 364 347 312 274 237 278
1956 284 277 317 313 318 374 413 405 355 306 271 306
1957 315 301 356 348 355 422 465 467 404 347 305 336
1958 340 318 362 348 363 435 491 505 404 359 310 337
1959 360 342 406 396 420 472 548 559 463 407 362 405
1960 417 391 419 461 472 535 622 606 508 461 390 432

Some further information about this dataset can be obtained by typing
?AirPassengers in R. The data are stored in an R-object of class ts, which is
the specific class for time series data. However, for further details on how time
series are handled in R, we refer to section 3.

One of the most important steps in time series analysis is to visualize the data, i.e.
create a time plot, where the air passenger bookings are plotted versus the time of
booking. For a time series object, this can be done very simply in R, using the
generic plot function:

> plot(AirPassengers, ylab="Pax", main="Passenger Bookings")

The result is displayed on the next page. There are a number of features in the
plot which are common to many time series. For example, it is apparent that the
number of passengers travelling on the airline is increasing with time. In general, a
systematic change in the mean level of a time series that does not appear to be
periodic is known as a trend. The simplest model for a trend is a linear increase or
decrease, an often adequate approximation. We will discuss how to estimate
trends, and how to decompose time series into trend and other components in
section 4.2.

 Page 3

The data also show a repeating pattern within each year, i.e. in summer, there are
always more passengers than in winter. This is known as a seasonal effect, or
seasonality. Please note that this term is applied more generally to any repeating
pattern over a fixed period, such as for example restaurant bookings on different
days of week.

We can naturally attribute the increasing trend of the series to causes such as
rising prosperity, greater availability of aircraft, cheaper flights and increasing
population. The seasonal variation coincides strongly with vacation periods. For
this reason, we here consider both trend and seasonal variation as deterministic
components. As mentioned before, section 4.2 discusses visualization and
estimation of these components, while in section 6, time series regression models
will be specified to allow for underlying causes like these, and finally section 8
discusses exploiting these for predictive purposes.

1.2.2 Lynx Trappings

The next series which we consider here is the annual number of lynx trappings for
the years 1821-1934 in Canada. We again load the data and visualize them using
a time series plot:

> data(lynx)
> plot(lynx, ylab="# of Lynx Trapped", main="Lynx Trappings")

The plot on the next page shows that the number of trapped lynx reaches high and
low values every about 10 years, and some even larger figure every about 40
years. There is no fixed natural period which suggests these results. Thus, we will
not attribute this behavior not to a deterministic periodicity, but to a random,
stochastic one.

Passenger Bookings

Time

P
a

x

1950 1952 1954 1956 1958 1960

1
0

0
2

0
0

3
0

0
4

0
0

5
0

0
6

0
0

 Page 4

This leads us to the heart of time series analysis: while understanding and
modeling trend and seasonal variation is a very important aspect, most of the time
series methodology proper is aimed at stationary series, i.e. data which do not
show deterministic, but only random (cyclic) variation.

1.2.3 Luteinizing Hormone Measurements

One of the key features of the above lynx trappings series is that the observations
apparently do not stem from independent random variables, but there is some
serial correlation. If the previous value was high (or low, respectively), the next one
is likely to be similar to the previous one. To explore, model and exploit such
dependence lies at the root of time series analysis.

We here show another series, where 48 luteinizing hormone levels were recorded
from blood samples that were taken at 10 minute intervals from a human female.
This hormone, also called lutropin, triggers ovulation.

> data(lh)
> lh
Time Series:
Start = 1; End = 48
Frequency = 1
 [1] 2.4 2.4 2.4 2.2 2.1 1.5 2.3 2.3 2.5 2.0 1.9 1.7 2.2 1.8
[15] 3.2 3.2 2.7 2.2 2.2 1.9 1.9 1.8 2.7 3.0 2.3 2.0 2.0 2.9
[29] 2.9 2.7 2.7 2.3 2.6 2.4 1.8 1.7 1.5 1.4 2.1 3.3 3.5 3.5
[43] 3.1 2.6 2.1 3.4 3.0 2.9

Again, the data themselves are of course needed to perform analyses, but provide
little overview. We can improve this by generating a time series plot:

> plot(lh, ylab="LH level", main="Luteinizing Hormone")

Lynx Trappings

Time

#
 o

f
L

yn
x

T
ra

p
p

e
d

1820 1840 1860 1880 1900 1920

0
2

0
0

0
4

0
0

0
6

0
0

0

 Page 5

For this series, given the way the measurements were made (i.e. 10 minute
intervals), we can almost certainly exclude any deterministic seasonal variation.
But is there any stochastic cyclic behavior? This question is more difficult to
answer. Normally, one resorts to the simpler question of analyzing the correlation
of subsequent records, called autocorrelations. The autocorrelation for lag 1 can
be visualized by producing a scatterplot of adjacent observations:

> plot(lh[1:47], lh[2:48], pch=20)
> title("Scatterplot of LH Data with Lag 1")

Luteinizing Hormone

Time

L
H

 le
ve

l

0 10 20 30 40

1
.5

2
.0

2
.5

3
.0

3
.5

1.5 2.0 2.5 3.0 3.5

1
.5

2
.0

2
.5

3
.0

3
.5

lh[1:47]

lh
[2

:4
8

]

Scatterplot of LH Data with Lag 1

 Page 6

Besides the (non-standard) observation that there seems to be an inhomogeneity,
i.e. two distinct groups of data points, it is apparent that there is a positive
correlation between successive measurements. This manifests itself with the
clearly visible fact that again, if the previous observation was above or below the
mean, the next one is more likely to be on the same side. We can even compute
the value of the Pearson correlation coefficient:

> cor(lh[1:47], lh[2:48])
[1] 0.5807322

This figure is an estimate for the so-called autocorrelation coefficient at lag 1. As
we will see in section 4.3, the idea of considering lagged scatterplots and
computing Pearson correlation coefficients serves as a good proxy for a
mathematically more sound method. We also note that despite the positive
correlation of +0.58, the series seems to always have the possibility of “reverting to
the other side of the mean”, a property which is common to stationary series – an
issue that will be discussed in section 2.2.

1.2.4 Swiss Market Index

The SMI is the blue chip index of the Swiss stock market. It summarizes the value
of the shares of the 20 most important companies, and contains around 85% of
the total capitalization. Daily closing data for 1860 consecutive days from 1991-
1998 are available in R:

> data(EuStockMarkets)
> EuStockMarkets
Time Series:
Start = c(1991, 130)
End = c(1998, 169)
Frequency = 260
 DAX SMI CAC FTSE
1991.496 1628.75 1678.1 1772.8 2443.6
1991.500 1613.63 1688.5 1750.5 2460.2
1991.504 1606.51 1678.6 1718.0 2448.2
1991.508 1621.04 1684.1 1708.1 2470.4
1991.512 1618.16 1686.6 1723.1 2484.7
1991.515 1610.61 1671.6 1714.3 2466.8

As we can see, EuStockMarkets is a multiple time series object, which also
contains data from the German DAX, the French CAC and UK’s FTSE. We will
focus on the SMI and thus extract and plot the series:

esm <- EuStockMarkets
tmp <- EuStockMarkets[,2]
smi <- ts(tmp, start=start(esm), freq=frequency(esm))
plot(smi, main="SMI Daily Closing Value")

 Page 7

Because subsetting from a multiple time series object results in a vector, but not a
time series object, we need to regenerate a latter one, sharing the arguments of
the original. In the plot we clearly observe that the series has a trend, i.e. the mean
is obviously non-constant over time. This is typical for all financial time series.

Such trends in financial time series are nearly impossible to predict, and difficult to
characterize mathematically. We will not embark in this, but analyze the so-called
log-returns, i.e. the logged-value of today’s value divided by the one of yesterday:

> tmp <- log(smi[2:1860]/smi[1:1859])
> lret.smi <- ts(tmp, start=c(1991,131), freq=frequency(esm))
> plot(lret.smi, main="SMI Log-Returns")

SMI Daily Closing Value

Time

sm
i

1992 1993 1994 1995 1996 1997 1998

2
0

0
0

4
0

0
0

6
0

0
0

8
0

0
0

SMI Log-Returns

Time

lr
e

t.
sm

i

1992 1993 1994 1995 1996 1997 1998

-0
.0

8
-0

.0
4

0
.0

0
0

.0
4

 Page 8

The SMI log-returns are an approximation to the percent change with respect to
the previous day. As can be seen below, they do not show a trend anymore, but
show some of the stylized facts that most log-returns of financial time series have.
Using lagged scatterplots or the correlogram (to be discussed later in section 4.3),
you can convince yourself that there is no serial correlation. Thus, there is no
dependency which could be exploited to predict tomorrows return based on the
one of today and/or previous days.

However, it is visible that large changes, i.e. log-returns with high absolute values,
imply that future log-returns tend to be larger than normal, too. This feature is also
known as volatility clustering, and financial service providers are trying their best to
exploit this property to make profit. Again, you can convince yourself of the
volatility clustering effect by taking the squared log-returns and analyzing their
serial correlation, which is different from zero.

1.3 Goals in Time Series Analysis

A first impression of the purpose and goals in time series analysis could be gained
from the previous examples. We conclude this introductory section by explicitly
summarizing the most important goals.

1.3.1 Exploratory Analysis

Exploratory analysis for time series mainly involves visualization with time series
plots, decomposition of the series into deterministic and stochastic parts, and
studying the dependency structure in the data.

1.3.2 Modeling

The formulation of a stochastic model, as it is for example also done in regression,
can and does often lead to a deeper understanding of the series. The formulation
of a suitable model usually arises from a mixture between background knowledge
in the applied field, and insight from exploratory analysis. Once a suitable model is
found, a central issue remains, i.e. the estimation of the parameters, and
subsequent model diagnostics and evaluation.

1.3.3 Forecasting

An often-heard motivation for time series analysis is the prediction of future
observations in the series. This is an ambitious goal, because time series
forecasting relies on extrapolation, and is generally based on the assumption that
past and present characteristics of the series continue. It seems obvious that good
forecasting results require a very good comprehension of a series’ properties, be it
in a more descriptive sense, or with respect to the fitted model.

 Page 9

1.3.4 Time Series Regression

Rather than just forecasting by extrapolation, we can try to understand the relation
between a so-identified response time series, and one or more explanatory series.
If all of these are observed at the same time, we can in principle employ the usual
regression framework. However, the all-to-common assumption of (serially)
uncorrelated errors is usually violated in a time series framework. We will illustrate
how to properly deal with this situation, in order to generate correct confidence and
prediction intervals.

1.3.5 Process Control

Many production or other processes are measured quantitatively for the purpose
of optimal management and quality control. This usually results in time series data,
to which a stochastic model is fit. This allows understanding the signal in the data,
but also the noise: it becomes feasible to monitor which fluctuations in the
production are normal, and which ones require intervention.

 Page 10

2 Mathematical Concepts
For performing anything else than very basic exploratory time series analysis,
even from a much applied perspective, it is necessary to introduce the
mathematical notion of what a time series is, and to study some basic probabilistic
properties, namely the moments and the concept of stationarity.

2.1 Definition of a Time Series

As we have explained in section 1.2, observations that have been collected over
fixed sampling intervals form a time series. Following a statistical approach, we
consider such series as realizations of random variables. A sequence of random
variables, defined at such fixed sampling intervals, is sometimes referred to as a
discrete-time stochastic process, though the shorter names time series model or
time series process are more popular and will mostly be used in this scriptum. It is
very important to make the distinction between a time series, i.e. observed values,
and a process, i.e. a probabilistic construct.

Definition: A time series process is a set of random variables ,tX t T , where T
is the set of times at which the process was, will or can be observed. We assume
that each random variable tX is distributed according some univariate distribution
function tF . Please note that for our entire course and hence scriptum, we
exclusively consider time series processes with equidistant time intervals, as well
as real-valued random variables tX . This allows us to enumerate the set of times,
so that we can write {1,2,3, }T .

An observed time series, on the other hand, is seen as a realization of the random
vector 1 2(, , ,)nX X X X , and is denoted with small letters 1 2(, ,), nx x x x . It is
important to note that in a multivariate sense, a time series is only one single
realization of the n-dimensional random variable X , with its multivariate, n-
dimensional distribution function F . As we all know, we cannot do statistics with a
single observation. As a way out of this situation, we need to impose some
conditions on the joint distribution function F .

2.2 Stationarity

The aforementioned condition on the joint distribution F is the concept of
stationarity. In colloquial language this means that the probabilistic character of the
series must not change over time, i.e. that any section of the time series is “typical”
for every other section with the same length. More mathematically, we require that
for any ,s t and k , the observations , ,t t kx x could have just as easily occurred at
times , ,s s k .

Imposing even more mathematical rigor, we introduce the concept of strict
stationarity. A time series is said to be strictly stationary if and only if the (k+1)-

 Page 11

dimensional joint distribution of , ,t t kX X coincides with the joint distribution of
, ,s s kX X for any combination of indices t , s and k . For the special case of
0k and t s , this means that the univariate distributions tF of all tX are equal.

For strictly stationary time series, we can thus leave off the index t on the
distribution. As the next step, we will define the moments:

 Expectation t []tE X , for stationary series: t .
 Variance 2

t ()tVar X , for stationary series: 2 2
t .

 Covariance 1 2(,)t t
1 2

(,)t tCov X X , for stationary series: (,) ()t t hCov X X h .

In other words, strictly stationary series have constant expectation, constant
variance , and the covariance, i.e. the dependency structure, depends only on the
lag h , which is the time difference between the two observations. However, the
covariance terms are generally different from 0, and thus, the tX are usually
dependent.

In practice, except for simulation studies, we usually have no explicit knowledge of
the latent time series process. Since strict stationarity is defined as a property of
the process’ joint distributions (all of them), it is impossible to verify from a single
realization, i.e. an observed time series. We can, however, always check whether
a time series process shows constant mean and variance, and whether the
dependency only depends on the lag h . This much less rigorous property is
known as weak stationarity.

In order to do well-founded statistical analyses with time series, weak stationarity
is a necessary condition. It’s obvious that if a series’ observations do not have
common properties such as constant mean/variance and a stable dependency
structure, it will be impossible to statistically learn from it. On the other hand, it can
be shown that weak stationarity, along with the additional property of ergodicity
(i.e. the mean of a time series realization converges to the expected value,
independent of the starting point), is sufficient for most practical purposes such as
model fitting, forecasting, etc.. We will, however, not further embark in this subject.

Remarks:

 From now on, when we speak of stationarity, we strictly mean weak
stationarity. The motivation is that weak stationarity is sufficient for applied
time series analysis, and strict stationarity is a practically useless concept.

 When we analyze time series data, we need to verify whether it might have
arisen from a stationary process or not. Be careful with the wording:
stationarity is always a property of the process, and never of the data.

 Moreover, bear in mind that stationarity is a hypothesis, which needs to be
evaluated for every series. We may be able to reject this hypothesis with
quite some certainty if the data strongly speak against it. However, we can
never prove stationarity with data. At best, it is plausible that a series
originated from a stationary process.

 Page 12

 Some obvious violations of stationarity are trends, non-constant variance,
deterministic seasonal variation, as well as apparent breaks in the data,
which are indicators for changing dependency structure.

2.3 Testing Stationarity

If, as explained above, stationarity is a hypothesis which is tested on data,
students and users keep asking if there are any formal tests. The answer to this
question is yes, and there are even quite a number of tests. This includes the
Augmented Dickey-Fuller Test, the Phillips-Perron Test, the KPSS Test, which are
available in R’s tseries package. The urca package includes further tests such
as the Elliott-Rothenberg-Stock, Schmidt-Phillips und Zivot-Andrews.

However, we will not discuss any of these tests here for a variety of reasons. First
and foremost, they all focus on some very specific non-stationarity aspects, but do
not test stationarity in a broad sense. While they may reasonably do their job in the
narrow field they are aimed for, they have low power to detect general non-
stationarity and in practice often fail to do so. Additionally, theory and formalism of
these tests is quite complex, and thus beyond the scope of this course. In
summary, these tests are to be seen as more of a pastime for the mathematically
interested, rather than a useful tool for the practitioner.

Thus, we here recommend assessing stationarity by visual inspection. The primary
tool for this is the time series plot, but also the correlogram (see section 4.3) can
be helpful as a second check. For long time series, it can also be useful to split up
the series into several parts for checking whether mean, variance and dependency
are similar over the blocks.

 Page 13

3 Time Series in R

3.1 Time Series Classes

In R, there are objects, which are organized in a large number of classes. These
classes e.g. include vectors, data frames, model output, functions, and many
more. Not surprisingly, there are also several classes for time series. We start by
presenting ts, the basic class for regularly spaced time series. This class is
comparably simple, as it can only represent time series with fixed interval records,
and only uses numeric time stamps, i.e. (sophistically) enumerates the index set.
However, it will still be sufficient for most, if not all, of what we do in this course.
Then, we also provide an outlook to more complicated concepts.

3.1.1 The ts Class

For defining a time series of class ts, we of course need to provide the data, but
also the starting time as argument start, and the frequency of measurements as
argument frequency. If no starting time is supplied, R uses its default value of 1,
i.e. enumerates the times by the index set 1, ..., n , where n is the length of the
series. The frequency is the number of observations per unit of time, e.g. 1 for
yearly, 4 for quarterly, or 12 for monthly recordings. Instead of the start, we could
also provide the end of the series, and instead of the frequency, we could supply
argument deltat, the fraction of the sampling period between successive
observations. The following example will illustrate the concept.

Example: We here consider a simple and short series that holds the number of
days per year with traffic holdups in front of the Gotthard road tunnel north
entrance in Switzerland. The data are available from the Federal Roads Office.

2004 2005 2006 2007 2008 2009 2010

88 76 112 109 91 98 139

The start of this series is in 2004. The time unit is years, and since we have just
one record per year, the frequency of this series is 1. This tells us that while there
may be a trend, there will not be a seasonal effect, which can only appear with
periodic series, i.e. series with frequency > 1. We now define a ts object in in R.

> rawdat <- c(88, 76, 112, 109, 91, 98, 139)
> ts.dat <- ts(rawdat, start=2004, freq=1)
> ts.dat
Time Series:
Start = 2004
End = 2010
Frequency = 1
[1] 88 76 112 109 91 98 139

 Page 14

There are a number of simple but useful functions that extract basic information
from objects of class ts, see the following examples:

> start(ts.dat)
[1] 2004 1

> end(ts.dat)
[1] 2010 1

> frequency(ts.dat)
[1] 1

> deltat(ts.dat)
[1] 1

Another possibility is to obtain the measurement times from a time series object.
As class ts only enumerates the times, they are given as fractions. This can still
be very useful for specialized plots, etc.

> time(ts.dat)
Time Series:
Start = 2004
End = 2010
Frequency = 1
[1] 2004 2005 2006 2007 2008 2009 2010

The next basic, but for practical purposes very useful function is window(). It is
aimed at selecting a subset from a time series. Of course, also regular R-
subsetting such as ts.dat[2:5] does work with the time series class. However,
this results in a vector rather than a time series object, and is thus mostly of less
use than the window() command.

> window(ts.dat, start=2006, end=2008)
Time Series:
Start = 2006
End = 2008
Frequency = 1
[1] 112 109 91

While we here presented the most important basic methods/functions for class ts,
there is a wealth of further ones. This includes the plot() function, and many
more, e.g. for estimating trends, seasonal effects and dependency structure, for
fitting time series models and generating forecasts. We will present them in the
forthcoming chapters of this scriptum.

To conclude the previous example, we will not do without showing the time series
plot of the Gotthard road tunnel traffic holdup days, see next page. Because there
are a limited number of observations, it is difficult to give statements regarding a
possible trend and/or stochastic dependency.

> plot(ts.dat, ylab="# of Days", main="Traffic Holdups")

 Page 15

3.1.2 Other Classes

Besides the basic ts class, there are several more which offer a variety of
additional options, but will rarely to never be required during our course. Most
prominently, this includes the zoo package, which provides infrastructure for both
regularly and irregularly spaced time series using arbitrary classes for the time
stamps. It is designed to be as consistent as possible with the ts class. Coercion
from and to zoo is also readily available.

Some further packages which contain classes and methods for time series include
xts, its, tseries, fts, timeSeries and tis. Additional information on their
content and philosophy can be found on CRAN.

3.2 Dates and Times in R

While for the ts class, the handling of times has been solved very simply and
easily by enumerating, doing time series analysis in R may sometimes also require
to explicitly dealing with date and time. There are several options for dealing with
date and date/time data. The built-in as.Date() function handles dates that
come without times. The contributed package chron handles dates and times, but
does not control for different time zones, whereas the sophisticated but complex
POSIXct and POSIXlt classes allow for dates and times with time zone control.

As a general rule for date/time data in R, we suggest to use the simplest technique
possible. Thus, for date only data, as.Date() will mostly be the optimal choice. If
handling dates and times, but without time-zone information, is required, the
chron package is the choice. The POSIX classes are especially useful in the
relatively rare cases when time-zone manipulation is important.

Traffic Holdups

Time

#
 o

f
D

a
ys

2004 2005 2006 2007 2008 2009 2010

8
0

9
0

1
0

0
1

2
0

1
4

0

 Page 16

Apart for the POSIXlt class, dates/times are internally stored as the number of
days or seconds from some reference date. These dates/times thus generally
have a numeric mode. The POSIXlt class, on the other hand, stores date/time
values as a list of components (hour, min, sec, mon, etc.), making it easy to
extract these parts. Also the current date is accessible by typing Sys.Date() in
the console, and returns an object of class Date.

3.2.1 The Date Class

As mentioned above, the easiest solution for specifying days in R is with the
as.Date() function. Using the format argument, arbitrary date formats can be
read. The default, however, is four-digit year, followed by month and then day,
separated by dashes or slashes:

> as.Date("2012-02-14")
[1] "2012-02-14"
> as.Date("2012/02/07")
[1] "2012-02-07"

If the dates are in non-standard appearance, we require defining their format using
some codes. While the most important ones are shown below, we reference to the
R help file of function strptime for the full list.

Code Value

%d Day of the month (decimal number)
%m Month (decimal number)
%b Month (character, abbreviated)
%B Month (character, full name)
%y Year (decimal, two digit)
%Y Year (decimal, four digit)

The following examples illustrate the use of the format argument:

> as.Date("27.01.12", format="%d.%m.%y")
[1] "2012-01-27"
> as.Date("14. Februar, 2012", format="%d. %B, %Y")
[1] "2012-02-14"

Internally, Date objects are stored as the number of days passed since the 1st of
January in 1970. Earlier dates receive negative numbers. By using the
as.numeric() function, we can easily find out how many days are past since the
reference date. Also back-conversion from a number of past days to a date is
straightforward:

> mydat <- as.Date("2012-02-14")
> ndays <- as.numeric(mydat)
> ndays
[1] 15384

 Page 17

> tdays <- 10000
> class(tdays) <- "Date"
> tdays
[1] "1997-05-19"

A very useful feature is the possibility of extracting weekdays, months and
quarters from Date objects, see the examples below. This information can be
converted to factors, as which they serve for purposes as visualization, for
decomposition, or for time series regression.

> weekdays(mydat)
[1] "Dienstag"
> months(mydat)
[1] "Februar"
> quarters(mydat)
[1] "Q1"

Furthermore, some very useful summary statistics can be generated from Date
objects: median, mean, min, max, range, ... are all available. We can even
subtract two dates, which results in a difftime object, i.e. the time difference in
days.

> dat <- as.Date(c("2000-01-01","2004-04-04","2007-08-09"))
> dat
[1] "2000-01-01" "2004-04-04" "2007-08-09"

> min(dat)
[1] "2000-01-01"
> max(dat)
[1] "2007-08-09"
> mean(dat)
[1] "2003-12-15"
> median(dat)
[1] "2004-04-04"

> dat[3]-dat[1]
Time difference of 2777 days

Another option is generating time sequences. For example, to generate a vector of
12 dates, starting on August 3, 1985, with an interval of one single day between
them, we simply type:

> seq(as.Date("1985-08-03"), by="days", length=12)
 [1] "1985-08-03" "1985-08-04" "1985-08-05" "1985-08-06"
 [5] "1985-08-07" "1985-08-08" "1985-08-09" "1985-08-10"
 [9] "1985-08-11" "1985-08-12" "1985-08-13" "1985-08-14"

The by argument proves to be very useful. We can supply various units of time,
and even place an integer in front of it. This allows creating a sequence of dates
separated by two weeks:

 Page 18

> seq(as.Date("1992-04-17"), by="2 weeks", length=12)
 [1] "1992-04-17" "1992-05-01" "1992-05-15" "1992-05-29"
 [5] "1992-06-12" "1992-06-26" "1992-07-10" "1992-07-24"
 [9] "1992-08-07" "1992-08-21" "1992-09-04" "1992-09-18"

3.2.2 The chron Package

The chron() function converts dates and times to chron objects. The dates and
times are provided separately to the chron() function, which may well require
some inital pre-processing. For such parsing, R-functions such as substr() and
strsplit() can be of great use. In the chron package, there is no support for
time zones and daylight savings time, and chron objects are internally stored as
fractional days since the reference date of January 1st, 1970. By using the function
as.numeric(), these internal values can be accessed. The following example
illustrates the use of chron:

> library(chron)
> dat <- c("2007-06-09 16:43:20", "2007-08-29 07:22:40",
 "2007-10-21 16:48:40", "2007-12-17 11:18:50")
> dts <- substr(dat, 1, 10)
> tme <- substr(dat, 12, 19)
> fmt <- c("y-m-d","h:m:s")
> cdt <- chron(dates=dts, time=tme, format=fmt)
> cdt
[1] (07-06-09 16:43:20) (07-08-29 07:22:40)
[3] (07-10-21 16:48:40) (07-12-17 11:18:50)

As before, we can again use the entire palette of summary statistic functions. Of
some special interest are time differences, which can now be obtained as either
fraction of days, or in weeks, hours, minutes, seconds, etc.:

> cdt[2]-cdt[1]
Time in days:
[1] 80.61065
> difftime(cdt[2], cdt[1], units="secs")
Time difference of 6964760 secs

3.2.3 POSIX Classes

The two classes POSIXct and POSIXlt implement date/time information, and in
contrast to the chron package, also support time zones and daylight savings time.
We recommend utilizing this functionality only when urgently needed, because the
handling requires quite some care, and may on top of that be system dependent.
Further details on the use of the POSIX classes can be found on CRAN.

As explained above, the POSIXct class also stores dates/times with respect to the
internal reference, whereas the POSIXlt class stores them as a list of
components (hour, min, sec, mon, etc.), making it easy to extract these parts.

 Page 19

3.3 Data Import

We can safely assume that most time series data are already present in electronic
form; however, not necessarily in R. Thus, some knowledge on how to import data
into R is required. It is be beyond the scope of this scriptum to present the
uncounted options which exist for this task. Hence, we will restrict ourselves to
providing a short overview and some useful hints.

The most common form for sharing time series data are certainly spreadsheets, or
in particular, Microsoft Excel files. While library(ROBDC) offers functionality to
directly import data from Excel files, we discourage its use. First of all, this only
works on Windows systems. More importantly, it is usually simpler, quicker and
more flexible to export comma- or tab-separated text files from Excel, and import
them via the ubiquitous read.table() function, respectively the tailored version
read.csv() (for comma separation) and read.delim() (for tab separation).

With packages ROBDC and RMySQL, R can also communicate with SQL databases,
which is the method of choice for large scale problems. Furthermore, after loading
library(foreign), it is also possible to read files from Stata, SPSS, Octave
and SAS.

 Page 20

4 Descriptive Analysis
As always when working with “a pile of numbers”, i.e. data, it is important to first
gain an overview. In the context of time series analysis, this can be done in
several ways. We start by discussing time series plots, then focus on the
decomposition of time series into trend, seasonal effect and stationary random
part and conclude by discussing methods for visualizing the dependency structure.

4.1 Visualization

4.1.1 Time Series Plot

The most important means of visualization is the time series plot, where the data
are plotted versus time/index. We have seen several examples in section 1.2,
where we also got acquainted with R’s generic plot() function that produces
such output. We here show another example, the monthly unemployment rate for
the US state of Maine, from January 1996 until August 2006. The data are
available from a text file on the web. We can read it directly into R, define the data
as an object of class ts and then do the time series plot:

> www <- "http://www.massey.ac.nz/~pscowper/ts/Maine.dat"
> dat <- read.table(www, header=TRUE)
> tsd <- ts(dat, start=c(1996,1), freq=12)
> plot(tsd, ylab="(%)", main="Unemployment in Maine")

Not surprisingly, the series shows both seasonal variation and a non-linear trend.
Since unemployment rates are one of the main economic indicators used by
politicians/decision makers, this series poses a worthwhile forecasting problem.

Unemployment in Maine

Time

(%
)

1996 1998 2000 2002 2004 2006

3
4

5
6

 Page 21

Another issue is the correct aspect ratio for time series plots: if the time axis gets
too much compressed, it can become difficult to recognize the features of a series.
Thus, we here recommend choosing the aspect ratio appropriately. Unfortunately,
there are no hard and simple rules on how to do this. As a rule of the thumb, the
“banking to 45 degrees” rule exists. This means that increase and decrease in
periodic series should not be displayed at angles much higher or lower than 45
degrees. For very long series, this can become difficult on either A4 paper or a
computer screen. In this case, we recommend splitting up the series and display it
in different frames.

4.1.2 Multiple Time Series Plots

It is quite often the case that we encounter an applied problem where we are
provided with multiple time series. Here, we illustrate some basics on how to
import, define and plot them properly. Our example contains the monthly supply of
electricity (millions of kWh), beer (millions of liters) and chocolate-based
production (tonnes) in Australia over the period from January 1958 to December
1990. These data are available from the Bureau of Australian Statistics and are, in
pre-processed form, accessible as a text-file online.

www <- "http://www.massey.ac.nz/~pscowper/ts/cbe.dat"
dat <- read.table(www, header=TRUE)
tsd <- ts(dat, start=1958, freq=12)
plot(tsd, main="Chocolate, Beer & Electricity")

All three series show a distinct seasonal pattern, along with a trend. It also
instructive to know that the Australian population increased by a factor of 1.8
during the period where these three series were observed.

20
00

60
00

ch
o

c
10

0
15

0
20

0

b
e

e
r

20
00

80
00

14
00

0

1960 1965 1970 1975 1980 1985 1990

e
le

c

Time

Chocolate, Beer & Electricity

 Page 22

As visible in the bit of code above, plotting multiple series into different panels is
straightforward. As a general rule, using different frames for multiple series is the
most recommended means of visualization. However, there may be other cases
where it is more instructive to have them in the same frame. Of course, this
requires that the series are either on the same scale, or have been indexed, resp.
standardized to be so. While R offers function ts.plot() to include multiple
series in the same frame, that function does not allow color coding. For this
reason, we prefer doing some manual work.

Indexing the series
tsd[,1] <- tsd[,1]/tsd[1,1]*100
tsd[,2] <- tsd[,2]/tsd[1,2]*100
tsd[,3] <- tsd[,3]/tsd[1,3]*100

Plotting in one single frame
clr <- c("green3", "red3", "blue3")
plot.ts(tsd[,1], ylim=range(tsd), ylab="Index", col=clr[1])
title("Indexed Chocolate, Beer & Electricity")
lines(tsd[,2], col=clr[2])
lines(tsd[,3], col=clr[3])

Legend
ltxt <- names(dat)
legend("topleft", lty=1, col=clr, legend=ltxt)

In the indexed single frame plot below, we can very well judge the relative
development of the series over time. Due to different scaling, this was nearly
impossible with the multiple frames on the previous page. We observe that
electricity production increased around 8x during 1958 and 1990, whereas for
chocolate the multiplier is around 4x, and for beer less than 2x. Also, the seasonal
variation is most pronounced for chocolate, followed by electricity and then beer.

Time

In
d

e
x

1960 1965 1970 1975 1980 1985 1990

2
0

0
4

0
0

6
0

0
8

0
0

Indexed Chocolate, Beer & Electricity

choc
beer
elec

 Page 23

4.2 Decomposition

4.2.1 The Basics

We have learned in section 2.2 that stationarity is an important prerequisite for
being able to statistically learn from time series data. However, many of the
example series we treated so far have either shown a trend or a seasonal effect,
and thus are non-stationary. In this section, we will learn how to deal with
deterministic trend and seasonal variation. This is achieved by using
decomposition models, the easiest of which is the simple additive one:

 t t t tX m s E ,

where tX is the time series process at time t , tm is the trend, ts is the seasonal
effect, and tE is the remainder, i.e. a sequence of usually correlated random
variables with mean zero. Mostly, the goal is to find a decomposition such that tE
is a stationary time series process.

There are time series, where seasonal effect and random variation increase as the
trend increases. The air passenger bookings from section 1.2.1 are an example. In
many of these cases, a multiplicative decomposition model is appropriate:

 t t t tX m s E

If we take logarithms, this brings us back to the additive case:

log() log() log() log()t t t t t t tX m s E m s E

For illustration, we carry out the log-transformation on the air passenger bookings;
see the above. Indeed, seasonal effect and random variation now seem to be

Logged Passenger Bookings

Time

lo
g

(P
a

x)

1950 1952 1954 1956 1958 1960

5
.0

5
.5

6
.0

6
.5

 Page 24

independent of the level of the series. Thus, for the original data, the multiplicative
model is appropriate. However, it is now clearly evident from these logged data
that the seasonal effect changes over time.

For logged series, some care is required when the exponential function is applied
to the predicted mean of log()tX to obtain a prediction for the expectation of tX ,
as the effect is usually to bias the predictions. If the process tE is normally
distributed with mean 0 and variance 2 , then the expectation of tX is given by:

 2ˆ[] exp()·exp(/ 2)t t t tE X X m s

In the following few chapters, we now explain a few methods for estimating and
additive decomposition of an observed time series.

4.2.2 Differencing

A simple, yet not overly useful approach for removing deterministic trends and/or
seasonal effects from a time series is by taking differences. While it is conceptually
simple and quick, its main disadvantage is that it does not result in explicit
estimates of trend component tm and seasonal component ts .

However, in the absence of a seasonal effect, a (piecewise) linear trend in a time
series can be removed by taking first-order differences with lag 1:

1 1

,t t t

t t t t t

X t E E stationary

Y X X E E

Another somewhat disturbing property of the differencing approach is that strong,
artificial new dependencies are created. Note that if tE is a stochastically
independent process, then tX is independent, too, but the differenced process tY
is not:

1 1 1 2

1 1

(,) (,)

(,)

0

t t t t t t

t t

Cov Y Y Cov E E E E

Cov E E

We illustrate how differencing works by using a dataset that shows the traffic
development on Swiss roads. The data are available from the federal road office
(ASTRA) and show the indexed traffic amount from 1990-2010. We type in the
values and plot the original series:

> SwissTraffic <- ts(c(100.0, 102.7, 104.2, 104.6, 106.7,
 106.9, 107.6, 109.9, 112.0, 114.3,
 117.4, 118.3, 120.9, 123.7, 124.1,
 124.6, 125.6, 127.9, 127.4, 130.2,
 131.3), start=1990, freq=1)
> plot(SwissTraffic)

 Page 25

There is a clear trend, which is at least piecewise linear. Taking first-order
differences with lag 1 shows the yearly changes in the Swiss Traffic Index, this
should be a stationary series. In R, the job is done with function diff().

> diff(SwissTraffic)
Time Series:
Start = 1991
End = 2010
Frequency = 1
 [1] 2.7 1.5 0.4 2.1 0.2 0.7 2.3 2.1 2.3 3.1
[11] 0.9 2.6 2.8 0.4 0.5 1.0 2.3 -0.5 2.8 1.1

Swiss Traffic Index

Time

In
d

e
x

V
a

lu
e

1990 1995 2000 2005 2010

1
0

0
1

1
0

1
2

0
1

3
0

Differenced Swiss Traffic Index

Time

C
h

a
n

g
e

1995 2000 2005 2010

-0
.5

0
.5

1
.5

2
.5

 Page 26

Please note that the time series of differences is now 1 instance shorter than the
original series. The reason is that for the first year, 1990, there is no difference to
the previous year available. The differenced series now clearly has a constant
mean, i.e. the trend was successfully removed.

What has differencing to offer for polynomial trends, i.e. quadratic or cubic ones? It
is possible to take higher order differences to remove also these. We here show
how to do it in the case of a quadratic trend.

2
1 2

1 1 2

1 2 2

,

() ()

2 2

t t t

t t t t t

t t t

X t t E E stationary

Y X X X X

E E E

The extension to cubic trends and even higher orders is straightforward. In R, we
can still employ function diff(), but have to provide argument
differences=... for indicating the order of the difference.

Removing Seasonal Effects by Differencing

For time series with monthly measurements, seasonal effects are very common.
Using an appropriate form of differencing, it is possible to remove these, as well as
(piecewise) linear trends, and obtain a stationary series. We take first-order
differences with lag p :

 t t t pY X X ,

where p is the period of the seasonal effect, or in other words, the frequency of
series, which is the number of measurements per time unit. The series tY then is
made up of the changes compared to the previous period’s value, i.e. often the
previous year’s value. Also, from the definition, with the same argument as above,
it is evident that not only the seasonal variation, but also a strictly linear will be
removed. While taking seasonal differences still has some ability to remove only
piecewise linear trends, this property is much less existent than when differencing
with lag 1.

We are illustrating seasonal differencing using the Mauna Loa atmospheric 2CO
concentration data. This is a time series with monthly records from January 1959
to December 1997. It exhibits both a (almost linear) trend and a distinct seasonal
pattern. We first load the data and do a time series plot:

> data(co2)
> plot(co2, main="Mauna Loa CO2 Concentrations")

Seasonal differencing is very conveniently available in R. We use function
diff(), but have to set argument lag=.... For the Mauna Loa data with
monthly measurements, the correct lag is 12. This results in the series shown on
the next page. It remains somewhat questionable whether it is stationary, owing to
a potentially non-linear trend in the original data.

 Page 27

> sd.co2 <- diff(co2, lag=12)
> plot(sd.co2, main="Differenced Mauna Loa Data (p=12)")

Because we are comparing every record with the one from the previous year, the
resulting series is 12 observations shorter than the original one. We conclude this
section by emphasizing again that while differencing is quick and simple, we do
not obtain explicit estimates for trend tm and seasonal effect ts . Not surprisingly,
this makes extrapolation of a series quite difficult – which of course is an issue, if
one is interested in forecasting. Please note that this problem is addressed in
section 7, where we discuss SARIMA models.

Mauna Loa CO2 Concentrations

Time

co
2

1960 1970 1980 1990

3
2

0
3

3
0

3
4

0
3

5
0

3
6

0

Differenced Mauna Loa Data (p=12)

Time

sd
.c

o
2

1960 1970 1980 1990

0
.0

1
.0

2
.0

3
.0

 Page 28

4.2.3 Smoothing, Filtering

Our next goal is to define a decomposition procedure that yields explicit trend,
seasonality and remainder estimates ˆ tm , t̂s and ˆ

tE . In the absence of a seasonal
effect, the trend of a time series can simply be obtained by applying an additive
linear filter:

 ˆ
q

t i t i
i p

m a X

This definition is general, as it allows for arbitrary weights and asymmetric
windows. The most popular implementation, however, relies on p q and

1/ (2 1)ia p , i.e. a running mean estimator with symmetric window and uniformly
distributed weights. The window width is the smoothing parameter.

Example: Trend Estimation with Running Mean

We here again consider the Swiss Traffic data that were already exhibited before.
They show the indexed traffic development in Switzerland between 1990 and
2010. Linear filtering is available with function filter() in R. With the correct
settings, this function becomes a running mean estimator.

> trend.est <- filter(SwissTraffic, filter=c(1,1,1)/3)
> trend.est
Time Series: Start = 1990, End = 2010, Frequency = 1
 [1] NA 102.3000 103.8333 105.1667 106.0667 107.0667
 [7] 108.1333 109.8333 112.0667 114.5667 116.6667 118.8667
[13] 120.9667 122.9000 124.1333 124.7667 126.0333 126.9667
[19] 128.5000 129.6333 NA

Time

In
d

e
x

V
a

lu
e

1990 1995 2000 2005 2010

1
0

0
1

1
0

1
2

0
1

3
0

Swiss Traffic Index with Running Mean

 Page 29

In our example, we chose the trend estimate to be the mean over three
consecutive observations. This has the consequence that for both the first and the
last instance of the time series, no trend estimate is available. Also, it is apparent
that the Swiss Traffic series has a very strong trend signal, whereas the remaining
stochastic term is comparably small in magnitude. We can now compare the
estimated remainder terms from differencing and running mean trend estimation:

The blue line is the remainder estimate from running mean approach, while the
grey one resulted from differencing with lag 1. We observe that the latter has
bigger variance; and, while there are some similarities between the two series,
there are also some prominent differences – please note that both are estimates of
one and the same term, i.e. the stochastic remainder.

Trend Estimation for Seasonal Data

We now turn our attention to time series that show both trend and seasonal effect.
The goal is to specify a filtering approach that allows trend estimation for periodic
data. We still base this on the running mean idea, but have to make sure that we
average over a full period. For monthly data, the formula is:

 6 5 5 6

1 1 1

12 2 2
ˆ t t t t tX Xm X X

, for 7,..., 6t n

Be careful, as there is a slight snag if the frequency is even: if we estimate the
trend for December, we use data from July to May, and then also add half of the
value of the previous June, as well as half of the next June. This is required for
having a window that is centered at the time we wish to estimate the trend.

Using R’s function filter(), with appropriate choice of weights, we can compute
the seasonal running mean. We illustrate this with the Mauna Loa 2CO data.

Time

re
si

d
.r

u
m

e

1990 1995 2000 2005 2010

-2
-1

0
1

2

Estimated Stochastic Remainder Term

 Page 30

> wghts <- c(.5,rep(1,11),.5)/12
> trend.est <- filter(co2, filter=wghts, sides=2)
> plot(co2, main="Mauna Loa CO2 Concentrations")
> lines(trend.est, col="red")

We obtain a trend which fits well to the data. It is not a linear trend, rather it seems
to be slightly progressively increasing, and it has a few kinks, too.

We finish this section about trend estimation using linear filters by stating that
other smoothing approaches, e.g. running median estimation, the loess smoother
and many more are valid choices for trend estimation, too.

Estimation of the Seasonal Effect

For fully decomposing periodic series such as the Mauna Loa data, we also need
to estimate the seasonal effect. This is done on the basis of the trend adjusted
data: simple averages over all observations from the same seasonal entity are
taken. The following formula shows the January effect estimation for the Mauna
Loa data, a monthly series which starts in January and has 39 years of data.

38

1 13 12 1 12 1
0

1
ˆ ˆ ˆ ˆ... ()

39Jan j j
j

s s s x m

In R, a convenient way of estimating such seasonal effects is by generating a
factor for the months, and then using the tapply() function. Please note that the
seasonal running mean naturally generates NA values at the start and end of the
series, which we need to remove in the seasonal averaging process.

> trend.adj <- co2-trend.est
> month <- factor(rep(1:12,39))
> seasn.est <- tapply(trend.adj, month, mean, na.rm=TRUE)

Mauna Loa CO2 Concentrations

Time

co
2

1960 1970 1980 1990

3
2

0
3

3
0

3
4

0
3

5
0

3
6

0

 Page 31

> plot(seasn.est, type="h", xlab="Month")
> title("Seasonal Effects for Mauna Loa Data")
> abline(h=0, col="grey")

In the plot above, we observe that during a season, the highest values are usually
observed in May, whereas the seasonal low is in October. The estimate for the
remainder at time t is simply obtained by subtracting estimated trend and
seasonality from the observed value

 ˆ ˆ ˆt t t tE x m s

We display this below. It seems as if the remainder still has some periodicity. Does
that mean that removing the seasonal effect was not successful?

2 4 6 8 10 12

-3
-2

-1
0

1
2

3

Month

se
a

sn
.e

st

Seasonal Effects for Mauna Loa Data

Estimated Stochastic Remainder Term

Time

rm
a

in
.e

st

1960 1970 1980 1990

-0
.5

0
.0

0
.5

 Page 32

The observed periodicity is due to the fact that the seasonal effect is not constant
but slowly evolving over time. In the beginning, we tend to overestimate it for most
months, whereas in the end, we underestimate. We will address the issue on how
to visualize evolving seasonality below in section 4.2.4 about STL-decomposition.

Moreover, we would like to emphasize that R offers the convenient decompose()
function for running mean estimation and seasonal averaging. Only for educational
purposes, we had done this in a do-it-yourself manner above. Please note that
decompose() only works with periodic series where at least two full periods were
observed; else it is not mathematically feasible to estimate trend and seasonality
from a series.

> co2.dec <- decompose(co2)
> plot(co2.dec)

The decompose() function also offers a neat plotting method that shows the four
frames above with the series, and the estimated trend, seasonality and remainder.
Except for the different visualization, the results are exactly the same as what we
had produced with our do-it-yourself approach.

4.2.4 Seasonal-Trend Decomposition with LOESS

Another algorithm in R, which offers decomposition of a time series into trend,
seasonal effect and remainder, is stl(). The output is (nearly) equivalent to what
we had obtained above with decompose(). However, the details behind are
different, i.e. more sophisticated and complex than the simple filtering/averaging
procedure which was employed so far.

32
0

34
0

36
0

o
b

se
rv

e
d

32
0

34
0

36
0

tr
e

n
d

-3
-1

1
3

se
a

so
n

a
l

-0
.5

0.
5

1960 1970 1980 1990

ra
n

d
o

m

Time

Decomposition of additive time series

 Page 33

Because it is beyond the scope of this applied course, we do without giving full
details on the stl-decomposition. However, it is based on LOESS, a smoothing
procedure that is based on local, weighted regression. The aim of the weighting
scheme is to reduce potentially disturbing influence of outliers. In stl(),
estimation of trend and seasonality are done iteratively. While this all sounds
straightforward, the (here omitted) technical details are quite complicated.

> co2.stl <- stl(co2, s.window="periodic")
> plot(co2.stl, main="STL-Decomposition of CO2 Data")

The graphical output is similar to the one on the previous page. The grey bars on
the right hand side facilitate interpretation of the decomposition: they show the
relative magnitude of the effects, i.e. cover the same span on the y-scale in all of
the frames. The two principal arguments in function stl() are t.window and
s.window. The first one, t.window, controls the amount of smoothing for the
trend, and has a default value which often yields good results. The value used can
be inferred with:

> co2.stl$win[2]
 t
19

The result is the number of lags used as a window for trend extraction in LOESS.
Increasing it means the trend becomes smoother; lowering it makes the trend
rougher, but more adapted to the data. The second argument, s.window, controls
the smoothing for the seasonal effect. When set to “periodic” as above, the
seasonality is obtained as a constant value from simple (monthly) averaging, as
presented in section 4.2.3.

STL-Decomposition of CO2 Data

32
0

34
0

36
0

d
a

ta

-3
-1

1
3

se
a

so
n

a
l

32
0

34
0

36
0

tr
e

n
d

-0
.5

0.
5

1960 1970 1980 1990

re
m

a
in

d
e

r

time

 Page 34

However, stl() offers better functionality. If s.window is set to a numeric value,
the procedure can accommodate for evolving seasonality. The assumption behind
is that the change in the seasonal effect happens slowly and smoothly. We
visualize what is meant with the logged air passenger data. For quick illustration,
we estimate the trend with a running mean filter, subtract it from the observed
series and display all March and all August values of the trend adjusted series:

When assuming a non-changing seasonal effect, the standard procedure would be
to take the mean of the data points in the above scatterplots and declare that as
the seasonal effect for March and August, respectively. This is a rather crude way
of data analysis, and can of course be improved.

-0
.0

5
0

.0
0

0
.0

5
0

.1
0

1949 1952 1955 1958

Effect of March

0
.1

5
0

.2
0

0
.2

5

1949 1952 1955 1958

Effect of August

STL-Decomposition of Logged Air Passenger Bookings

5.
0

6.
0

d
a

ta

-0
.2

0.
0

0.
2

se
a

so
n

a
l

4.
8

5.
4

6.
0

tr
e

n
d

-0
.0

5
0.

05

1950 1952 1954 1956 1958 1960

re
m

a
in

d
e

r

time

 Page 35

For obtaining a better decomposition of the air passenger bookings, we need to
allow for changing seasonal effect. We achieve this by employing the stl()
function and setting s.window=13. The resulting graphical output is displayed on
the previous page. Please note that there is no default value for the seasonal
span, and the optimal choice is left to the user upon visual inspection. An excellent
means for doing so is the monthplot() function which shows the seasonal
effects that were estimated by stl().

On the left, we observe appropriate smoothing. However on the right, with smaller
span, we observe overfitting – the seasonal effects do not evolve in a smooth way,
and it means that this is not a good decomposition estimate.

4.2.5 Parametric Modeling

A powerful approach for decomposing time series is parametric modeling. It is
based on the assumption of a functional form for the trend, usually a polynomial.
For the seasonal effect, we can either use the dummy variable approach that
amounts to averaging. Or, in some special cases, a sine/cosine seasonality may
be appropriate. We illustrate the parametric modeling approach by two examples
and use them for discussing some specifics.

We consider the Maine unemployment data from section 4.1.1. Our goal is to fit a
polynomial trend, along with a seasonal effect that is obtained by averaging. We
write down this model for a polynomial of grade 4.

2 3 4
0 1 2 3 4· · ,· ·t ti tX t t t t E ,

where 1, ,128t and {1, ,12}i t , i.e. i t is a factor variable encoding for the
month the observation was made in, see the R code below. Two questions
immediately pop up, namely what polynomial order is appropriate, and how this
model can be fit.

Monthplot, s.window=13

se
a

so
n

a
l

J M M J S N

-0
.2

-0
.1

0
.0

0
.1

0
.2

Monthplot, s.window=5

se
a

so
n

a
l

J M M J S N

-0
.2

0
.0

0
.1

0
.2

 Page 36

As for the fitting, this will be done with the least squares algorithm. This requires
some prudence, because we assume a remainder term tE which is not
necessarily stochastically independent. Thus, we have some violated assumption
for the ordinary least squares (OLS) estimation. Since the estimated coefficients
are still unbiased, OLS is a valid approach. However, be careful with the standard
errors, as well as tests and confidence intervals derived from them, because they
can be grossly misleading.

For the grade of the polynomial, we determine by eyeballing from the time series
plot that the hypothesized trend in the unemployment series has at least 3 minima.
This means that a polynomial with grade below 4 will not result in a sensible trend
estimate. Thus, we try orders 4, 5 and 6, and discuss how an appropriate choice
can be made from residual analysis. However, we first focus on the R code for
fitting such models:

> maine <- ts(dat, start=c(1996,1), freq=12)
> tr <- as.numeric(time(maine))
> tc <- tr-mean(tr)
> mm <- rep(c("Jan", "Feb", "Mar", "Apr", "May", "Jun",
 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"))
> mm <- factor(rep(mm,11),levels=mm)[1:128]

In a first step, we lay the basics. From time series maine, we extract the times of
observation as the predictor. As always when fitting polynomial regression models,
it is crucial to center the x-values to mitigate potential collinearity among the terms.
Furthermore, we define a factor variable for modeling the seasonality.

> fit04 <- lm(maine~tc+I(tc^2)+I(tc^3)+I(tc^4)+mm)
> cf <- coef(fit04)
> t.est.04 <- cf[1]+cf[2]*tc+cf[3]*tc^2+cf[4]*tc^3+cf[5]*tc^4
> t04.adj <- t.est.04-mean(t.est.04)+mean(maine)

We can obtain an OLS-fit of the decomposition model with R’s lm() procedure.
The I() notation in the formula assures that the “^” are interpreted as
arithmetical operators, i.e. powers of the predictor, rather than as formula
operators. Thereafter, we can use the estimated coefficients for determining the
trend estimate t.est.04. Because the seasonal factor uses the month of
January as a reference, and thus generally has a mean different from zero, we
need to shift the trend to make run through “the middle of the data” – this is key if
we aim for visualizing the trend.

> plot(maine, ylab="(%)", main="Unemployment in Maine")
> lines(tr, t.04.adj)

The time series plot on the next page is enhanced with polynomial trend lines of
order 4 (blue), 5 (red) and 6 (green). From this visualization, it is hard to decide
which of the polynomials is most appropriate as a trend estimate. Because there
are some boundary effects for orders 5 and 6, we might guess that their additional
flexibility is not required. As we will see below, this is treacherous.

 Page 37

A better way for judging the fit of a parametric model is by residual analysis. We
plot the remainder term ˆ

tE versus time and add a LOESS smoother.

> re.est <- maine-fitted(fit04)
> plot(re.est, ylab="", main="Residuals vs. Time, O(4)")
> fit <- loess(re.est~tr)
> lines(tr, fitted(fit), col="red")
> abline(h=0, col="grey")

The above plot shows some, but not severe, lack of fit, i.e. the remainder term still
seems to have a slight trend, owing to a too low polynomial grade. The picture
becomes clearer when we produce the equivalent plots for grade 5 and 6
polynomials. These are displayed on the next page.

Unemployment in Maine

Time

(%
)

1996 1998 2000 2002 2004 2006

3
4

5
6

O(4)
O(5)
O(6)

Residuals vs. Time, O(4)

Time

1996 1998 2000 2002 2004 2006

-0
.6

-0
.2

0
.2

0
.6

 Page 38

The residuals look best in the last plot for order 6, which would be the method of
choice for this series. It is also striking that the remainder is not an i.i.d. series, the
serial correlation is clearly standing out. In the next section, we will address the
estimation and visualization of such autocorrelations.

We conclude this chapter on parametric modeling by issuing a warning: while the
explicit form of the trend can be useful, it shall never be interpreted as causal for
the evolvement of the series. Also, much care needs to be taken if forecasting is
the goal. Extrapolating high-order polynomials beyond the range of observed times
can yield very poor results. We will discuss some simple methods for trend
extrapolation later in section 8 about forecasting.

Residuals vs. Time, O(5)

Time

1996 1998 2000 2002 2004 2006

-0
.6

-0
.2

0
.2

0
.6

Residuals vs. Time, O(6)

Time

1996 1998 2000 2002 2004 2006

-0
.4

-0
.2

0
.0

0
.2

0
.4

 Page 39

4.3 Autocorrelation

An important feature of time series is their serial correlation. This section aims at
analyzing and visualizing these correlations. We first display the autocorrelation
between two random variables t kX and tX , which is defined as:

(,
Cor(,

()

)

(
)

)
t k t

t k t

t k t

Cov X X
X X

Var X Var X

This is a dimensionless measure for the linear association between the two
random variables. Since for stationary series, we require the moments to be non-
changing over time, we can drop the index t for these, and write the
autocorrelation as a function of the lag k :

 () (,)t k tk Cor X X

The goals in the forthcoming sections are estimating these autocorrelations from
observed time series data, and to study the estimates’ properties. The latter will
prove useful whenever we try to interpret sample autocorrelations in practice.

The example we consider in this chapter is the wave tank data. The values are
wave heights in millimeters relative to still water level measured at the center of
the tank. The sampling interval is 0.1 seconds and there are 396 observations. For
better visualization, we here display the first 60 observations only:

> www <- "http://www.massey.ac.nz/~pscowper/ts/wave.dat"
> wave <- ts(read.table(www, header=TRUE)$waveht)
> plot(window(wave, 1, 60), ylim=c(-800,800), ylab="Height")
> title("Wave Tank Data")

Time

H
e

ig
h

t

0 10 20 30 40 50 60

-5
0

0
0

5
0

0

Wave Tank Data

 Page 40

These data show some pronounced cyclic behavior. This does not come
surprising, as we all know from personal experience that waves do appear in
cycles. The series shows some very clear serial dependence, because the current
value is quite closely linked to the previous and following ones. But very clearly, it
is also a stationary series.

4.3.1 Lagged Scatterplot

An appealing idea for analyzing the correlation among consecutive observations in
the above series is to produce a scatterplot of 1(,)t tx x for all 1,..., 1t n . There is
a designated function lag.plot() in R. The result is as follows:

> lag.plot(wave, do.lines=FALSE, pch=20)
> title("Lagged Scatterplot, k=1")

The association seems linear and is positive. The Pearson correlation coefficient
turns out to be 0.47, thus moderately strong. How to interpret this value from a
practical viewpoint? Well, the square of the correlation coefficient, 20.47 0.22 , is
the percentage of variability explained by the linear association between tx and its
respective predecessor. Here in this case, 1tx explains roughly 22% of the
variability observed in tx .

We can of course extend the very same idea to higher lags. We here analyze the
lagged scatterplot correlations for lags 2,...5k , see below. When computed, the
estimated Pearson correlations turn out to be -0.27, -0.50, -0.39 and -0.22,
respectively. The formula for computing them is:

() (1)
1

2 2
() (1)

1 1

()()
()

() ()

n k

s k k s
s

n n k

s k t
s k t

x x x x
k

x x x x

 for 1,..., 2k n ,

-1000 -500 0 500 1000

-5
0

0
0

5
0

0

lag 1

w
a

ve

Lagged Scatterplot, k=1

 Page 41

where (1)
1

1 n k

i
i

x x
n k

 and ()

1

1 n

k i
i k

x x
n k

It is important to notice that while there are 1n data pairs for computing (1) ,
there are only 2n for (2) , and then less and less, i.e. n k pairs for ()k .
Thus for the last autocorrelation coefficient which can be estimated, (2)n , there
is only one single data pair which is left. Of course, they can always be
interconnected by a straight line, and the correlation in this case is always 1 . Of
course, this is an estimation snag, rather than perfect linear association for the two
random variables.

Intuitively, it is clear that because there are less and less data pairs at higher lags,
the respective estimated correlations are less and less precise. Indeed, by digging
deeper in mathematical statistics, one can prove that the variance of ()k
increases with k . This is undesired, as it will lead to instable results and spurious
effects. The remedy is discussed in the next section.

4.3.2 Plug-In Estimation

For mitigating the above mentioned problem with the lagged scatterplot method,
autocorrelation estimation is commonly done using the so-called plug-in approach,
using estimated autocovariances as the basis. The formula is as follows:

ˆ()

ˆ ()
ˆ(0)

k
k

 , for 1,..., 1k n ,

 where
1

1
ˆ() ()()

n k

s k s
s

k x x x x
n

 , with
1

1 n

t
t

x x
n

 .

lag 2

w
av

e
-5

00
0

50
0

-1000 -500 0 500 1000

lag 3

w
av

e

lag 4

w
av

e

lag 5

w
av

e

-5
00

0
50

0

-1000 -500 0 500 1000

 Page 42

Note that here, n is used as a denominator irrespective of the lag and thus the
number of summands. This has the consequence that ˆ(0) is not an unbiased
estimator for 2(0) X , but as explained above, there are good reasons to do so.
When plugging in the above terms, the estimate for the k th autocorrelation
coefficient turns out to be:

 1

2

1

()()
ˆ()

()

n k

s k s
s

n

t
t

x x x x
k

x x

, for 1,..., 1k n .

It is straightforward to compute these in R, function acf() does the job, and we
below do so for the wave tank data. As for the moment, we are interested in the
numerical results, we set argument plot=FALSE. However, as we will see below,
it is usually better to visualize the estimated autocorrelation coefficients
graphically, as it will be explained below in section 4.3.3. Also note that R by
default does not return all autocorrelations which are estimable in this series with
396 observations, but only the first 25.

> acf(wave, plot=FALSE)

Autocorrelations of series ‘wave’, by lag

 0 1 2 3 4 5 6 7
 1.000 0.470 -0.263 -0.499 -0.379 -0.215 -0.038 0.178
 8 9 10 11 12 13 14 15
 0.269 0.130 -0.074 -0.079 0.029 0.070 0.063 -0.010
 16 17 18 19 20 21 22 23
-0.102 -0.125 -0.109 -0.048 0.077 0.165 0.124 0.049
 24 25
-0.005 -0.066

Next, we compare the autocorrelations from lagged scatterplot estimation vs. the
ones from the plug-in approach. These are displayed on the next page. While for
the first 50 lags, there is not much of a difference, the plug-in estimates are much
more damped for higher lags. As claimed above, the lagged scatterplot estimate
shows a value of 1 for lag 394, and some generally very erratic behavior in the
few lags before.

We can “prove”, or rather, provide evidence that this is an estimation artifact only if
we restrict the series to the first 60 observations and then repeat the estimation of
autocorrelations. Again, for the highest few legs which are estimable, the lagged
scatterplot approach shows erratic behavior – and this was not present at the
same lags, when the series was still longer. We do not observe this kind of effect
with the plug-in based autocorrelations, thus this is clearly the method of choice.

We finish this chapter by repeating that the bigger the lag, the fewer data pairs
remain for estimating the autocorrelation coefficient. We discourage of the use of
the lagged scatterplot approach. While the preferred plug-in approach is biased

 Page 43

due to the built-in damping mechanism, i.e. the estimates for high lags are
shrunken towards zero; it can be shown that it has lower mean squared error. This
is because it produces results with much less (random) variability. It can also be
shown that the plug-in estimates are consistent, i.e. the bias disappears
asymptotically.

Nevertheless, all our findings still suggest that it is a good idea to consider only a
first portion of the estimated autocorrelations. A rule of the thumb suggests that

1010 log ()n is a good threshold. For a series with 100 observations, the threshold
becomes lag 20. A second rule operates with / 4n as the maximum lag to which
the autocorrelations are shown.

0 100 200 300 400

-1
.0

-0
.5

0
.0

0
.5

1
.0

Index

la
g

co
rr

ACF Estimation: Lagged Scatterplot vs. Plug-In

0 10 20 30 40 50 60

-1
.0

-0
.5

0
.0

0
.5

1
.0

Index

la
g

co
rr

Lagged Scatterplot
Plug-In

ACF Estimation: Lagged Scatterplot vs. Plug-In

 Page 44

4.3.3 Correlogram

Now, we know how to estimate the autocorrelation function (ACF) for any lag k .
Here, we introduce the correlogram, the standard means of visualization for the
ACF. We will then also study the properties of the ACF estimator. We employ R
and obtain:

> acf(wave, ylim=c(-1,1))

It has become a widely accepted standard to use vertical spikes for displaying the
estimated autocorrelations. Also note that the ACF starts with lag 0, which always
takes the value 1. For better judgment, we also recommend setting the y-Range to
the interval [1,1] . Apart from these technicalities, the ACF reflects the properties
of the series. We also observe a cyclic behavior with a period of 8, as it is
apparent in the time series plot of the original data. Moreover, the absolute value
of the correlations attenuates with increasing lag. Next, we will discuss the
interpretation of the correlogram.

Confidence Bands

It is obvious that even for an iid series without any serial correlation, and thus
() 0k for all k , the estimated autocorrelations ˆ ()k will generally not be zero.

Hopefully, they will be close, but the question is how close. An answer is indicated
by the confidence bands, i.e. the blue dashed lines in the plot above.

These so-called confidence bands are obtained from an asymptotic result: for long
iid time series it can be shown that the ˆ ()k approximately follow a (0,1/)N n
distribution. Thus, each ()k lies within the interval of 1.96 / n with a probability
of approximately 95%. This leads us to the following statement that facilitates
interpretation of the correlogram: “for any stationary time series, sample
autocorrelation coefficients ˆ ()k that fall within the confidence band 2 / n are

0 5 10 15 20 25

-1
.0

-0
.5

0
.0

0
.5

1
.0

Lag

A
C

F

Correlogram of Wave Tank Data

 Page 45

considered to be different from 0 only by chance, while those outside the
confidence band are considered to be truly different from 0 .”

On the other hand, the above statement means that even for iid series, we expect
5% of the estimated ACF coefficients to exceed the confidence bounds; these
correspond to type 1 errors. Please note again that the indicated bounds are
asymptotic and derived from iid series. The properties of serially dependent series
are much harder to derive.

ACF of Non-Stationary Series

Estimation of the ACF from an observed time series assumes that the underlying
process is stationary. Only then we can treat pairs of observations at lag k as
being probabilistically “equal” and compute sample covariance coefficients. Hence,
while stationarity is at the root of ACF estimation, we can of course still apply the
formulae given above to non-stationary series. The ACF then usually exhibits
some typical patterns. This can serve as a second check for non-stationarity, i.e.
helps to identify it, should it have gone unnoticed in the time series plot. We start
by showing the correlogram for the SMI daily closing values from section 1.2.4.
This series does not have seasonality, but a very clear trend.

> acf(smi, lag.max=100)

We observe that the ACF decays very slowly. The reason is that if a time series
features a trend, the observations at consecutive observations will usually be on
the same side of the series’ global mean x . This is why that for small to moderate
lags k , most of the terms

()()s k sx x x x

0 20 40 60 80 100

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Lag

A
C

F

Correlogram of SMI Daily Closing Values

 Page 46

are positive. For this reason, the sample autocorrelation coefficient will be positive
as well, and is most often also close to 1. Thus, a very slowly decaying ACF is an
indicator for non-stationarity, i.e. a trend which was not removed before
autocorrelations were estimated.

Next, we show an example of a series that has no trend, but a strongly recurring
seasonal effect. We use R’s data(nottem), a time series containing monthly
average air temperatures at Nottingham Castle in England from 1920-1939. Time
series plot and correlogram are as follows:

The ACF is cyclic, and owing to the recurring seasonality, the envelope again
decays very slowly. Also note that for periodic series, R has periods rather than
lags on the x-axis – often a matter of confusion. We conclude that a hardly, or very

Time

F
a

h
re

n
h

e
it

1920 1925 1930 1935 1940

3
0

3
5

4
0

4
5

5
0

5
5

6
0

6
5

Nottingham Monthly Average Temperature Data

0 1 2 3 4 5

-1
.0

-0
.5

0
.0

0
.5

1
.0

Lag

A
C

F

Correlogram of Nottingham Temperature Data

 Page 47

slowly decaying periodicity in the correlogram is an indication of a seasonal effect
which was forgotten to be removed. Finally, we also show the correlogram for the
logged air passenger bookings. This series exhibits both an increasing trend and a
seasonal effect. The result is as follows:

> data(AirPassengers)
> txt <- "Correlogram of Logged Air Passenger Bookings"
> acf(log(AirPassengers), lag.max=48, main=txt)

Here, the two effects described above are interspersed. We have a (here
dominating) slow decay in the general level of the ACF, plus some periodicity.
Again, this is an indication for a non-stationary series. It needs to be decomposed,
before the serial correlation in the stationary remainder term can be studied.

The ACF and Outliers

If a time series has an outlier, it will appear twice in any lagged scatterplot, and will
thus potentially have “double” negative influence on the ˆ ()k . As an example, we
consider variable temp from data frame beaver1, which can be found in R’s
data(beavers). This is the body temperature of a female beaver, measured by
telemetry in 10 minute intervals. We first visualize the data with a time series plot,
see next page.

Observation 80 is a moderate, but distinct outlier. It is unclear to the author
whether this actually is an error, or whether the reported value is correct. However,
the purpose of this section is showing the potential bad influence of erroneous
values, so we do not bother too much. Because the Pearson correlation
coefficient, as well as the plug-in autocorrelation estimator is clearly non-robust,
the appearance of the correlogram can be altered quite strongly due to the
presence of just one single outlier.

0 1 2 3 4

-0
.2

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Lag

A
C

F

Correlogram of Logged Air Passenger Bookings

 Page 48

> data(beavers)
> beaver <- ts(beaver1$temp, start=1, freq=1)
> plot(beaver, main="Beaver Body Temperature Data")

> plot(beaver[1:113], beaver[2:114], pch=20,)
> title("Lagged Scatterplot for Beaver Temperature")

The two data points where the outlier is involved are easily identifiable. We
compute the Pearson correlation coefficients with and without these observations;
they are 0.86 and 0.91, respectively. Depending on how severe the outlier is, the
effect can be much stronger of course. On the next page, we also show the entire
correlogram for the beaver data, computed with (black) and without (red) the
outlier. Also here, the difference may seem small and rather academic, but it could
easily be severe if the outlier was just pronounced enough.

Beaver Body Temperature Data

Time

b
e

a
ve

r

0 20 40 60 80 100

3
6

.4
3

6
.8

3
7

.2

36.4 36.6 36.8 37.0 37.2 37.4

3
6

.4
3

6
.8

3
7

.2

Lagged Scatterplot for Beaver Temperature

 Page 49

The question is, how do we handle missing values in time series? In principle, we
cannot just omit them without breaking the time structure. And breaking it means
going away from our paradigm of equally spaced points in time. A popular choice
is thus replacing the missing value. This can be done with various degrees of
sophistication:

a) replacing the value with the global mean

b) using a local mean, i.e. +/- 3 observations

c) model based imputation by forecasting

The best strategy depends upon the case at hand. And in fact, there is a fourth
alternative: while R’s acf() function by default does not allow for missing values,
it still offers the option to proceed without imputation. If argument is set as
na.action=na.pass, the covariances are computed from the complete cases,
and the correlogram is shown as usual. However, having missed values in the
series has the consequence that the estimates produced may well not be a valid
(i.e. positive definite) autocorrelation sequence, and may contain missing values.
From a practical viewpoint, these drawbacks can often be neglected, though.

4.3.4 Quality of ACF Estimates

In this section we will deal with the quality of the information that is contained in
the correlogram. We will not do this from a very theoretical viewpoint, but rather
focus on the practical aspects. We have already learned that the ACF estimates
are generally biased, i.e. damped for higher lags. This means that it is better to cut
off the correlogram at a certain lag. Furthermore, non-stationarities in the series
can hamper the interpretation of the correlogram and we have also seen that
outliers can have a quite strong impact. But there is even more...

0 5 10 15 20

-0
.2

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Lag

A
C

F
Correlogram of Beaver Temperature Data

with outlier
without outlier

 Page 50

The Compensation Issue

One can show that the sum of all autocorrelations which can be estimated from a
series realization is -1/2. Or, written as a formula:

1

1

1
ˆ ()

2

n

k

k

We omit the proof here. It is clear that the above condition will lead to quite severe
artifacts, especially when a time series process has only positive correlations. We
here show both the true, theoretical ACF of an AR(1) process with 1 0.7 , which,
as we will see in section 5, has () 0k for all k , and the sample correlogram for
a realization of that process with length 200 observations.

0 50 100 150 200

-1
.0

-0
.5

0
.0

0
.5

1
.0

Lag

A
C

F

True ACF of an AR(1) Process with alpha=0.7

0 50 100 150 200

-0
.2

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Lag

A
C

F

Correlogram for a Realization from an AR(1) Process

 Page 51

The respective R-commands for producing these plots are as follows:

True ACF
true.acf <- ARMAacf(ar=0.7, lag.max=200)
plot(0:200, true.acf, type="h", xlab="Lag", ylim=c(-1,1))
title("True ACF of an AR(1) Process with alpha=0.7")
abline(h=0, col="grey")

Simulation and Generating the ACF
set.seed(25)
ts.simul <- arima.sim(list(ar=0.7), 200)
acf(ts.simul, lag=200, main="Correlogram ...")

What we observe is quite striking: only for the very first few lags, the sample ACF
does match with its theoretical counterpart. As soon as we are beyond lag 6k ,
the sample ACF turns negative. This is an artifact, because the sum of the
estimated autocorrelations coefficients needs to add up to -1/2. Some of these
spurious, negative correlation estimates are so big that they even exceed the
confidence bounds – an observation that has to be well kept in mind if one
analyzes and tries to interpret the correlogram.

Simulation Study

Last but not least, we will run a small simulation study that visualizes the variability
there is in ACF estimation. We will again base this on the simple AR(1) process
with coefficient 1 0.7 . For further discussion of the process’ properties, we refer
to section 5. There, it will turn out that the thk autocorrelation coefficient of such a
process takes the value (0.7)k , as visualized on the previous page.

For understanding the variability in ˆ (1) , ˆ (2) , ˆ (5) and ˆ (10) , we simulate from
the aforementioned AR(1) process. We generate series of length 20n , 50n ,

100n and 200n . We then obtain the correlogram, record the estimated
autocorrelation coefficients and repeat this process 1000 times. This serves as a
basis for displaying the variability in ˆ (1) , ˆ (2) , ˆ (5) and ˆ (10) with boxplots.
They can be found on the next page.

We observe that for “short” series with less than 100 observations, estimating the
ACF is a difficult matter. The ˆ ()k are strongly biased downwards, and there is
huge variability. Only for longer series, the consistency of the estimator “kicks in”,
and yields estimates which are reasonably precise. For lag 10k , on the other
hand, we observe less bias, but the variability in the estimate remains large, even
for “long” series.

We conclude this situation by summarizing: by now, we have provided quite a bit
of evidence that the correlogram can be tricky to interpret at best, sometimes even
misleading, or plain wrong. However, it is the best means we have for
understanding the dependency in a time series. And we will base many if not most
of our decision in the modeling process on the correlogram. However, please be
aware of the estimation variability there is.

 Page 52

4.4 Partial Autocorrelation

For the above AR(1) process, with its strong positive correlation at lag 1, it is
somehow “evident” that the autocorrelation for lags 2 and higher will be positive as
well – just by propagation: if A is highly correlated to B, and B is highly correlated
to C, then A is usually highly correlated to C as well. It would now be very
instructive to understand the direct relation between A and C, i.e. exploring what
dependency there is in excess to the one associated to B. In a time series context,
this is exactly what the partial autocorrelations do. The mathematical definition is
the one of a conditional correlation:

 1 1 1 1() (, | , ,)t k t t t t k t kk Cor X X X x X x

In other words, we can also say that the partial autocorrelation is the association
between tX and t kX with the linear dependence of 1tX through 1t kX removed.
Another instructive analogy can be drawn to linear regression. The autocorrelation
coefficient ()k measures the simple dependence between tX and t kX , whereas
the partial autocorrelation ()k measures the contribution to the multiple
dependence, with the involvement of all intermediate instances 1 1,...,t t kX X as
explanatory variables.

There is a (theoretical) relation between the partial autocorrelations ()k and the
plain autocorrelations (1),..., ()k , i.e. they can be derived from each other, e.g.:

Variation in ACF(1) estimation

n=20 n=50 n=100 n=200

-1
.0

-0
.5

0.
0

0.
5

1.
0

Variation in ACF(2) estimation

n=20 n=50 n=100 n=200

-1
.0

-0
.5

0.
0

0.
5

1.
0

Variation in ACF(5) estimation

n=20 n=50 n=100 n=200

-1
.0

-0
.5

0.
0

0.
5

1.
0

Variation in ACF(10) estimation

n=20 n=50 n=100 n=200

-1
.0

-0
.5

0.
0

0.
5

1.
0

 Page 53

(1) (1) and 2 2(2) ((2) (1)) / (1 (1))

The formula for higher lags k exists, but get complicated rather quickly, so we do
without displaying them. However, another absolutely central property of the
partial autocorrelations ()p is that the thk coefficent of the AR(p) model, denoted
as p , is equal to ()p . While there is an in depth discussion of AR(p) models in
section 5, we here briefly sketch the idea, because it makes the above property
seem rather logical. An autoregressive model of order p , i.e. an AR(p) is:

1 1t t k t p tX X X E ,

where tE is a sequence of iid random variables. Making the above statement
concrete, this means that in an AR(3) process, we have 3(3) , but generally

2(2) and 1(1) . Moreover, we have () 0k for all k p . These
properties are used in R for estimating partial autocorrelation coefficients.
Estimates ˆ()p are generated by fitting autoregressive models of successively
higher orders.

The job is done with function pacf(): input/output are equal/similar to ACF
estimation. In particular, the confidence bounds are also presented for the PACF.
We conclude this section by showing the result for the wave tank data.

> pacf(wave, ylim=c(-1,1), main="PACF of Wave Tank Data")

We observe that ˆ(1) 0.5 and ˆ(2) 0.6 . Some further PACF coefficients up to
lag 10 seem significantly different from zero, but are smaller. From what we see
here, we could try to describe the wave tank data with an AR(2) model. The next
section will explain why.

5 10 15 20 25

-1
.0

-0
.5

0
.0

0
.5

1
.0

Lag

P
a

rt
ia

l A
C

F

PACF of Wave Tank Data

 Page 54

5 Stationary Time Series Models
Rather than simply describing observed time series data, we now aim for fitting
models. This will prove useful for a deeper understanding of the data, but is
especially beneficial when forecasting is the main goal. We here focus on
parametric models for stationary time series, namely the broad class of
autoregressive moving average (ARMA) processes – these have shown great
importance in modeling real-world data.

5.1 White Noise

As the most basic stochastic process, we introduce discrete white noise. A time
series 1 2(, ,...,)nW W W is called white noise if the random variables 1 2, ,...W W are
independent and identically distributed with mean zero. This also implies that all
random variables tW have identical variance, and there are no autocorrelations
and partial autocorrelations either: () 0k and () 0k for all lags k . If in
addition, the variables also follow a Gaussian distribution, i.e. 2~ (0,)t WW N , the
series is called Gaussian white noise.

Before we show a realization of a white noise process, we state that the term
“white noise” was coined in an article on heat radiation published in Nature in April
1922. There, it was used to refer to series time series that contained all
frequencies in equal proportions, analogous to white light. It is possible to show
that i.i.d. sequences of random variables do contain all frequencies in equal
proportions, and hence, here we are.

In R, it is easy to generate Gaussian white noise, we just type:

> ts(rnorm(200, mean=0, sd=1))

Time

0 50 100 150 200

-3
-2

-1
0

1
2

3

Gaussian White Noise

 Page 55

Well, by giving more thought on how computers work, i.e. by relying on
deterministic algorithms, it may seem implausible that they can really generate
independent data. We do not embark into these discussions here, but treat the
result of rnorm() as being “good enough” for a realization of a white noise
process. Here, we show ACF and PACF of the above series. As expected, there
are no (strongly) significant estimates.

White noise series are important, because they usually arise as residual series
when fitting time series models. The correlogram generally provides enough
evidence for attributing a series as white noise, provided the series is of
reasonable length – our studies in section 4.3 suggests that 100 or 200 is such a
value. Please also note that while there is not much structure in Gaussian white
noise, it still has a parameter. It is the variance 2

W

5.2 Autoregressive Models

0 5 10 15 20

-1
.0

-0
.5

0
.0

0
.5

1
.0

Lag

A
C

F

ACF

5 10 15 20

-1
.0

-0
.5

0
.0

0
.5

1
.0

Lag

P
a

rt
ia

l A
C

F

PACF

 Page 56

5.3 Moving Average Models

Here, we will discuss moving average models. These can be seen as an extension
of the white noise process, i.e. tX can be written as a linear combination of the
current plus a few of the most recent innovation terms. As we will see, this leads to
a time series process that is stationary, but not iid. Furthermore, we will see that in
many respects, moving average models are complementary to autoregressive
models.

5.3.1 Backshift Operator

We start our discussion of moving average models by introducing the backshift
operator B because it allows for convenient notation. When the operator B is
applied to tX it returns the instance at lag 1, i.e.

1()t tB X X .

Less mathematically, we can also say that applying B means “go back one step”,
or “increment the time series index t by -1”. We can of course apply B repeatedly
and so shift back to lag k , in particular:

()k
t t kB X X .

As mentioned above, this will serve us to write time series models in more
compact form. We illustrate this for an AR(p) model, where

 2
1 2(...)p

t p t tX B B B X E , or respectively:

 2
1 2(1 ...)p

p t tB B B X E

We can summarize 2
1 2(1 ...)p

pB B B by ()B , this is the characteristic
polynomial of the respective AR process. Soon, we will exploit the very same
mechanism with moving average models.

5.3.2 Model Equation

As we had mentioned above, a moving average model of order q , or abbreviated,
an ()MA q model for a series tX is a linear combination of the current innovation
term tE , plus the q most recent ones 1,...,t t qE E . The model equation is:

1 1· ·t t t q t qX E E E

We require that tE is an innovation, which means independent and identically
distributed, and also independent of any sX where s t . We make use of the
backshift operator that was defined above for rewriting the model:

 1(1) ()q
t q t tX B B E B E

 Page 57

Please note that some other textbooks also define this model with negative signs
for the j . While this is mathematically equivalent, we prefer our notation with the
‘+’ signs, because this is also how things are defined in R. Please also note that
we can always enhance this model by adding a constant that accounts for non-
zero expectation of a time series.

Why such MA(q) models? They have been applied successfully in many applied
fields, particularly in econometrics. Time series such as economic indicators are
affected by a variety of random events such as strikes, government decision,
referendums, shortages of key commodities and so on. Such events will not only
have an immediate effect, but may also affect the value (to a lesser extent) in
several of the consecutive periods. Thus, it is plausible that moving average
processes appear in practice. Moreover, some of their theoretical properties are in
a nice way complementary to the ones of AR processes. This will become clear if
we closely study the MA(1) model.

5.3.3 The MA(1) Process

For proofing stationarity and deriving the moments of moving average processes,
we first consider the simple model of order 1:

1 1·t t tX E E

where tE is a white noise process with () 0tE E and 2()tVar E . It is
straightforward to show that tX has mean zero, since it is the sum of two random
variables with each mean zero. The variance is also easy to derive:

 2 2
1() (1)t EVar X

The ACF is special because only the coefficient at lag 1 is different from zero, and
there is no further autocorrelation:

1
2

1

(1)
(1)

, and () 0k for 1k .

Also, we have (1) 0.5 , no matter what the choice for 1 is. Thus if in practice we
observe a series where the first-order autocorrelation coefficient clearly exceeds
this value, we have counterevidence to a MA(1) process.

For illustration, we generate a realization consisting of 500 observations, from
such a process with 1 0.7 , and display time series plot, along with both
estimated and true ACF/PACF.

> set.seed(21)
> ts.ma1 <- arima.sim(list(ma=0.7), n=500)
>
> plot(ts.ma1, ylab="", ylim=c(-4,4))
> title("Simulation from a MA(1) Process")

 Page 58

> acf.true <- ARMAacf(ma=0.7, lag.max=20)
> pacf.true <- ARMAacf(ma=0.7, pacf=TRUE, lag.max=20)

We observe that the estimates are pretty accurate: the ACF has a clear cut-off,
whereas the PACF shows some alternating behavior with an exponential decay in
absolute value – completely contrary to the stylized facts an AR process shows.

Time

0 100 200 300 400 500

-4
-2

0
2

4

Simulation from a MA(1) Process

0 5 10 15 20 25

-1
.0

-0
.5

0.
0

0.
5

1.
0

Lag

A
C

F

Estimated ACF

0 5 10 15 20 25

-1
.0

-0
.5

0.
0

0.
5

1.
0

Lag

P
ar

tia
l A

C
F

Estimated PACF

0 5 10 15 20

-1
.0

-0
.5

0.
0

0.
5

1.
0

lag

ac
f.

tr
ue

True ACF

5 10 15 20

-1
.0

-0
.5

0.
0

0.
5

1.
0

lag

pa
cf

.t
ru

e

True PACF

 Page 59

Invertibility

The first autocorrelation coefficient (1) can be written in standard form, or also as
follows:

 1 1
2 2

1 1

1/
(1)

1 1 (1/)

Apparently, a MA(1) process with coefficient 1 has exactly the same ACF as the
one with 11 / . Thus, for example, the two processes 10.5·t t tX E E and

12·t t tY E E have the same dependency structure. This problem of ambiguity
leads to the concept of invertibility.

TBC...

5.4 ARMA Models

 Page 60

6 Time Series Regression

6.1 What Is the Problem?

It is often the case that we aim for describing some time series tY with a linear
combination of some explanatory series 1,..., p

t tx x . As we will see below, the
predictors can either be true covariates, or terms that are derived from time, as for
example linear trends or seasonal effects. We employ the universally known linear
model for linking the response series with the predictors:

 1
0 1 ... p

t t p t tY x x E

The regression coefficients 1,..., p are usually estimated with the least squares
algorithm, for which an error term with zero expectation, constant variation and no
correlation is assumed. However, if response and predictors are time series, the
last condition often turns out to be violated.

Now, if we are facing a (time series) regression problem with correlated errors, the
estimates ˆ

j will remain being unbiased, but the least squares algorithm is no
longer efficient. Or in other words: more precisely working estimators exist. Even
more problematic are the standard errors of the regression coefficients ˆ

j : they
are often grossly wrong in case of correlated errors. As they are routinely
underestimated, inference on the predictors often yields spurious significance, i.e.
one is prone to false conclusions from the analysis.

Thus, there is a need for more general linear regression procedures that can deal
with serially correlated errors, and fortunately, they exist. We will here discuss the
simple, iterative Cochrane-Orcutt procedure, and the Generalized Least Squares
method, which marks a theoretically sound approach to regression with correlated
errors. But first, we present some time series regression problems to illustrating
what we are dealing with.

Example 1: Global Temperature

In climate change studies time series with global temperature values are analyzed.
The scale of measurement is anomalies, i.e. the difference between the monthly
global mean temperature versus the overall mean between 1961 and 1990. The
data can be obtained at http://www.cru.uea.ac.uk/cru/data. For illustrative
purposes, we here restrict to a period from 1971 to 2005 which corresponds to a
series of 420 records. For a time series plot, see the next page.

> ## Time Series Plot
> my.temp <- window(global, c(1971,1), c(2005,12))
> plot(my.temp, ylab="anomaly")
> title("Global Temperature Anomalies")

 Page 61

There is a clear trend which seems to be linear. Despite we have monthly data,
there is no evident seasonality. This is not overly surprising, since we are
considering a global mean, i.e. the season should not make for a big difference.
But on the other hand, because the landmass is not uniformly distributed over both
halves of the globe, it could still be present. It is natural to try a season-trend-
decomposition for this series. We will employ a parametric model featuring a linear
trend plus a seasonal factor.

2 [" "] 12 [" "]0 1 1 ... 1 ,· month Feb mont Dect h tt EY

where 1, ,420t and [" "]1 month Feb is a dummy variable that takes the value 1 if an
observation is from month February, and zero else. Clearly, this is a time series
regression model. The response tY is the global temperature anomalies, and even
the predictors, i.e. the time and the dummies, can be seen as time series, even if
simple ones.

As we have seen previously, the goal with such parametric decomposition models
is to obtain a stationary remainder term tE . But stationary does not necessarily
mean white noise, and in practice it often turns out that tE shows some serial
correlation. Thus, if the regression coefficients are obtained from the least squares
algorithm, we apparently feature some violated assumption.

This violation can be problematic, even in an applied setting: a question of utter
importance with the above series is whether trend and seasonal effect are
significantly present. It would be nice to answer such questions using the inference
approaches that linear regression provides. However, for obtaining reliable
inference results, we need to account for the correlation among the errors. We will
show this below, after introducing some more examples and theory.

Time

a
n

o
m

a
ly

1970 1975 1980 1985 1990 1995 2000 2005

-0
.4

0
.0

0
.2

0
.4

0
.6

0
.8

Global Temperature Anomalies

 Page 62

Example 2: Air Pollution

In this second example, we consider a time series that is stationary, and where the
regression aims at understanding the series, rather than decomposing it into some
deterministic and random components. We examine the dependence of a
photochemical pollutant (morning maximal value) on the two meteorological
variables wind and temperature. The series, which constitute of 30 observations
taken on consecutive days, come from the Los Angeles basin. They are not
publicly available, but can be obtained from the lecturer upon request.

> ## Importing the data
> tmp <- read.table("pollute.dat", header=TRUE)
> dat <- ts.union(Oxidant=ts(tmp$Oxidant), Wind=ts(tmp$Wind),
 Temp=ts(tmp$Temp))
> ## Visualizing the data
> plot(dat, main="Air Pollution Data")

There is no counterevidence to stationarity for all three series. What could be the
goal here? Well, we aim for enhancing the understanding of how the pollution
depends on the meteorology, i.e. what influence wind and temperature have on
the oxidant values. We can naturally formulate the relation with a linear regression
model:

 1 2
0 1 2t t t tY x x E .

In this model, the response tY is the oxidant, and as predictors we have 1
tx , wind,

and 2
tx , the temperature. For the index, we have 1,...,30t , and obviously, this is

a time series regression model.

For gaining some more insight with these data, it is also instructive to visualize the
data using a pairs plot, as shown on the next page. There, a strong, positive linear

5
10

20

O
xi

d
a

n
t

35
45

55
65

W
in

d
70

80
90

0 5 10 15 20 25 30

T
e

m
p

Time

Air Pollution Data

 Page 63

association is recognizable between pollutant and the temperature. In contrast,
there is a negative linear relation between pollutant and wind. Lastly, between the
predictors wind and temperature, there is not much of a correlation. This data
structure is not surprising because wind causes a stronger movement of the air
and thus the pollutant is "better" distributed. Also, the wind causes some cooling.

For achieving our practical goals with this dataset, we require precise and
unbiased estimates of the regression coefficients 1 and 2 . Moreover, we might
like to give some statements about the significance of the predictors, and thus, we
require some sound standard errors for the estimates. However, also with these
data, it is well conceivable that the error term tE will be serially correlated. Thus
again, we will require some procedure that can account for this.

Time Series Regression Model

The two examples have shown that time series regression models do appear
when decomposing series, but can also be important when we try to understand
the relation between response and predictors with measurements that were taken
sequentially. Generally, with the model

1
0 1 ... p

t t p t tY x x E

we assume that the influence of the series 1, , q
t tx x on the response tY is

simultaneous. Nevertheless, lagged variables are also allowed, i.e. we can also
use terms such as j

t kx with 0k as predictors. While this generalization can be
easily built into our model, one quickly obtains models with many unknown
parameters. Thus, when exploring the dependence of a response series to lags of
some predictor series, there are better approaches than regression. In particular,
this is the cross correlations and the transfer function model, which will be
exhibited later in section Fehler! Verweisquelle konnte nicht gefunden
werden..

Oxidant

35 40 45 50 55 60 65

+

+

+

+

+ ++ ++

+

+

+
+

+

+ +

+++
+

++ +
+

+ +

+++ +

5
10

20

+

+

+

+

+ + + ++

+

+

+
+

+

++

++ +
+

+++
+

+ +

++ + +

35
45

55
65

+
+

+

+

+
+
+

+

+

+
+

+ + +

++
+

+
+

++
+

+

+

+

+ ++

+

+

Wind +
+

+

+

+
+

+

+

+

+
+

++ +

++
+
+

+
++

+

+

+

+

+ ++

+

+

5 10 15 20 25

+
+

+
++

+
+

+ + ++
+ +

+
+

+

+ +
++

+

++
+

+

+
++

+

+

+
+

+
+ +

+
+

+++ +
+ +
+

+
+

++
+ +

+

+ +
+

+

+
++

+

+

70 75 80 85 90

70
80

90

Temp

 Page 64

In fact, there are not many restrictions for the time series regression model. As we
have seen, it is perfectly valid to have non-stationary series as either the response
or as predictors. However, it is crucial that there is no feedback from tY to the j

tx .
Additionally, the error tE must be independent of the explanatory variables, but it
may exhibit serial correlation.

6.2 Finding Correlated Errors

When dealing with a time series regression problem, we first always assume
uncorrelated errors and start out with an ordinary least squares regression. Based
on its residuals, the assumption can be verified, and if necessary, action can be
taken. For identifying correlation among the residuals, we analyze their time series
plot, ACF and PACF.

Example 1: Global Temperature

Our goal is the decomposition of the global temperature series into a linear trend
plus some seasonal factor. First and foremost, we prepare the data:

> num.temp <- as.numeric(my.temp)
> num.time <- as.numeric(time(my.temp))
> mn01 <- c("Jan", "Feb", "Mar", "Apr", "May", "Jun")
> mn02 <- c("Jul", "Aug", "Sep", "Oct", "Nov", "Dec")
> month <- factor(cycle(my.temp), labels=c(mn01, mn02))
> dat <- data.frame(temp=num.temp, time=num.time, month)

The regression model is the estimated with R’s function lm(). The summary
function returns estimates, standard errors plus the results from some hypothesis
tests. It is important to notice that all of these results are in question should the
errors turn out to be correlated.

> fit.lm <- lm(temp ~ time + season, data=dat)
> summary(fit.lm)

Call:
lm(formula = temp ~ time + season, data = dat)

Residuals:
 Min 1Q Median 3Q Max
-0.36554 -0.07972 -0.00235 0.07497 0.43348

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) -3.603e+01 1.211e+00 -29.757 <2e-16 ***
time 1.822e-02 6.089e-04 29.927 <2e-16 ***
seasonFeb 6.539e-03 3.013e-02 0.217 0.8283
seasonMar -1.004e-02 3.013e-02 -0.333 0.7392
seasonApr -1.473e-02 3.013e-02 -0.489 0.6252
seasonMay -3.433e-02 3.013e-02 -1.139 0.2552

 Page 65

seasonJun -2.628e-02 3.013e-02 -0.872 0.3836
seasonJul -2.663e-02 3.013e-02 -0.884 0.3774
seasonAug -2.409e-02 3.013e-02 -0.799 0.4245
seasonSep -3.883e-02 3.013e-02 -1.289 0.1982
seasonOct -5.212e-02 3.013e-02 -1.730 0.0844 .
seasonNov -6.633e-02 3.013e-02 -2.201 0.0283 *
seasonDec -4.485e-02 3.013e-02 -1.488 0.1374

Residual standard error: 0.126 on 407 degrees of freedom
Multiple R-squared: 0.6891, Adjusted R-squared: 0.68
F-statistic: 75.18 on 12 and 407 DF, p-value: < 2.2e-16

As the next step, we need to perform some residual diagnostics. The plot()
function, applied to a regression fit, serves as a check for zero expectation,
constant variation and normality of the errors, and can give hints on potentially
problematic leverage points.

> par(mfrow=c(2,2))
> plot(fit.lm, pch=20)

Except for some very slightly long tailed errors, which do not require any action,
the residual plots look fine. What has not yet been verified is whether there is any
serial correlation among the residuals. If we wish to see a time series plot, the
following commands are useful:

-0.1 0.0 0.1 0.2 0.3 0.4 0.5

-0
.4

0.
0

0.
2

0.
4

Fitted values

R
es

id
ua

ls

Residuals vs Fitted

326

63 278

-3 -2 -1 0 1 2 3

-3
-1

0
1

2
3

4

Theoretical Quantiles

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Normal Q-Q

326

63 278

-0.1 0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
5

1.
0

1.
5

Fitted values

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Scale-Location
326

63 278

0.000 0.010 0.020 0.030

-2
0

2
4

Leverage

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Cook's distance

Residuals vs Leverage

326

63

26

 Page 66

> plot(dat$time, resid(fit.lm), type="l")

It is fairly obvious from the time series plot that the residuals are correlated. Our
main tool for describing the dependency structure is the ACF and PACF plots,
however. These are as follows:

> par(mfrow=c(1,2))
> acf(resid(fit.lm), main="ACF of Residuals")
> pacf(resid(fit.lm), main="PACF of Residuals")

The ACF shows a rather slow exponential decay, whereas the PACF shows a
clear cut-off at lag 2. With these stylized facts, it might well be that an AR(2) model
is a good description for the dependency among the residuals. We verify this:

1970 1975 1980 1985 1990 1995 2000 2005

-0
.2

0
.0

0
.2

0
.4

dat$time

re
si

d
(f

it.
lm

)

Residuals of the lm() Function

0 5 10 15 20 25

-1
.0

-0
.5

0
.0

0
.5

1
.0

Lag

A
C

F

ACF of Residuals

0 5 10 15 20 25

-1
.0

-0
.5

0
.0

0
.5

1
.0

Lag

P
a

rt
ia

l A
C

F

PACF of Residuals

 Page 67

> fit.ar2 <- ar.burg(resid(fit.lm)); fit.ar2

Call:
ar.burg.default(x = resid(fit.lm))

Coefficients:
 1 2
0.4945 0.3036

Order selected 2 sigma^2 estimated as 0.00693

When using Burg’s algorithm for parameter estimation and doing model selection
by AIC, order 2 also turns out to be optimal. For verifying an adequate fit, we
visualize the residuals from the AR(2) model. These need to look like white noise.

0 100 200 300 400

-0
.3

-0
.1

0
.0

0
.1

0
.2

0
.3

Residuals of AR(2)

Index

fit
.a

r2
$

re
si

d

0 5 10 15 20 25

-1
.0

-0
.5

0
.0

0
.5

1
.0

Lag

A
C

F

ACF of AR(2) Residuals

0 5 10 15 20 25

-1
.0

-0
.5

0
.0

0
.5

1
.0

Lag

P
a

rt
ia

l A
C

F

ACF of AR(2) Residuals

 Page 68

There is no contradiction to the white noise hypothesis for the residuals from the
AR(2) model. Thus, we can summarize as follows: the regression model that was
used for decomposing the global temperature series into a linear trend and a
seasonal factor exhibit correlated errors that seem to originate from an AR(2)
model. Theory tells us that the point estimates for the regression coefficients are
still unbiased, but they are no longer efficient. Moreover, the standard errors for
these coefficients can be grossly wrong. Thus, we need to be careful with the
regression summary approach that was displayed above. And since our goal is
inferring significance of trend and seasonality, we need to come up with some
better suited method.

Example 2: Air Pollution

Now, we are dealing with the air pollution data. Again, we begin our regression
analysis using the standard assumption of uncorrelated errors. Thus, we start out
by applying the lm() function and printing the summary().

> fit.lm <- lm(Oxidant ~ Wind + Temp, data=dat)
> summary(fit.lm)

Call:
lm(formula = Oxidant ~ Wind + Temp, data = dat)

Residuals:
 Min 1Q Median 3Q Max
-6.3939 -1.8608 0.5826 1.9461 4.9661

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) -5.20334 11.11810 -0.468 0.644
Wind -0.42706 0.08645 -4.940 3.58e-05 ***
Temp 0.52035 0.10813 4.812 5.05e-05 ***

Residual standard error: 2.95 on 27 degrees of freedom
Multiple R-squared: 0.7773, Adjusted R-squared: 0.7608
F-statistic: 47.12 on 2 and 27 DF, p-value: 1.563e-09

We will do without showing the 4 standard diagnostic plots, and here only report
that they do not show any model violations. Because we are performing a time
series regression, we also need to check for potential serial correlation of the
errors. As before, this is done on the basis of time series plot, ACF and PACF:

> plot(1:30, resid(fit.lm), type="l")
> title("Residuals of the lm() Function")
> par(mfrow=c(1,2))
> acf(resid(fit.lm), ylim=c(-1,1), main="ACF of Residuals")
> pacf(resid(fit.lm), ylim=c(-1,1), main="PACF of Residuals")

 Page 69

Also in this example, the time series of the residuals exhibits serial dependence.
Because the ACF shows an exponential decay and the PACF cuts off at lag 1, we
hypothesize that an AR(1) model is a good description. While the AIC criterion
suggests an order of 14p , the residuals of an AR(1) show the behavior of white
noise. Additionally, using an AR(14) would be spending too many degrees of
freedom for a series with only 30 observations.

Thus, we can summarize that also in our second example with the air pollution
data, we feature a time series regression that has correlated errors. Again, we
must not communicate the above regression summary and for sound inference,
we require more sophisticated models.

0 5 10 15 20 25 30

-6
-4

-2
0

2
4

1:30

re
si

d
(f

it.
lm

)
Residuals of the lm() Function

0 2 4 6 8 10 12 14

-1
.0

-0
.5

0
.0

0
.5

1
.0

Lag

A
C

F

ACF of Residuals

2 4 6 8 10 12 14

-1
.0

-0
.5

0
.0

0
.5

1
.0

Lag

P
a

rt
ia

l A
C

F

PACF of Residuals

 Page 70

6.2.1 Durbin-Watson Test

For the less proficient user, hypothesis tests always seem like an attractive
alternative to visual inspection of graphical output. This is certainly also the case
when the task is identifying a potential serial correlation in a regression analysis.
Indeed, there is a formal test that addresses the issue, called the Durbin-Watson
test. While we will here briefly go into it, we do not recommend it for practical
application.The Durbin-Watson test tests the null hypothesis 0 : (1) 0H against
the alternative : (1) 0AH . The test statistic D̂ is calculated as follows

2
1

2

2

1

()
ˆ

t t
t

n

n

t
t

r

r r
D

where ˆt t tyr y is the residual from the regression model, observed at time t .
There is an approximate relationship between the test statistic D̂ and the
autocorrelation coefficient at lag 1:

ˆ ˆ2(1 (1))D

The test statistic takes values between 0 if 1t tr r and 4 if 1t tr r . These extremes
indicate perfect correlation of the residuals. Values around 2, on the other hand,
are evidence for uncorrelated errors. The exact distribution of D̂ is rather difficult
to derive. However, we do not need to bother with this. The R package lmtest
holds an implementation of the Durbin-Watson test with function dwtest(),
where the p-value is either (for large sample size) determined by a normal
approximation, or (for short series) by an iterative procedure.

Example 1: Global Temperature

> dwtest(fit.lm)
data: fit.lm
DW = 0.5785, p-value < 2.2e-16
alt. hypothesis: true autocorrelation is greater than 0

Example 2: Air Pollution

> dwtest(fit.lm)
data: fit.lm
DW = 1.0619, p-value = 0.001675
alt. hypothesis: true autocorrelation is greater than 0

Thus, the null hypothesis is rejected in both examples and we come to the same
conclusion (“errors are correlated”) as with our visual inspection. It is very
important to note that this is not necessary: In cases where the errors follow an
AR(p) process where 1p and | (1) | is small, the null hypothesis will not be
rejected despite the fact that the errors are correlated.

 Page 71

6.3 Generalized Least Squares

The ordinary least squares regression model assumes that 2()Var E I , i.e. the
covariance matrix of the errors is diagonal with identical values on the diagonal
itself. As we have seen in our examples above, this is not a good model for time
series regression. There, we rather have 2()Var E , where reports the
correlation among the errors. Using a Cholesky decomposition, we can write

TSS , where S is a triangular matrix. This allows us to rewrite the regression
model in matrix notation as follows:

1 1 1

y X E

S y S X S E

y X E

This transformation is successful, because in the prime model, we have
uncorrelated errors again:

 1 1 1 2 2() () () T T TVar E Var S E S Var E S S SS S I

With some algebra, it is easy to show that the estimated regression coefficients for
the generalized least squares approach turn out to be:

 1 1ˆ ()T TX X X y

This is what is known as the generalized least squares estimator. Moreover, the
covariance matrix of the coefficient vector is:

 1 1 2ˆ() ()TVar X X

This covariance matrix then also contains standard errors in which the correlation
of the errors has been accounted for, and with which sound inference is possible.
However, while this all neatly lines up, we of course require knowledge about the
error covariance matrix , which is generally unknown in practice. What we can
do is estimate it from the data, for which two approaches exist.

Cochrane-Orcutt Method

This method is iterative: it starts with an ordinary least squares (OLS) regression,
from which the residuals are determined. For these residuals, we can then fit an
appropriate ARMA(p,q) model and with its estimated model coefficients 1,..., p
and () ()

1 ,...,MA q MA q
q . This is exactly what we have done for our two examples: we

fitted OLS regressions, and identified an AR(2), respectively an AR(1) dependency
among the residuals.

On the basis of the estimated AR(MA) model coefficients, an estimate of the error
covariance matrix can be derived. We denote it by ̂ , and plug it into the
formulae presented above. This yields adjusted regression coefficients and correct
standard errors for these regression problems.

 Page 72

While the Cochrane-Orcutt procedure has its historical importance and is nice for
illustration, it lacks of a direct R implementation, and, as an iterative procedure,
also of mathematical closeness and quality. Thus, we do without performing
Cochrane-Orcutt with our examples.

The gls() Procedure

A better, yet more sophisticated approach is to estimate the regression coefficients
and the ARMA parameters simultaneously. This can be done using the Maximum-
Likelihood principle. Even under the assumption of Gaussian errors, this is a
nonlinear and numerically difficult problem. However, for practical application, we
do not need to worry. The R package nlme features the gls() procedure which
tackles this problem. Thus, we focus on correct application of the R function.

Example 1: Global Temperature

Every GLS regression analysis starts by fitting an OLS an analyzing the residuals,
as we have done above. Remember that the only model violation we found were
correlated residuals that were well described with an AR(2) model. Please note
that for performing GLS, we need to provide a dependency structure for the errors.
Here, this is the AR(2) model, in general, it is an appropriate ARMA(p,q). The
syntax and output is as follows:

> library(nlme)
> corStruct <- corARMA(form=~time, p=2)
> fit.gls <- gls(temp~time+season, data=dat, corr=corStruct)
> fit.gls
Generalized least squares fit by REML
 Model: temp ~ time + season
 Data: dat
 Log-restricted-likelihood: 366.3946

Coefficients:
 (Intercept) time seasonFeb seasonMar
-39.896981987 0.020175528 0.008313205 -0.006487876
 seasonApr seasonMay seasonJun seasonJul
 -0.009403242 -0.027232895 -0.017405404 -0.015977913
 seasonAug seasonSep seasonOct seasonNov
 -0.011664708 -0.024637218 -0.036152584 -0.048582236
 seasonDec
 -0.025326174

Correlation Structure: ARMA(2,0)
 Formula: ~time
 Parameter estimate(s):
 Phi1 Phi2
 0.5539900 -0.1508046
Degrees of freedom: 420 total; 407 residual
Residual standard error: 0.09257678

 Page 73

The result reports the regression and the AR coefficients. Using the summary()
function, even more output with all the standard errors can be generated. We omit
this here and instead focus on the necessary residual analysis for the GLS model.
We can extract the residuals using the usual resid() command. Important: these
residuals must not look like white noise, but as from a ARMA(p,q) process with
orders p and q as provided in the corStruct object – which in our case, is an
AR(2).

> par(mfrow=c(1,2))
> acf(resid(fit.gls), main="ACF of GLS-Residuals")
> pacf(resid(fit.gls), main="PACF of GLS-Residuals")

The plots look similar to the ACF/PACF plots of the OLS residuals. This is often
the case in practice, only for more complex situations, there can be a bigger
discrepancy. And because we observe an exponential decay in the ACF, and a
clear cut-off at lag 2 in the PACF, we conjecture that the GLS residuals meet the
properties of the correlation structure we hypothesized, i.e. of an AR(2) model.
Thus, we can now use the GLS fit for drawing inference. We first compare the
OLS and GLS point estimate for the trend, along with its confidence interval:

> coef(fit.lm)["time"]
 time
0.01822374
> confint(fit.lm, "time")
 2.5 % 97.5 %
time 0.01702668 0.0194208
> coef(fit.gls)["time"]
 time
0.02017553
> confint(fit.gls, "time")
 2.5 % 97.5 %
time 0.01562994 0.02472112

0 5 10 15 20 25

-1
.0

-0
.5

0
.0

0
.5

1
.0

Lag

A
C

F

ACF of GLS-Residuals

0 5 10 15 20 25

-1
.0

-0
.5

0
.0

0
.5

1
.0

Lag

P
a

rt
ia

l A
C

F

PACF of GLS-Residuals

 Page 74

We obtain a temperature increase of 0.0182 degrees per year with the OLS, and
of 0.0202 with the GLS. While this may seem academic, the difference among the
point estimates is around 10%, and theory tells us that the GLS result is more
reliable. Moreover, the length of the confidence interval is 0.0024 with the OLS,
and 0.0091 and thus 3.5 times as large with the GLS. Thus, without accounting for
the dependency among the errors, the precision of the trend estimate is by far
overestimated. Nevertheless, also the confidence interval obtained from GLS
regression does not contain the value 0, and thus, the null hypothesis on no global
warming trend is rejected (with margin!).

Finally, we investigate the significance of the seasonal effect. Because this is a
factor variable, i.e. a set of dummy variables, we cannot just produce a confidence
interval. Instead, we have to rely on a significance test, i.e. a partial F-test. Again,
we compare what is obtained from OLS and GLS:

> drop1(fit.lm, test="F")
Single term deletions

Model:
temp ~ time + season
 Df Sum of Sq RSS AIC F value Pr(F)
<none> 6.4654 -1727.0
time 1 14.2274 20.6928 -1240.4 895.6210 <2e-16 ***
season 11 0.1744 6.6398 -1737.8 0.9982 0.4472

> anova(fit.gls)
Denom. DF: 407
 numDF F-value p-value
(Intercept) 1 78.40801 <.0001
time 1 76.48005 <.0001
season 11 0.64371 0.7912

As for the trend, the result is identical with OLS and GLS. The seasonal effect is
non-significant with p-values of 0.45 (OLS) and 0.79 (GLS). Again, the latter is the
value we must believe in. We conclude that there is no seasonality in global
warming – but there is a trend.

Example 2: Air Pollution

For finishing the air pollution example, we also perform a GLS fit here. We
identified an AR(1) as the correct dependency structure for the errors. Thus, we
define it accordingly:

> dat <- cbind(dat, time=1:30)
> corStruct <- corARMA(form=~time, p=1)
> model <- formula(Oxidant ~ Wind + Temp)
> fit.gls <- gls(model, data=dat, correlation=corStruct)

The output then is as follows:

 Page 75

> fit.gls
Generalized least squares fit by REML
 Model: model
 Data: dat
 Log-restricted-likelihood: -72.00127

Coefficients:
(Intercept) Wind Temp
 -3.7007024 -0.4074519 0.4901431

Correlation Structure: AR(1)
 Formula: ~time
 Parameter estimate(s):
 Phi
0.5267549
Degrees of freedom: 30 total; 27 residual
Residual standard error: 3.066183

Again, we have to check if the GLS residuals show the stylized facts of an AR(1):

This is the case, and thus we can draw inference from the GLS results. The
confidence intervals of the regression coefficients are:

> confint(fit.lm, c("Wind", "Temp"))
 2.5 % 97.5 %
Wind -0.6044311 -0.2496841
Temp 0.2984794 0.7422260

> confint(fit.gls, c("Wind", "Temp"))
 2.5 % 97.5 %
Wind -0.5447329 -0.2701709
Temp 0.2420436 0.7382426

0 2 4 6 8 10 12 14

-0
.4

0
.0

0
.4

0
.8

Lag

A
C

F

ACF of GLS-Residuals

2 4 6 8 10 12 14

-0
.2

0
.0

0
.2

0
.4

Lag

P
a

rt
ia

l A
C

F

PACF of GLS-Residuals

 Page 76

Here the differences among point estimates and confidence intervals are not very
pronounced. This has to do with the fact that the correlation among the errors is
weaker than in the global temperature example. But we emphasize again that the
GLS results are the one to be relied on and the magnitude of the difference
between OLS and GLS can be tremendous.

Simulation Study

We provide further evidence for the importance of the GLS approach by
performing a simulation study in which the resulting coefficients and standard
errors are compared to the ones obtained from OLS regression. We consider the
following model:

2

/ 50

2()
t

t t t t

x t

y x x E

where tE is from an AR(1) process with 1 0.65 . The innovations are Gaussian
with 0.1 . Regression coefficients and the true standard deviations of the
estimators are known in this situation. However, we generate 100 realizations with
series length 50n , on each perform OLS and GLS regression and record both
point estimate and standard error.

The simulation outcome is displayed by the boxplots in the figure above. While the
point estimator for 1 in the left panel is unbiased for both OLS and GLS, we
observe that the standard error for 1̂ is very poor when the error correlation is not
accounted for. We emphasize again that OLS regression with time series will
inevitably lead to spuriously significant predictors and thus, false conclusions. With
the next subsection, we conclude the chapter about time series regression by
showing how correlated errors do appear, and what practice has to offer for
deeper understanding of the problem.

OLS GLS

0
.8

0
.9

1
.0

1
.1

1
.2

Coefficient

OLS GLS

0
.1

0
0

.2
0

0
.3

0

Standard Error

 Page 77

6.4 Missing Predictor Variables

The presence correlated errors is often due to missing predictors. For illustration,
we consider a straightforward example of a ski selling company in the US. The
quarterly sales tY are regressed on the personal disposable income (PDI) which is
the one and only predictor tx . We display the two time series in a scatterplot and
enhance it with the OLS regression line.

> ## Loading the data
> ski <- read.table("ski.dat",header=TRUE)
> names(ski) <- c("time", "sales", "pdi", "season")
>
> ## Scatterplot
> par(mfrow=c(1,1))
> plot(sales ~ pdi, data=ski, pch=20, main="Ski Sales")
>
> ## LS modeling and plotting the fit
> fit <- lm(sales ~ pdi, data=ski)
> abline(fit, col="red")

The coefficient of determination is rather large, i.e. 2 0.801R and the linear fit
seems adequate, i.e. a straight line seems to correctly describe the systematic
relation between sales and PDI. However, the model diagnostic plots (see the next
page) show some rather special behavior, i.e. there are hardly any “small”
residuals (in absolute value). Or more precisely, the data points almost lie on two
lines around the regression line, with almost no points near or on the line itself.

> ## Residual diagnostics
> par(mfrow=c(2,2))
> plot(fit, pch=20)

120 140 160 180 200

3
0

3
5

4
0

4
5

5
0

5
5

Ski Sales

pdi

sa
le

s

 Page 78

As the next step, we analyze the correlation of the residuals and perform a Durbin-
Watson test. The result is as follows:

> dwtest(fit)
data: fit
DW = 1.9684, p-value = 0.3933
alt. hypothesis: true autocorrelation is greater than 0

35 40 45 50

-6
-4

-2
0

2
4

Fitted values

R
es

id
ua

ls
Residuals vs Fitted

27
6

25

-2 -1 0 1 2

-1
.5

-0
.5

0.
5

1.
5

Theoretical Quantiles

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Normal Q-Q

27
6

25

35 40 45 50

0.
0

0.
4

0.
8

1.
2

Fitted values

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Scale-Location
27

6 25

0.00 0.02 0.04 0.06 0.08

-2
-1

0
1

Leverage

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Cook's distance

Residuals vs Leverage

6
3

27

0 5 10 15

-1
.0

-0
.5

0
.0

0
.5

1
.0

Lag

A
C

F

ACF of OLS Residuals

5 10 15

-1
.0

-0
.5

0
.0

0
.5

1
.0

Lag

P
a

rt
ia

l A
C

F

PACF of OLS Residuals

 Page 79

While the Durbin-Watson test does not reject the null hypothesis, the residuals
seem very strongly correlated. The ACF exhibits some decay that may still qualify
as exponential, and the PACF has a clear cut-off at lag 2. Thus, an AR(2) model
could be appropriate. And because it is an AR(2) where 1 and (1) are very
small, the Durbin-Watson test fails to detect the dependence in the residuals. The
time series plot is as follows:

While we could now account for the error correlation with a GLS, it is always better
to identify the reason behind the dependence. I admit this is suggestive here, but
as mentioned in the introduction of this example, these are quarterly data and we
might have forgotten to include the seasonality. It is not surprising that ski sales
are much higher in fall and winter and thus, we introduce a factor variable which
takes the value 0 in spring and summer, and 1 else.

0 10 20 30 40

-4
-2

0
2

4

Index

re
si

d
(f

it)

Time Series Plot of OLS Residuals

120 140 160 180 200

3
0

3
5

4
0

4
5

5
0

5
5

pdi

sa
le

s

1

0

0

11

0
0

1
1

00

1
1

0

0

1 1

0
0

11

0
0

1
1

0
0

1 1

0 0

11

00

1
1

00

1

Ski Sales - Winter=1, Summer=0

 Page 80

Introducing the seasonal factor variable accounts to fitting two parallel regression
lines for the winter and summer term. Eyeballing already lets us assume that the fit
is good. This is confirmed when we visualize the diagnostic plots:

The unwanted structure is now gone, as is the correlation among the errors:

35 40 45 50 55

-3
-2

-1
0

1
2

3

Fitted values

R
es

id
ua

ls

Residuals vs Fitted

23

27

15

-2 -1 0 1 2

-2
-1

0
1

2

Theoretical Quantiles

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Normal Q-Q

23

27

15

35 40 45 50 55

0.
0

0.
5

1.
0

1.
5

Fitted values

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Scale-Location
23 27

15

0.00 0.02 0.04 0.06 0.08 0.10 0.12

-2
-1

0
1

2
3

Leverage

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Cook's distance

Residuals vs Leverage

27

23

6

0 5 10 15

-1
.0

-0
.5

0
.0

0
.5

1
.0

Lag

A
C

F

ACF of Extended Model

5 10 15

-1
.0

-0
.5

0
.0

0
.5

1
.0

Lag

P
a

rt
ia

l A
C

F

PACF of Extended Model

 Page 81

Apparently, the addition of the season as an additional predictor has removed the
dependence in the errors. Rather than using GLS, a sophisticated estimation
procedure, we have found a simple model extension that describes the data well
and is certainly easier to interpret (especially when it comes to prediction) than a
model that is built on correlated errors.

We conclude by saying that using GLS for modeling dependent errors should only
take place if care has been taken that no important and/or obvious predictors are
missing in the model.

 Page 82

7 Non-Stationary Models
As we have discovered previously, many time series are non-stationary due to
deterministic trends and/or seasonal effects. While we have learned to remove
these and then explain the remainder with some time series models, there are
other processes that directly incorporate trend and seasonality. While they usually
lack some transparency for the decomposition, their all-in-one approach allows for
convenient forecasting, and also AIC-based decisions for choosing the right
amount of trend and seasonality modeling become feasible.

Time series may also be non-stationary because the variance is serially
correlated, i.e. they are conditionally heteroskedastic. Such series, often from
financial or economic background, usually exhibit periods of high and low volatility.
Understanding the behavior of such series pays off, and the usual approach is to
set up autoregressive models for the variance. These are the famous ARCH
models, which we will discuss along with their generalized variant, the GARCH
class.

7.1 ARIMA Models

ARIMA models are aimed at describing series which exhibit a deterministic trend
that can be removed by differencing; and where these differences can be
described by an ARMA(p,q) model. Thus, the definition of an ARIMA(p,d,q)
process arises naturally:

Definition: A series tX follows an ARIMA(p,d,q) model if the d th order
difference of tX is an ARMA(p,q) process. If we introduce

 (1)d
t tY B X ,

 where B is the backshift operator, then we can write the ARIMA
process using the characteristics polynomials, i.e. () that accounts
for the AR, and () that stands for the MA part.

() ()

()(1) ()
t t

d
t t

B Y B E

B B X B E

Such series do appear in practice, as our example of the monthly prices for a
barrel of crude oil (in US$) from January 1986 to January 2006 shows. To stabilize
the variance, we decide to log-transform the data, and model these.

> library(TSA)
> data(oil.price)
> lop <- log(oil.price)
> plot(lop, ylab="log(Price)")
> title("Logged Monthly Price for a Crude Oil Barrel")

 Page 83

The series does not exhibit any apparent seasonality, but there is a clear trend, so
that it is non-stationary. We could assume a piecewise linear trend and try first-
order (i.e. 1d) differencing, and then check whether the result is stationary.

> dlop <- diff(lop)
> plot(dlop, ylab="Differences")
> title("Differences of Logged Monthly Crude Oil Prices")

The trend was successfully removed by taking differences. When we investigate
ACF and PACF, we conclude that the differences are not iid, but dependent. There
is a drop-off in the ACF at lag 1, and in the PACF at either lag 1 or 2, and thus for
the logged differences, an ARMA(1,1) or an ARMA(1,2) could be appropriate. This
means an ARIMA(1,1,1) or ARIMA(1,1,2) for the logged oil prices.

Time

lo
g

(P
ri

ce
)

1990 1995 2000 2005

2
.5

3
.0

3
.5

4
.0

Logged Monthly Price for a Crude Oil Barrel

Time

D
iff

e
re

n
ce

s

1990 1995 2000 2005

-0
.4

-0
.2

0
.0

0
.2

0
.4

Differences of Logged Monthly Crude Oil Prices

 Page 84

> par(mfrow=c(1,2))
> acf(dlop, main="ACF", ylim=c(-1,1), lag.max=24)
> pacf(dlop, main="ACF", ylim=c(-1,1), lag.max=24)

The fitting can be done with the arima() procedure that (by default) estimates the
coefficients using Maximum Likelihood with starting values obtained from the
Conditional Sum of Squares method. We can either let the procedure do the
differencing:

> arima(lop, order=c(1,1,2))

Call:
arima(x = lop, order = c(1, 1, 2))

Coefficients:
 ar1 ma1 ma2
 0.8429 -0.5730 -0.3104
s.e. 0.1548 0.1594 0.0675

sigma^2 = 0.006598: log likelihood = 261.88, aic = -515.75

Or, we can use the differenced series dlop as input and fit an ARMA(1,2).
However, we need to tell R to not include an intercept – this is not appropriate
when a piecewise linear trend was removed by taking differences. The command
is:

> arima(dlop, order=c(1,0,2), include.mean=FALSE)

The output from this is exactly the same as above. The next step is to perform
residual analysis – if the model is appropriate, they must look like white noise. This
is (data not shown here) more or less the case. For decisions on the correct model
order, also the AIC statistics can provide valuable information.

0.0 0.5 1.0 1.5 2.0

-1
.0

-0
.5

0
.0

0
.5

1
.0

Lag

A
C

F

ACF

0.5 1.0 1.5 2.0
-1

.0
-0

.5
0

.0
0

.5
1

.0

Lag

P
a

rt
ia

l A
C

F

PACF

 Page 85

We finish this section by making some considerations on the model equation. We
have:

1 1 2

1 1 2 1 2

1 2 1 2

0.84 0.57 0.31

0.84 () 0.57 0.31

1.84 0.84 0.57 0.31

t t t t t

t t t t t t t

t t t t t t

Y Y E E E

X X X X E E E

X X X E E E

Thus, the ARIMA(1,1,2) can be rewritten as a non-stationary ARMA(2,2). The non-
stationarity is due to the roots of the AR characteristic polynomial, which are within
the unit circle. Finally, we give some recipe for fitting ARIMA models:

1) Choose the appropriate order of differencing, usually 1d or 2d ,
such that the result is a stationary series.

2) Analyze ACF and PACF of the differenced series. If the stylized facts of
an ARMA process are present, decide for the orders p and q .

3) Fit the model using the arima() procedure. This can be done on the
original series by setting d accordingly, or on the differences, by setting

0d and argument include.mean=FALSE.

4) Analyze the residuals; these must look like white noise. If several
competing models are appropriate, use AIC to decide for the winner.

The fitted ARIMA model can then be used to generate forecasts including
prediction intervals. This will, however, only be discussed in section 8.

7.2 SARIMA Models

After becoming acquainted with the ARIMA models, it is quite natural to ask for an
extension to seasonal series; especially, because we learned that differencing at a
lag equal to the period s does remove seasonal effects, too. Suppose we have a
series tX with monthly data. Then, series

 12
12 (1)t t t tY X X B X

has the seasonality removed. However, it is quite often the case that the result has
not yet constant mean, and thus, some further differencing at lag 1 is required to
achieve stationarity:

 12
1 1 12 13(1) (1)(1)t t t t t t t t tZ Y Y B Y B B X X X X X

We illustrate this using the Australian beer production series that we had already
considered in section 4. It has monthly data that range from January 1958 to
December 1990. Again, a log-transformation to stabilize the variance is indicated.
On the next page, we display the original series tX , the seasonally differenced
series tY and finally the seasonal-trend differenced series tZ .

 Page 86

> www <- "http://www.massey.ac.nz/~pscowper/ts/cbe.dat"
> dat <- read.table(www, header=TRUE)
> beer <- ts(dat$beer, start=1958, freq=12)
> d12.lbeer <- diff(log(beer), lag=12)
> d.d12.lbeer <- diff(d12.lbeer)
> plot(log(beer))
> plot(d12.lbeer)
> plot(d.d12.lbeer))

Logged Australian Beer Production

Time

lo
g(

be
er

)

1960 1965 1970 1975 1980 1985 1990

4.
2

4.
4

4.
6

4.
8

5.
0

5.
2

5.
4

Seasonally Differenced log(Beer) Series

Time

d1
2.

lb
ee

r

1960 1965 1970 1975 1980 1985 1990

-0
.2

-0
.1

0.
0

0.
1

0.
2

Additional Trend Removal Step

Time

d.
d1

2.
lb

ee
r

1960 1965 1970 1975 1980 1985 1990

-0
.2

0.
0

0.
2

0.
4

 Page 87

While the two series tX and tY are non-stationary, the last one, tZ may be,
although it is a bit debatable whether the assumption of constant variation is
violated or not. We proceed by analyzing ACF and PACF of series tZ .

> par(mfrow=c(1,2))
> acf(d.d12.lbeer, ylim=c(-1,1))
> pacf(d.d12.lbeer, ylim=c(-1,1), main="PACF")

There is very clear evidence that series tZ is serially dependent, and we could try
an ARMA(p,q) to model this dependence. As for the choice of the order, this is not
simple on the basis of the above correlograms. They suggest that high values for
p and q are required, and model fitting with subsequent residual analysis and

AIC inspection confirm this: 14p and 11q yield a good result.

It is (not so much in the above, but generally when analyzing data of this type)
quite striking that the ACF and PACF coefficient that large values at multiples of
the period s . This is very typical behavior for seasonally differenced series, in fact
it originates from the evolution of the seasonality over the years. A simple model
accounting for this is the so-called airline model:

12
1 1

12 13
1 1 1 1

1 1 1 12 1 1 13

(1)(1)

(1)
t t

t

t t t t

Z B B E

B B B E

E E E E

This is a MA(13) model, where many of the coefficients are equal to 0. Because it
was made up of an MA(1) with B as an operator in the characteristic polynomial,
and another one with sB as the operator, we call this a SARIMA(0,1,1)(0,1,1)12.
This idea can be generalized: we fit AR and MA parts with both B and sB as
operators in the characteristic polynomials, which again results in a high order
ARMA model for tZ .

0.0 0.5 1.0 1.5 2.0

-1
.0

-0
.5

0
.0

0
.5

1
.0

Lag

A
C

F

ACF

0.5 1.0 1.5 2.0

-1
.0

-0
.5

0
.0

0
.5

1
.0

Lag

P
a

rt
ia

l A
C

F

PACF

 Page 88

Definition: A series tX follows a SARIMA(p,d,q)(P,D,Q)s process if the following
equation holds:

 () () () ()s s
S t S tB B Z B B E ,

 where series tZ originated from tX after appropriate seasonal and
trend differencing, i.e. (1) (1)d s D

tZ B B .

Fortunately, it turns out that usually 1d D is enough. As for the model orders
, , ,p q P Q , the choice can be made on the basis of ACF and PACF, by searching

for cut-offs. Mostly, these are far from evident, and thus, an often applied
alternative is to consider all models with , , , 2p q P Q and doing an AIC-based
grid search.

For our example, the SARIMA(2,1,2)(2,1,2)12 has the lowest value and also shows
satisfactory residuals, although it seems to perform slightly less well than the
SARIMA(14,1,11)(0,1,0)12. The R-command for the former is:

> fit <- arima(log(beer), order=c(2,1,2), seasonal=c(2,1,2))

As it was mentioned in the introduction to this section, one of the main advantages
of ARIMA and SARIMA models is that they allow for quick and convenient
forecasting. While this will be discussed in depth later in section 8, we here
provide a first example to show the potential.

From the logged beer production data, the last 2 years were omitted before the
SARIMA model was fitted to the (shortened) series. On the basis of this model, a
2-year-forecast was computed, which is displayed by the red line in the plot above.
The original data are shown as a solid (insample, 1958-1988) line, respectively as
a dotted (out-of-sample, 1989-1990) line. We see that the forecast is reasonably
accurate.

Time

lo
g

(b
e

e
r)

1985 1986 1987 1988 1989 1990 1991

4
.8

4
.9

5
.0

5
.1

5
.2

5
.3

Forecast of log(beer) with SARIMA(2,1,2)(2,1,2)

 Page 89

To facilitate the fitting of SARIMA models, we finish this chapter by providing some
guidelines:

1) Perform seasonal differencing on the data. The lag s is determined by the
periodicity of the data, for the order, in most cases 1D is sufficient.

2) Do a time series plot of the output of the above step. Decide whether it is
stationary, or whether additional differencing at lag 1 is required to remove
a potential trend. If not, then 0d , and proceed. If yes, 1d is enough for
most series.

3) From the output of step 2, i.e. series tZ , generate ACF and PACF plots to
study the dependency structure. Look for coefficients/cut-offs at low lags
that indicate the direct, short-term dependency and determine orders p
and q . Then, inspect coefficients/cut-offs at multiples of the period s , which
imply seasonal dependency and determine P and Q .

4) Fit the model using procedure arima(). In contrast to ARIMA fitting, this is
now exclusively done on the original series, with setting the two arguments
order=c(p,d,q) and seasonal=c(P,D,Q) accordingly.

5) Check the accuracy of the fitted model by residual analysis. These must
look like white noise. If thus far, there is ambiguity in the model order, AIC
analysis can serve to come to a final decision.

Next, we turn our attention to series that have neither trend nor seasonality, but
show serially dependent variance.

7.3 ARCH/GARCH Models

In this chapter, we consider the SMI log-returns that were already presented in
section 1.2.4. By closer inspection of the time series plot, we observe some long-
tailedness, and also, the series exhibits periods of increased variability, which is
usually termed volatility in the (financial) literature. We had previously observed
series with non-constant variance, such as the oil prices and beer production in
the previous sections. Such series, where the variance increases with increasing
level of the series, are called heteroskedastic, and can often be stabilized using a
log-transformation.

However, that matter is different with the SMI log-returns: here, there are periods
of increased variation, and thus the variance of the series is serially correlated, a
phenomenon that is called conditional heteroskedasticity. This is a violation of the
stationarity assumption, and thus, some special treatment for this type of series is
required. Furthermore, the ACF of such series typically does not differ significantly
from white noise. Still, the data are not iid, which can be shown with the ACF of
the squared observations. With the plots on the next page, we illustrate the
presence of these stylized facts for the SMI log-returns:

 Page 90

7.3.1 The ARCH and GARCH Models

In order to account for volatility, we require a model that allows for conditional
changes in the variance. The most simple and intuitive way of doing this is to use
an autoregressive model for the variance process. Thus, a series tE is first-order
autoregressive conditional heteroskedastic, denoted as ARCH(1), if:

 2
0 1 1t t tE W E .

Here, tW is a white noise process with mean zero and unit variance. The two
parameters 0 1, are the model coefficients. An ARCH(1) process shows
volatility, as can easily be derived:

2

2 2
0 1 1
2

0 1 1

0 1 1

() []

[] []

[]

()

t t

t t

t

t

Var E E E

E W E E

E E

Var E

Note that this derivation is based on 2[] 1tE W and [] [] 0t tE E E W . As we had
aimed for, the variance of an ARCH(1) process behaves just like an AR(1) model.
Hence, the decay in the autocorrelations of the squared residuals should indicate
whether an ARCH(1) is appropriate or not.

SMI Log-Returns

Time

lr
et

.s
m

i

2500 3000 3500 4000

-0
.0

8
-0

.0
4

0.
00

0.
04

+
+

++
+

+ +
+

+
+++ +++
+

+
++ ++++ +

++
++ +

+ + ++
+

+

+ +

+++
+

++
++++ ++++ ++ +

+
+

+
++++++

++
+ +

+++
+++

+++
+

+
+

++
++

+

++++ ++
+++

+

+
+

+ ++

+
+

++
++

+

+ +
++

++

+
+ +

++
++

+++
++ +

+

++

+
+

+++

+
+

++

+
+

+
+

+

++
++++ +

+
+

+
+ +++

++++ +
+ +

+
++

+
+

+ +
+

++ ++ ++
++

+ +
++

+
+

+
+ ++

+
++++

+++
+

+
++

+
+

+
+

+ +
++++

+++ +
+

+++
+

+ +
+ ++

+
++

+

+
+

++
++++ + ++ +

+
+++

+++
+

+
+

++
+

+
++

+
+

++
+

+ +
+++

++
+ +

+
+

+
+

+

+

+
+ + +

+

++ +
+ +

+++ +++
++

+++

+

+
+

+

+

+++
+ +

+
+

++
+ +

+

+

+++
+

++
+ +

+

++ +
+

+

++
+++ +

++
+

++

+
+ +++

+
+ + +++++++

+
+

+++
+

++++
++

++
++ + + +

+ +++
+

+
+

+ +
+ ++++

+
+

+
++ +++

+

+
+

+

+
+

+
++

+
+

+
+

+
+

+ + +
++ +++++

+++
++

+
++

+

+
+

+
++++++

+++

+

+

++
+ +

+
+

+ +

+++++ ++
+

+ +++++ + +++++
++ +

+
+

+
+

++++
++++ +
++

++ ++++ +++
+

++ + +

+
+

++++

+ +
+

++
+

++ +
+++++

+

+

+
+++

++ ++

+

+
+

+
+

++
+ ++

+
++++

+

+ +
+ +

+
+

+++ +
+

+
+++

+ +
+

+

+
+++

+
+

+

++
+

+
+

+ + +
+ +

+
++

+
+

+ + ++ ++ +
+

+ + ++
+

+++++ ++

++

+
+

+
+

++++ ++
+

+ ++ +
++

+
+ ++

+ +++ +
++

++++ ++
+ +

+
+ +

+
+

+ ++ +
+

+
+

+

+
+++++ +
++

+
++

+
+

+
+

+

+

++
+

+

++

+

+
+ +

+

+
+++

+

+
++

+
+

+
+

++

+
+

++

+ +
++

+

+
++

++ + + +++++
+

+
+

+ +
+

+
+

++
++

+
+

+
+

+
+

+

++

++++
+

++
+

+
+ + +

+
++ +

+

+
+

+ ++ +
+++

+

+

+
+

+
+

++

++

+

+ ++
+

+

+
+

+

++

+ +
++++

+

+ +
+

+

+++
+

+
++++

++
+++

+ ++
+

+

+ +
+

+
+

+
++

+
+ +

+ ++
+

+
+ ++

+ + +
+ ++

+

+

+ +

+
+

+
+

++
+

+ +
+

+

+ ++

++
++

+
+ +

+

+
+

++ + +
+ ++

+ +

+
+++ +

+
+

+

+
+ +

++ + ++++
+ ++++

+
++

+++
+

+
+++ + ++++
++

+
+

+
+

+
++ +

+
+

++
+

+
+

++ ++++ + ++
+

++ +
+

+
++

+
+

+

+
+

++++ +
+ +

+

+

++
+

+

+
+

+
+

+++++++++
+

++
+ + +
+

+
+

+
+

++++ +
+++++++

+

+
+

+
+

+ ++ +
+++ +

++
+++ +

+

+
+ + +

++
+

+ +
+

+ +
++

+
+ + +++

+
+++

+++++ ++ +
+

+
++++

++
+

+ +
+ ++ +++ ++ +

+
+ +

++ +
+ ++ +

+
+ +

+
+

+ +

+

+ +

+
+

+ ++
+ + ++
+

++ +++
+

+ +

+

+++

+

+ +
+

+ +
+

++ +
+ + ++

++
+

+ +++
+

+
+++ +++

+
+ ++

++ +

++

+
+

+
++

+

+ +++

+

+
+ ++

+ +
+

+

+

+

+
++

+
+++
+

+
+ +

+
+

+
+

+ + +++++++
++

+
+ +

+

+
++

+
+

+

++

+++
+

+++ ++ +
+

+
+

+++
+

++++ +
+

+++++
+ +

+
++

+

+
+ ++++ +

+
+

+
+ +

+ + +
+ +

+
+

+
+ +

++
+

+
++ +

+

+
+

+++ + +++ +++
+

+
+

+
++ +

+
+

+
++

++
+

+ + +

+

+

+

+
+ +

++ +

+

++
+

+++
+ +

+
+

+
+

+
+++ +

+ +
+

+
+

++ +
+

+
+ + +

+
+

+++
+

+ +
++

+
+ +++

+
+++ +++

+
+++++

+++
+ + + ++

++
++ +++

+ +
+ +++

++++

++
+

+

+ +

+

+
+

+
++

+
+

++++ +++
++

+++++ + ++
+

+++
+++ +

+
+

+
+

+
+

+ +
++++

+++ +
+

+ +
+

+++
+

++
+++

++ ++ +
++

+

+

+
+

+

+

+
+

+++
++

+

++
+

+

+
+

+++
+

+
++++ + +

+

+
++

+
+ +

+
+++

+++
+++

+

+

++ ++
+

+

+

+
+++

++
+

+

++
++

+
+

++
+

+
+ +

+

++

+
+

++

+
++

+
+

+

+
++

+

+

+ +
+

+

+

+ +

+

+
+

+

+ + +

+ +++

+
+

+

+

+

+

+

+

+
+

+

++
+

++++
+

+
+ +

+

+

+
++

+

+
++

++ +

++ +
+

+

+
+

++
+

+
+

+
+

+

+

+

+

+

++

+

+

+
+

++
+ + +

+

++
++

+

+
+++

+
+

+
++

+
+

++ ++

+
++

+

+
++++

+
+

+++

+

+ +
++

+

+

+ +

+
++

++
+++

+
+ +

+
++

+ +

+
+ +

+

++
+

++ +++

+
++

+

+
+

+

+

+
+++
+

+ +
+

+

+
+ ++

+

+
+ +++

++

+
+

+++ +
+

+
+

+

+
+++

+

+
+

+

+

+

+
+

+

+ +

++++
+

+
++ +

++

+
+

+
++ +

+

+
+

++
+

++
+

+

+
++

+
+

+
+ +

+

+

+ ++
+

+
+++

+
++

++
+

++
+

+

+
+

+
+

+
+

+
+

+

++

+

+

+

-3 -2 -1 0 1 2 3

-0
.0

8
-0

.0
4

0.
00

0.
04

Normal Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

ACF of SMI Log-Returns

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

ACF of Squared Log-Returns

 Page 91

In our case, the analysis of ACF and PACF of the squared log-returns suggests
that the variance may be well described by an AR(2) process. This is not what we
had discussed above, but the extension exists. An ARCH(p) process is defined by:

 2
0

1

p

t t p t i
i

E W E

Fitting in R can be done using procedure garch(). This is a more flexible tool,
which also allows for fitting GARCH processes, as discussed below. The
command in our case is as follows:

> fit <- garch(lret.smi, order = c(0,2), trace=FALSE)
> fit

Call: garch(x = lret.smi, order = c(0, 2), trace = FALSE)

Coefficient(s):
 a0 a1 a2
6.568e-05 1.309e-01 1.074e-01

For verifying appropriate fit of the ARCH(2), we need to check the residuals of the
fitted model. This includes inspecting ACF and PACF for both the “normal” and the
squared residuals. We here do without showing plots, but the ARCH(2) is OK.

A nearby question is whether we can also use an ARMA(p,q) process for
describing the dependence in the variance of the process. The answer is yes. This
is what a GARCH(q,p) model does. A series t t tE W H is GARCH(q,p) if:

 2
0

1 1

p q

t i t i j t j
i j

H E H

0 5 10 15 20 25 30

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Lag

A
C

F
ACF of Squared Log-Returns

0 5 10 15 20 25 30

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Lag
P

a
rt

ia
l A

C
F

PACF of Squared Log-Returns

 Page 92

7.3.2 Use of GARCH Models

GARCH models are useless for the prediction of the level of a series, i.e. for the
SMI log-returns, they do not provide any idea whether the stocks’ value will
increase or decrease on the next day. However, they allow for a more precise
understanding in the (up or down) changes that might be expected during the next
day(s). This allows stockholders to adjust their position, so that they do not take
any unduly risks.

 Page 93

8 Forecasting
One of the principal goals with time series analysis is to produce predictions which
show the future evolution of the data. This is what it is: an extrapolation in the time
domain. And as we all know, extrapolation is always (at least slightly) problematic
and can lead to false conclusions. Of course, this is no different with time series
forecasting.

The saying is that the task we are faced with can be compared to driving a car by
looking through the rear window mirror. While this may work well on a wide
motorway that runs mostly straight and has a few gentle bends only, things get
more complicated as soon as there are some sharp and unexpected bends in the
road. Then, we would need to drive very slowly to stay on track. This all translates
directly to time series analysis. For series where the signal is much stronger than
the noise, accurate forecasting is possible. However, for noisy series, there is a
great deal of uncertainty in the predictions, and they are at best reliable for a very
short horizon.

From the above, one might conclude that the principal source of uncertainty is
inherent in the process, i.e. comes from the innovations. However, in practice, this
is usually different, and several other factors can threaten the reliability of any
forecasting procedure. In particular:

 We need to be certain that the data generating process does not change
over time, i.e. continues in the future as it was observed in the past.

 When we choose/fit a model based on a realization of data, we have no
guarantee that it is the correct, i.e. data-generating one.

 Even if we are so lucky to find the correct data-generating process (or in
cases we know it), there is additional uncertainty arising from the estimation
of the parameters.

Keeping these general warnings in mind, we will now present several approaches
to time series forecasting. First, we deal with stationary processes and present,
how AR, MA and ARMA processes can be predicted. These principles can be
extended to the case of ARIMA and SARIMA models, such that forecasting series
with either trend and/or seasonality is also possible.

As we had seen in section 4.2, the decomposition approach for non-stationary
time series helps a great deal for visualization and modeling. Thus, we will present
some heuristics about how to produce forecasts with series that were decomposed
into trend, seasonal pattern and a stationary remainder. Last but not least, we
present the method of exponential smoothing. This was constructed as a model-
free, intuitive weighting scheme that allows forecasting of time series. Due to its
simplicity and the convenient implementation in the HoltWinters() procedure in
R, it is very popular and often used in applied sciences.

 Page 94

8.1 Forecasting ARMA

We suppose that we are given a time series, for which an appropriate AR, MA or
ARMA model was identified, the parameters were successfully estimated and
where the residuals exhibited the required properties, i.e. looked like white noise.
Under these circumstances, forecasts may be readily computed. Given data up to
time n , the forecasts will involve either involve the past observations, and/or the
residuals.

In mathematical statistics, many forecasting methods have been studied on a
theoretical basis with the result that the minimum mean squared error forecast

,1:
ˆ

n k nX for k steps ahead is given by the conditional expectation, i.e.:

 ,1: 1
ˆ [| ,...,]n k n n k nX E X X X

In evaluating this term, we use the fact that the best forecast of all future
innovation terms ,tE t n is simply zero. We will be more specific in the following
subsections.

8.1.1 Forecasting AR(1)

For simplicity, we first consider a mean-zero, stationary AR(1) process with model
equation:

 1 1t t tX X E ,

where tE is the innovation, for which we do not need to assume a particular
distribution. As we will see below, it is convenient to assume Gaussian tE ,
because this allows for an easy derivation of a prediction interval. The conditional
expectation at time 1n is given by:

 1 1 1[| ,...,]n n nE X X X x .

Thus, we can forecast the next instance of a time series with the observed value of
the previous one, in particular:

 1,1: 1
ˆ

n n nX x .

For the k -step forecast with 1k , we just need to repeatedly plug-in the model
equation, and as use the fact that the conditional expectation of the innovations is
zero:

,1: 1

1 1 1

1 1 1

1

ˆ [| ,...,]

[| ,...,]

[| ,...,]

...

n k n n k n

n k n k n

n k n

k
n

X E X X X

E X E X X

E X X X

x

 Page 95

For any stationary AR(1) process, the k -step forecast beyond the end of a series
depends on the last observation nx only and goes to zero exponentially quickly.
For practical implementation with real data, we would just plug-in the estimated
model parameter 1̂ and can so produce a forecast for any desired horizon.

As always, a prediction is much more useful in practice if one knows how precise it
is. Under the assumption of Gaussian innovations, a 95% prediction interval can
be derived from the conditional variance 1(| ,...,)n k nVar X X X . For the special case
of 1k we obtain:

 1 1.96n Ex .

Again, for practical implementation, we need to plug-in 1̂ and ˆE . For a k -step
prediction, the 95% prognosis interval is:

 1 2
1 11

1.96 1
k j

n Ej
x

 .

For increasing prediction horizon k , the conditional variance goes to 2 2
1/ (1)E ,

which is the process variance 2
X . Thus, for the 1-step forecast, the uncertainty in

the prediction is given by the innovation variance E alone, while for increasing
horizon k the prognosis interval gets wider is finally determined by the process
variance.

Practical Example

We now turn our attention to a practical example, where we apply the R functions
which implement the above theory. This is the Beaver data we had already
discussed in section 4.3.3. An AR(1) model is appropriate, and for estimating the
coefficients, we omit the last 14 observations from the data. These will be
predicted, and the true values are needed for verifying the prediction.

Time

b
e

a
ve

r

0 20 40 60 80 100

3
6

.4
3

6
.8

3
7

.2

Beaver Data: 14-Step Prediction Based on AR(1)

 Page 96

The R commands for fitting the model on the training data and producing the 14-
step prediction are as follows:

> btrain <- window(beaver, 1, 100)
> fit <- ar.burg(btrain, order=1)
> forecast <- predict(fit, n.ahead=14)

The forecast object is a list that has two components, pred and se, which
contain the point predictions and the standard error, respectively. We now turn our
attention to how the forecast is visualized:

> plot(beaver, lty=3)
> lines(btrain, lwd=2)
> lines(pred$pred, lwd=2, col="red")
> lines(pred$pred+pred$se*1.96, col="red")
> lines(pred$pred-pred$se*1.96, col="red")

One more issue requires some attention here: for the Beaver data, a pure AR(1)
process is not appropriate, because the global series mean is clearly different from
zero. The way out is to de-mean the series, then fit the model and produce
forecasts, and finally re-adding the global mean. R does all this automatically.

We conclude by summarizing what we observe in the example: the forecast is
based on the last observed value 100 36.76x , and from there approaches the
global series mean ˆ 36.86 exponentially quick. Because the estimated
coefficient is 1ˆ 0.87 , and thus relatively close to one, the approach still takes
some time.

8.1.2 Forecasting AR(p)

Forecasting from AR(p) processes works based on the same principles as
explained above for the AR(1), i.e. we use the conditional expected value. The
algebra for writing the forecasting formulae is somewhat more laborious, but not
more difficult. Thus, we do without displaying it here, and directly present the 1-
step-forecast:

 1,1: 1 2 1
ˆ ...n n n n p n pX x x x

The question is, what do we do for longer forecasting horizons? There, the
forecast is again based on the linear combination of the p past instances. For the
ones with an index between 1 and n , the observed value tx is used. Else, if the
index exceeds n , we just plug-in the forecasted values ,1:ˆt nx . Thus, the general
formula is:

 ,1: 1 1,1: ,1:
ˆ ˆ ˆ...n k n n k n p n k p nX X X ,

where ,1:
ˆ

t n tX x in all cases where t n , i.e. an observed value is available.

 Page 97

Practical Example

We consider the lynx data for which we had identified an AR(11) as a suitable
model. Again, we use the first 100 observations for fitting the model and lay aside
the last 14, which are in turn used for verifying the result. Also, we do without
showing the R code, because it is identical to the one from the previous example.

We observe that the forecast tracks the general behavior of the series well, though
the level of the series is underestimated somewhat. This is, however, not due to
an “error” of ours, it is just that the values were higher than the past observations
suggested. We finish this section with some remarks:

 Forecasting from an AR(p) only requires knowledge about the last p
instances of the series, plus the model parameters 1,..., p and the global
series mean . Earlier values of the series are not required, the model thus
has a Markov property of order p .

 The prediction intervals only account for the uncertainty caused by the
innovation variance, but not for the one caused by model misconception,
and the plug-in of estimated parameters. Thus in practice, a true 95%
interval would most likely be wider than shown above.

8.1.3 Forecasting MA(1)

We here consider an invertible MA(1) process, where the model equation is as
follows:

 1 1t t tX E E ,

where tE is an innovation with expectation zero and constant variance.

Time

lly
n

x

1820 1840 1860 1880 1900 1920

3
4

5
6

7
8

9
1

0

Logged Lynx Data: 14-Step Prediction Based on AR(11)

 Page 98

As above, the forecast ,1:
ˆ

n k nX will again be based on the conditional expectation

1[| ,...,]n k nE X X X . We get to a solution if we plug-in the model equation. First, we
assume that 2k , i.e. predict at least 2 time steps ahead.

,1: 1

1 1 1

1 1 1 1

ˆ [| ,...,]

[| ,...,]

[| ,...,] [| ,...,]

0

n k n n k n

n k n k n

n k n n k n

X E X X X

E E E X X

E E X X E E X X

The best forecast MA(1) forecast for horizons 2 and up is thus zero. Remember
that we require tE being an innovation, and thus independent from previous
instances ,sX s t of the time series process. Next, we address the 1-step
forecast. This is more problematic, because the above derivation leads to:

1,1:

1 1

ˆ ...

[| ,...,]

0 ()

n n

n n

X

E E X X

generally

The 1-step forecast thus generally is different from zero. Moreover, the term

1[| ,...,]n nE E X X is difficult to determine. Using some mathematical trickery, we can
at least propose an approximate value. This trick is to move the point of reference
into the infinite past, i.e. conditioning on all previous instances of the MA(1)
process. We denote

 : [|]n
n ne E E X .

By successive substitution, we then write the MA(1) as an AR(). This yields

 1
0

() j
n n j

j

E X

 .

If we condition the expectation of nE on the infinite past of the series tX , we can
plug-in the realizations tx and obtain:

 1
0

[|] ()n j
n n n j

j

E E X e x

 .

This is of course somewhat problematic for practical implementation, because we
only have realizations for 1,..., nx x . However, because for invertible MA(1)
processes, 1 1 , the impact of early observations dies out exponentially quickly.
Thus, we let 0tx for 1t , and thus also have that 0te for 1t . Also, we plug-
in the estimated model parameter 1̂ , and thus, the 1-step forecast for an MA(1) is:

1

1,1: 1 1
0

ˆ ˆˆ ()
n

j
n n n j

j

X x

This is a sum of all observed values, with exponentially decaying weights.

 Page 99

8.1.4 Forecasting MA(q)

When forecasting from MA(q) processes, we encounter the same difficulties as
above. The prediction for horizons exceeding q are all zero, but anything below
contains terms for which the considerations in section 8.1.3 are again necessary.
We do without displaying this, and proceed to giving the formulae for ARMA(p,q)
forecasting, from which the ones for MA(q) can be learned.

8.1.5 Forecasting ARMA(p,q)

We are considering stationary and invertible ARMA(p,q) processes. The model
equation for 1nX then is:

1 1 1 1 1 1n n p n p n n q n qX X X E E E

As this model equation contains past innovations, we face the same problems as
in section 8.1.3 when trying to derive the forecast for horizons q . These can be
mitigated, if we again condition on the infinite past of the process.

 1 1 1
1 1

1
1 1

1,1: 1

1

ˆ [|]

]]]

[]

[| [| [|

|

p q
n n n

i n i n j n j

n
n n n

q

j

i j

p
n

i n i
i

n j
i

X E X X

E X X E E X E E X

x XE E

If we are aiming for k -step forecasting, we can use a recursive prediction scheme:

 ,1:
1 1

ˆ]][| [|
p q

n n
i n kn k n i j n k j

i j

E X X E EX X

 ,

where for the AR- and MA-part the conditional expectations are:

,1:

,
[|] ˆ ,

tn
t

t n

x if t n
E X X

X if t n

,

[|]
0,

tn
t

e if t n
E E X

if t n

The terms te are then determined as outlined above in section 8.1.3, and for the
model parameters, we are plugging-in the estimates. This allows us to generate
any forecast from an ARMA(p,q) model that we wish. The procedure is also known
as Box-Jenkins procedure, after the two researchers who first introduced it.

Next, we illustrate this with a practical example, though in R, things are quite
unspectacular. It is again the predict() procedure that is applied to a fit from
arima(), the Box-Jenkins scheme that is employed runs in the background.

 Page 100

Practical Example

We here consider the Douglas Fir data which show the width of the year rings over
a period from 1107 to 1964. Because the data are non-stationary, we take
differences and model these. An ARMA(1,1) seems appropriate. We put the last
64 observations aside so that we can verify our predictions. Then, the model is
fitted and the Box-Jenkins predictions are obtained. The result, including a 95%
prognosis interval, is shown below.

We observe that the forecast goes to zero exponentially quickly. However, it is in
fact different from zero for all times. Moreover, all observations down to the very
first one are used for obtaining the predictions. Again, the ARMA model combines
the properties from pure AR and MA processes.

8.2 ARIMA/SARIMA

8.3 Exponential Smoothing

8.3.1 Simple Exponential Smoothing

The objective in this section is to predict some future values n kX given an
observed series 1{ ,..., }nX X , and thus no different than before. We first assume
that the data do not exhibit any deterministic trend or seasonality, or that these
have been identified and removed. The (conditional) expected value of the
process can change from one time step to the next, but we do not have any
information about the direction of this change. A typical application is forecasting
sales of a well-established product in a stable market. The model is:

Time

1800 1850 1900 1950

-5
0

0
5

0

Differenced Douglas Fir Data: 64-Step Prediction Based on ARMA(1,1)

 Page 101

 t t tX E ,

where t is the non-stationary mean of the process at time t , and tE are
independent random innovations with expectation zero and constant variance 2

E .
We will here use the same notation as R does, and let ta , called level of the series,
be our estimate of t . By assuming that there is no deterministic trend, an intuitive
estimate for the level at time t is to take a weighted average of the current time
series observation and the previous mean:

 1(1)t t ta x x , with 0 1 .

Apparently, the value of determines the amount of smoothing: if it is near 1,
there is little smoothing and the level ta closely tracks the series tx . This would be
appropriate if the changes in the mean of the series are large compared to the
innovation variance 2

E . At the other extreme, an -value near 0 gives highly
smoothed estimates of the current mean which take little account of the most
recent observation. This would be the way to go for series with a large amount of
noise compared to the signal size. A typical default value is 0.2 , chosen in the
light that for most series, the change in the mean between t and 1t is smaller
than 2

E . Alternatively, it is (with R) also possible to estimate , see below.

Because we assume absence of deterministic trend and seasonality, the best
forecast at time n for the future level of the series, no matter what horizon we are
aiming for, is given by the level estimate at time n , i.e.

 ,1:
ˆ

n k n nX a , for all 1,2,...k .

We can rewrite the weighted average equation in two further ways, which yields
insight into how exponential smoothing works. Firstly, we can write the level at
time t as the sum of 1ta and the 1-step forecasting error and obtain the update
formula:

 1 1()t t t ta x a a

Now, if we repeatedly apply back substitution, we obtain:

 2
1 2(1) (1) ...t t t ta x x x

When written in this form, we see that the level ta is a linear combination of the
current and all past observations with more weight given to recent observations.
The restriction 0 1 ensures that the weights (1)i become smaller as i
increases. In fact, they are exponentially decaying and form a geometric series.
When the sum over these terms is taken to infinity, the result is 1. In practice, the
infinite sum is not feasible, but can be avoided by specifying 1 1a x .

For any given smoothing parameter , the update formula plus the choice of

1 1a x as a starting value can be used to determine the level ta for all times
2,3,...t . The 1-step prediction errors te are given by:

 Page 102

 ,1:(1) 1ˆt t t t t te x x x a .

By default, R obtains a value for the smoothing parameter by minimizing the
sum of squared 1-step prediction errors, called 1SS PE :

 2

2

1
n

t
t

SS PE e

 .

There is some mathematical theory that examines the quality of the 1SS PE -
minimizing . Not surprisingly, this depends very much on the true, underlying
process. However in practice, this value is reasonable and allows for good
predictions.

Practical Example

We here consider a time series that shows the number of complaint letters that
were submitted to a motoring organization over the four years 1996-1999. At the
beginning of year 2000, the organization wishes to estimate the current level of
complaints and investigate whether there was any trend in the past. We import the
data and do a time series plot:

> www <- "http://www.massey.ac.nz/~pscowper/ts/motororg.dat"
> dat <- read.table(www, header=TRUE)
> cmpl <- ts(dat$complaints, start=c(1996,1), freq=12)
> plot(cmpl, ylab="", main="Complaints ...")

The series is rather short, and there is no clear evidence for a deterministic trend
and/or seasonality. Thus, it seems sensible to use exponential smoothing here.
The algorithm that was described above is implemented in R’s HoltWinters()
procedure. Please note that HoltWinters() can do more than plain exponential
smoothing, and thus we have to set arguments beta=FALSE and gamma=FALSE.

Complaints to a Motorizing Organization

Time

1996 1997 1998 1999 2000

5
1

0
1

5
2

0
2

5
3

0
3

5

 Page 103

If we do not specify a value for the smoothing parameter with argument alpha,
it will be estimated using the 1SS PE criterion.

> fit <- HoltWinters(cmpl, beta=FALSE, gamma=FALSE); fit
Holt-Winters exponential smoothing without trend and without
seasonal component.

Call:
 HoltWinters(x = cmpl, beta = FALSE, gamma = FALSE)

Smoothing parameters:
 alpha: 0.1429622
 beta : FALSE
 gamma: FALSE

Coefficients:
 [,1]
a 17.70343
> plot(fit)

The output shows that the level in December 1999, this is 48a , is estimated as
17.70. The optimal value for according to the 1SS PE criterion is 0.143, and the
sum of squared prediction errors was 2502. Any other value for will yield a
worse result, thus we proceed and display the result visually.

8.3.2 The Holt-Winters Method

The simple exponential smoothing approach from above can be generalized for
series which exhibit deterministic trend and/or seasonality. As we have seen in
many examples, such series are the norm rather than the exception and thus,
such a method comes in handy. It is based on these formulae:

Holt-Winters filtering

Time

O
b

se
rv

e
d

 /
 F

itt
e

d

1996 1997 1998 1999 2000

5
1

0
1

5
2

0
2

5
3

0
3

5

 Page 104

1 1

1 1

() (1)()

() (1)

() (1)

t t t p t t

t t t t

t t t t p

a x s a b

b a a b

s x a s

In the above equations, ta is again the level at time t , tb is called the slope and ts
is the seasonal effect. There are now three smoothing parameters , , which
are aimed at level, slope and season. The explanation of these equations is as
follows:

 The first updating equation for the level takes a weighted average of the
most recent observation with the existing estimate of the appropriate
seasonal effect subtracted, and the 1-step level forecast at 1t , which is
given by level plus slope.

 The second updating equation takes a weighted average of the difference
between the current and the previous level with the estimated slope at time

1t . Note that this can only be computed if ta is available.

 Finally, we obtain another estimate for the respective seasonal term by
taking a weighted average of the difference between observation and level
with the previous estimate of the seasonal term for the same unit, which
was made at time t p .

If nothing else is known, the typical choice for the smoothing parameters is
0.2 . Moreover, starting values for the updating equations are required.

Mostly, one chooses 1 1a x , the slope 1 0b and the seasonal effects 1,..., ps s are
either also set to zero or to the mean over the observations of a particular season.
When applying the R function HoltWinters(), the starting values are obtained
from the decompose() procedure, and it is possible to estimate the smoothing
parameters through 1SS PE minimization. The most interesting aspect are the
predictions, though: the k -step forecasting equation for n kX at time n is:

 ,1:
ˆ

n k n n n n k pX a kb s ,

i.e. the current level with linear trend extrapolation plus the appropriate seasonal
effect. The following practical example nicely illustrates the method.

Practical Example

We here discuss the series of monthly sales (in thousands of litres) of Australian
white wine from January 1980 to July 1995. This series features a deterministic
trend, the most striking feature is the sharp increase in the mid-80ies, followed by
a reduction to a distinctly lower level again. The magnitude of both the seasonal
effect and the errors seem to be increasing with the level of the series, and are
thus multiplicative rather than additive. We will cure this by a log-transformation of
the series, even though there exists a multiplicative formulation of the Holt-Winters
algorithm, too.

 Page 105

> www <- "http://www.massey.ac.nz/~pscowper/ts/wine.dat"
> dat <- read.table(www, header=TRUE)
> aww <- ts(dat$sweetw, start=c(1980,1), freq=12)
> plot(aww, ylab="", main="Sales of Australian White Wine")

> plot(log(aww), ylab="", main="Logged Sales ...")

The transformation seems successful, thus we proceed to the Holt-Winters
modeling. When we apply parameter estimation by 1SS PE , this is straightforward.
The fit contains the current estimates for level, trend and seasonality. Note that
these are only valid for time n , and not for the entire series. Anyhow, it is much
better to visualize the sequence of ,t ta b and t graphically. Moreover, plotting the
fitted values along with the time series is informative, too.

Sales of Australian White Wine

Time

1980 1985 1990 1995

1
0

0
2

0
0

3
0

0
4

0
0

5
0

0
6

0
0

Logged Sales of Australian White Wine

Time

1980 1985 1990 1995

4
.5

5
.0

5
.5

6
.0

6
.5

 Page 106

> fit
Holt-Winters exponential smoothing with trend and additive
seasonal component.

Call:
 HoltWinters(x = log(aww))

Smoothing parameters:
 alpha: 0.4148028
 beta : 0
 gamma: 0.4741967

Coefficients:
a 5.62591329
b 0.01148402
s1 -0.01230437
s2 0.01344762
s3 0.06000025
s4 0.20894897
s5 0.45515787
s6 -0.37315236
s7 -0.09709593
s8 -0.25718994
s9 -0.17107682
s10 -0.29304652
s11 -0.26986816
s12 -0.01984965

The coefficient values (at time n) are also the ones which are used for forecasting
from that series with the formula given above. We produce a prediction up until the
end of 1998, which is a 29-step forecast. The R commands are:

> plot(fit, xlim=c(1980, 1998))
> lines(predict(fit, n.ahead=29), col="blue", lty=3)

Holt-Winters filtering

Time

O
b

se
rv

e
d

 /
 F

itt
e

d

1980 1985 1990 1995

4
.5

5
.0

5
.5

6
.0

6
.5

 Page 107

It is also very instructive to plot how level, trend and seasonality evolved over time.
This can be done very simply in R:

> plot(fit$fitted, main="Holt-Winters-Fit")

Since we are usually more interested in the prediction on the original scale, i.e. in
liters rather than log-liters of wine, we just re-exponentiate the values. Please note
that the result is an estimate of the median rather than the mean of the series.
There are methods for correction, but the difference is usually only small.

> plot(aww, xlim=c(1980, 1998))
> lines(exp(fit$fitted[,1]), col="red")
> lines(exp(predict(fit, n.ahead=29)), col="blue", lty=3)

4.
5

5.
5

xh
a

t
4.

8
5.

4
6.

0

le
ve

l
0.

00
8

0.
01

4

tr
e

n
d

-0
.2

0.
2

1985 1990 1995

se
a

so
n

Time

Holt-Winters-Fit

Time

a
w

w

1980 1985 1990 1995

1
0

0
2

0
0

3
0

0
4

0
0

5
0

0
6

0
0

Holt-Winters-Forecast for the Original Series

 Page 108

Also, we note that the (insample) 1-step prediction error is equal to 50.04, which is
quite a reduction when compared to the series’ standard deviation which is 121.4.
Thus, the Holt-Winters fit has substantial explanatory power. Of course, it would
now be interesting to test the accuracy of the predictions. We recommend that
you, as an exercise, put aside the last 24 observations of the Australian white wine
data, and run a forecasting evaluation where all the methods (SARIMA,
decomposition approaches, Holt-Winters) compete against each other.

8.4 Forecasting Decomposed Series

 Page 109

9 Multivariate Time Series Analysis
While the header of this section says multivariate time series analysis, we will here
restrict to two series series 1 1,()tX X and 2 2,()tX X , and thus bivariate time
series analysis, because an extension to more than two series is essentially
analogous. Please note that a prerequisite for all the theory in this section is that
the series 1X and 2X are stationary.

Generally speaking, the goal of this section is to describe and understand the
(inter)dependency between two series. We introduce the basic concepts of cross
correlation and transfer function models, warn of arising difficulties in interpretation
and show how these can be mitigated.

9.1 Practical Example

We will illustrate the theory on multivariate time series analysis with a practical
example. The data were obtained in the context of the diploma thesis of Evelyn
Zenklusen Mutter, a former WBL student who works for the Swiss Institute for
Snow and Avalanche Research SLF. The topic is how the ground temperature in
permafrost terrain depends on the ambient air temperature. The following section
gives a few more details.

Ambient air temperatures influence ground temperatures with a certain temporal
delay. Borehole temperatures measured at 0.5m depth in alpine permafrost
terrain, as well as air temperatures measured at or nearby the boreholes will be
used to model this dependency. The reaction of the ground on the air temperature
is influenced by various factors such as ground surface cover, snow depth, water
or ground ice content. To avoid complications induced by the insulating properties
of the snow cover and by phase changes in the ground, only the snow-free
summer period when the ground at 0.5m is thawed will be considered.

We here consider only one single borehole, it is located near the famous Hörnli hut
at the base of Matterhorn near Zermatt/CH on 3295m above sea level. The air
temperature was recorded on the nearby Platthorn at 3345m of elevation and
9.2km distance from the borehole. Data are available from beginning of July 2006
to the end of September 2006. After the middle of the observation period, there is
a period of 23 days during which the ground was covered by snow, highlighted in
grey color in the time series plots on the next page.

Because the snow insulates the ground, we do not expect the soil to follow the air
temperature during that period. Hence, we set all values during that period equal
to NA. The time series plots, and especially the indexed plot where both series are
shown, clearly indicate that the soil temperature reacts to the air temperature with
a delay of a few days. We now aim for analyzing this relationship on a more
quantitative basis, for which the methods of multivariate time series analysis will
be employed.

 Page 110

As we had stated above, multivariate time series analysis requires stationarity. Is
this met with our series? The time series plot does not give a very clear answer.
Science tells us that temperature has a seasonal pattern. Moreover, the
correlogram of the two series is enlightening.

Air Temperature
°

C
el

si
us

0 20 40 60 80

-5
0

5
10

Soil Temperature

°
C

el
si

us

0 20 40 60 80

0
2

4
6

8

%
 o

f K
el

vi
n

0 20 40 60 80

95
97

99
10

1

Indexed Comparison Air vs. Soil

0 5 10 15

-0
.2

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Lag

A
C

F

ACF of Air Temperature

0 5 10 15

-0
.2

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Lag

A
C

F

ACF of Soil Temperature

 Page 111

The ACF exhibits a slow decay, especially for the soil temperature. Thus, we
decide to perform lag 1 differencing before analyzing the series. This has another
advantage: we are then exploring how changes in the air temperature are
associated with changes in the soil temperature and if so, what the time delay is.
These results are easier to interpret than a direct analysis of air and soil
temperatures. Next, we display the differenced series with their ACF and PACF.
The observations during the snow cover period are now omitted.

The differenced air temperature series seems stationary, but is clearly not iid.
There seems to be some strong negative correlation at lag 4. This may indicate
the properties of the meteorological weather patterns at that time of year in that
part of Switzerland. We now perform the same analysis for the changes in the soil
temperature.

Time

D
iff

e
re

n
ce

0 20 40 60 80

-4
-2

0
2

4

Changes in the Air Temperature

0 5 10 15

-1
.0

-0
.5

0
.0

0
.5

1
.0

Lag

A
C

F

ACF

5 10 15

-1
.0

-0
.5

0
.0

0
.5

1
.0

Lag

P
a

rt
ia

l A
C

F

PACF

 Page 112

In the course of our discussion of multivariate time series analysis, we will require
some ARMA(p,q) models fitted to the changes in air and soil temperature. For the
former series, model choice is not simple, as in both ACF and PACF, the
coefficient at lag 4 sticks out. A grid search shows that an AR(5) model yields the
best AIC value, and also, the residuals from this model do look as desired, i.e. like
white noise.

For the changes in the soil temperature, model search is easier. ACF and PACF
suggest either a MA(1), an ARMA(2,1) or an AR(2). From these three models, the
first one, MA(1) shows both the lowest AIC value as well as the “best looking”
residuals.

Time

D
iff

e
re

n
ce

0 20 40 60 80

-2
-1

0
1

2

Changes in the Soil Temperature

0 5 10 15

-1
.0

-0
.5

0
.0

0
.5

1
.0

Lag

A
C

F

ACF

5 10 15

-1
.0

-0
.5

0
.0

0
.5

1
.0

Lag

P
a

rt
ia

l A
C

F

PACF

 Page 113

9.2 Cross Correlation

To begin with, we consider the (theoretical) cross covariance, the measure that
describes the amount of linear dependence between the two time series
processes. Firstly, we recall the definition of the within-series autocovariances,
denoted by 11()k and 22 ()k :

 11 1, 1,() (,) t k tk Cov X X , 22 2, 2,() (,) t k tk Cov X X

The cross covariances between the two processes 1X and 2X are given by:

12 1, 2,() (,)t k tk Cov X X , 21 2, 1,() (,)t k tk Cov X X

Note that owing to the stationarity of the two series, the cross covariances 12 ()k
and 21()k both do not depend on the time t . Moreover, there is some obvious
symmetry in the cross covariance:

12 1, 2, 1, 2, 21() (,) (,) ()t k t t t kk Cov X X Cov X X k

Thus, for practical purposes, it suffices to consider 12 ()k for positive and negative
values of k . Note that we will preferably work with correlations rather than
covariances, because they are scale-free and thus easier to interpret. We can
obtain the cross correlations by standardizing the cross covariances:

12
12

11 22

()
()

(0) (0)

k
k

 , 21
21

11 22

()
()

(0) (0)

k
k

 .

Not surprisingly, we also have symmetry here, i.e. 12 21() ()k k . Additionally,
the cross correlations are limited to the interval between -1 and +1, i.e. 12| () | 1k .
As for the interpretation, 12 ()k measures the linear association between two
values of 1X and 2,X if the value of the first time series is k steps ahead.
Concerning estimation of cross covariances and cross correlations, we apply the
usual sample estimators:

 12 1, 1 2, 2

1
ˆ () ()()t k t

t

k x x x x
n

 and 21 2, 2 1, 1

1
ˆ () ()()t k t

t

k x x x x
n

 ,

where the summation index t for 0k goes from 1 to n k and for 0k goes
from 1 k to n . With 1x and 2x we denote the mean values of 1,tx and 2,tx ,
respectively. We define the estimation of the cross-correlations as

 12
12

11 22

ˆ ()
ˆ ()

ˆ ˆ(0) (0)

k
k

 , 21
21

11 22

ˆ ()
ˆ ()

ˆ ˆ(0) (0)

k
k

 .

The plot of 12ˆ ()k against k is called the cross-correlogram. Note that this must be
viewed for both positive and negative k . In R, we the job is done by the acf()
function, applied to a multiple time series object.

 Page 114

> both <- ts.union(diff(air.na), diff(soil.na))
> acf(both, na.action=na.pass, ylim=c(-1,1))

The top left panel shows the ACF of the differenced air temperature, the bottom
right one holds the pure autocorrelations of the differenced soil temperature. The
two off-diagonal plots contains estimates of the cross correlations: The top right
panel has 12ˆ ()k for positive values of k , and thus shows how changes in the air
temperature depend on changes in the soil temperature.

Note that we do not expect any significant correlation coefficients here, because
the ground temperature has hardly any influence on the future air temperature at
all. Conversely, the bottom left panel shows 12ˆ ()k for negative values of k , and
thus how the changes in the soil temperature depend on changes in the air
temperature. Here, we expect to see significant correlation.

9.2.1 Interpreting the Cross Correlogram

Interpreting the cross correlogram is tricky, because the within-series dependency
results in a mixing of the correlations. It is very important to note that the
confidence bounds shown in the above plots are usually wrong and can thus be
strongly misleading. If not the additional steps to be discussed below are taken,
interpreting the raw cross correlograms will lead to false conclusions.

The reason for these problems is that the variances and covariances of the 12ˆ ()k
are very complicated functions of 11 22(), ()j j and 12 (),j j . For illustrative
purposes, we will treat some special cases explicitly.

0 5 10 15

-1
.0

0.
0

1.
0

Lag

A
C

F

air.changes

0 5 10 15

-1
.0

0.
0

1.
0

Lag

air.changes & soil.changes

-15 -10 -5 0

-1
.0

0.
0

1.
0

Lag

A
C

F

soil.changes & air.changes

0 5 10 15

-1
.0

0.
0

1.
0

Lag

soil.changes

 Page 115

Case 1: No correlation between the two series for large lags

In the case where the cross correlation 12 () 0j for | |j m , we have for | |k m :

 12 11 22 12 12

1
ˆ(()) { () () () ()}

j

Var k j j j k j k
n

 .

Thus, the variance of the estimated cross correlation coefficients goes to zero for
$n \rightarrow \infty$, but for a deeper understanding with finite sample size, we
must know all true auto and cross-correlations, which is of course impossible in
practice.

Case 2: No correlation between the series for all lags

If the two processes 1X and 2X are independent, i.e. 12 () 0j for all j , then the
variance of the cross correlation estimator simplifies to:

 12 11 22

1
ˆ(()) () ()

j

Var k j j
n

 .

If, for example, 1X and 2X are two independent AR(1) processes with parameters

1 and 2 , then | | | |
11 1 22 2() , ()j jj j and 12 () 0j . For the variance of 12ˆ ()k

we have, because the autocorrelations form a geometric series:

| | 1 2
12 1 2

1 2

1 1 1
ˆ(()) () ·

1
j

j

Var k
n n

 .

For 1 1 and 2 1 this expression goes to , i.e. the estimator 12ˆ ()k can, for
a finite time series, differ greatly from the true value 0 . We would like to illustrate
this with two simulated AR(1) processes with 1 2 0.9 . According to theory all
cross-correlations are 0. However, as we can see in the figure on the next page,
the estimated cross correlations differ greatly from 0, even though the length of the
estimated series is 200. In fact, 12ˆ2 (()) 0.44Var k , i.e. the 95% confidence
interval is ± 0.44. Thus even with an estimated cross-correlation of 0.4 the
null hypothesis “true cross-correlation is equal to 0” cannot be rejected.

Case 3: No cross correlations for all lags and one series uncorrelated

Only now, in this special case, the variance of the cross correlation estimator is
significantly simplified. In particular, if 1X is a white noise process which is
independent of 2X , we have, for large n and small k :

 12

1
ˆ(())Var k

n
 .

Thus, in this special case, the rule of thumb 2 / n yields a valid approximation to
a 95% confidence interval for the cross correlations and can help to decide
whether they are significantly or just randomly different from zero.

 Page 116

to get an approximate 95% confidence interval that helps to decide whether an
estimated cross-correlation is only randomly different from 0.

In most practical examples, however, the data will be auto- and also cross
correlated. Thus, the question arises whether it is at all possible to do something
here. Fortunately, the answer is yes: with the method of prewhitening, described in
the next chapter, we do obtain a theoretically sound and practically useful cross
correlation analysis.

9.3 Prewhitening

The idea behind prewhitening is to transform one of the two series such that it is
uncorrelated, i.e. a white noise series, which also explains the name of the
approach. Formally, we assume that the two stationary processes 1X and 2X can
be transformed as follows:

1,
0

t i t i
i

U a X

2,
0

 t i t i
i

V b X

0 5 10 15 20 25

-1
.0

0.
0

1.
0

Lag

A
C

F

X1

0 5 10 15 20 25

-1
.0

0.
0

1.
0

Lag

X1 & X2

-25 -20 -15 -10 -5 0

-1
.0

0.
0

1.
0

Lag

A
C

F

X2 & X1

0 5 10 15 20 25

-1
.0

0.
0

1.
0

Lag

X2

 Page 117

Thus, we are after coefficients ia and ib such that an infinite linear combination of
past terms leads to white noise. We know from previous theory that such a
representation exists for all stationary and invertible ARMA(p,q) processes, it is the
AR() representation. For the cross-correlations between tU and tV and between

tX and tY , the following relation holds:

1 2

0 0

() ()UV i j X X
i j

k a b k i j

We conjecture that for two independent processes 1X and 2X , where all cross
correlation coefficients

1 2
() 0X X k , also all () 0UV k . Additionally, the converse

is also true, i.e. it follows from “ tU and tV uncorrelated” that the original processes

1X and 2X are uncorrelated, too. Since tU and tV are white noise processes, we
are in the above explained case 3, and thus the confidence bounds in the cross
correlograms are valid. Hence, any cross correlation analysis on “real” time series
starts with representing them in terms of tu and tv .

Example: AR(1) Simulations

For our example with the two simulated AR(1) processes, we can estimate the AR
model coefficients with the Burg method and plug them in for prewhitening the
series. Note that this amounts considering the residuals from the two fitted models!

1, 1 1, 1ˆt t txu x , where 1ˆ 0.889 , and

2, 2 2, 1ˆt t txv x , where 2ˆ 0.917 .

0 5 10 15 20

-1
.0

0.
0

1.
0

Lag

A
C

F

U

0 5 10 15 20

-1
.0

0.
0

1.
0

Lag

U & V

-20 -15 -10 -5 0

-1
.0

0.
0

1.
0

Lag

A
C

F

V & U

0 5 10 15 20

-1
.0

0.
0

1.
0

Lag

V

 Page 118

The figure on the previous page shows both the auto and cross correlations of the
prewhitened series. We emphasize again that we here consider the residuals from
the AR(1) models that were fitted to series 1X and 2X . We observe that, as we
expect, there are no significant autocorrelations, and there is just one cross
correlation coefficient that exceeds the 95% confidence bounds. We can attribute
this to random variation.

The theory suggests, because tU and tV are uncorrelated, that also 1X and 2X
do not show any linear dependence. Well, owing to how we set up the simulation,
we know this for a fact, and take the result as evidence that the prewhitening
approach works in practice.

Example: Air and Soil Temperatures

For verifying whether there is any cross correlation between the changes in air and
soil temperatures, we have to perform prewhitening also for the two differenced
series. Previously, we had identified an AR(5) and a MA(1) model as. We can now
just take their residuals and perform a cross correlation analysis:

> fit.air <- arima(diff(air.na), order=c(5,0,0))
> fit.soil <- arima(diff(soil.na), order=c(0,0,1))
> u.air <- resid(fit.air)
> v.soil <- resid(fit.soil)
> acf(ts.union(u.air, v.soil), na.action=na.pass)

The bottom left panel shows some significant cross correlations. A change in the
air temperature seems to induce a change in the soil temperature with a lag of 1 or
2 days.

0 5 10 15

-1
.0

0.
0

1.
0

Lag

A
C

F

u.air

0 5 10 15

-1
.0

0.
0

1.
0

Lag

u.air & v.soil

-15 -10 -5 0

-1
.0

0.
0

1.
0

Lag

A
C

F

v.soil & u.air

0 5 10 15

-1
.0

0.
0

1.
0

Lag

v.soil

 Page 119

9.4 Transfer Function Models

In the previous section we had observed significant cross correlations between the
prewhitened air and soil temperature changes. This means that the cross
correlations between the original air and soil temperature changes will also be
different from zero. However, due to the prewhitening, inferring the magnitude of
the linear association is different. The aim of this section is to clarify this issue.

The transfer function models are a possible way to capture the dependency
between two time series. We must assume that the first series influences the
second, but the second does not influence the first. Furthermore, the influence
occurs only at simultaneously or in the future, but not on past values. Both
assumptions are met in our example. The transfer function model is:

2, 2 1, 1
0

()t j t j t
j

X X E

We call 1X the input and correspondingly, 2X is named the output. For the error
term tE we require zero expectation and that they are independent from the input
series, in particular:

[] 0tE E and 1,,() 0t sCov E X for all t and s .

However, the errors tE are usually autocorrelated. Note that this model is very
similar to the time series regression model. However, here we have infinitely many
unknown coefficients j , i.e. we do not know (a priori) on which lags to regress the
input for obtaining the output. For the following theory, we assume (w.l.o.g.) that

1 2 0 , i.e. the two series were adjusted for their means. In this case the cross
covariances 21()k are given by:

21 2, 1, 1, 1, 11
0 0

() (,) (,) ()t k t j t k j t j
j j

k Cov X X Cov X X k j

 .

In cases where the transfer function model has a finite number of coefficients j
only, i.e. 0j for j K , then the above formula turns into a linear system of

1K equations that we could theoretically solve for the unknowns , 0, ,j j K .

If we replaced the theoretical 11 and 21 by the empirical covariances 11̂ and 21̂ ,
this would yield, estimates ˆ j . However, this method is statistically inefficient and
the choice of K proves to be difficult in practice. We again resort to some special
case, for which the relation between cross covariance and transfer function model
coefficients simplifies drastically.

Special Case: Uncorrelated input series 1X

In this case, 11() 0k for 0k and we have 21 11() (0)kk . For the coefficients

k this results in the simplified transfer function model:

 Page 120

21 22
21

11 11

() (0)

(0) (0)k

k

 , for 0k .

However, 1X generally is not a white noise process. We can resort to prewhitening
the input series. As we will show below, we can obtain an equivalent transfer
function model with identical coefficients if a smart transformation is applied to the
output series. Namely, we have to filter the output with the model coefficients from
the input series.

1, 1, 1 1, 2 1, 3 1, 4 1, 50.296· 0.242· 0.119· 0.497· 0.216·t t t t t t tX X X X X X D ,

where tD is the innovation, i.e. a white noise process, for which we estimate the
variance to be 2ˆ 2.392D . We now solve this equation for tD and get:

1, 1, 1 1, 2 1, 3 1, 4 1, 5
2 3 4 5

1,

0.296· 0.242· 0.119· 0.497· 0.216·

(1 0.296 0.242 0.119 0.497 0.216)
t

t

t t t t t tX X X X X X

B B B B B X

D

We now apply this same transformation, i.e. the characteristic polynomial of the
AR(5) also on the output series 2X and the transfer function model errors tE :

 2 3 4 5
2,(1 0.296 0.242 0.119 0.497 0.216)t tZ B B B B B X

 2 3 4 5(1 0.296 0.242 0.119 0.497 0.216) tt BU B B B B E .

We can now equivalently write the transfer function model with the new processes

tD , tZ and tU . It takes the form:

0

t j t j t
j

Z D U

 ,

where the coefficients j are identical than for the previous formulation of the
model. The advantage of this latest formulation, however, is that the input series

tD is now white noise, such that the above special case applies, and the transfer
function model coefficients can be obtained by a straightforward computation from
the cross correlations:

 21
212

ˆ ˆ()
ˆ ˆ ()

ˆ ˆ
Z

k
D D

k
k

 , where 0k .

where 21̂ and 21̂ denote the empirical cross covariances and cross correlations
of tD and tZ . However, keep in mind that tZ and tU are generally correlated.
Thus, the outlined method is not a statistically efficient estimator either. While
efficient approaches exist, we will not discuss them in this course and scriptum.
Furthermore, for practical application the outlined procedure usually yields reliable
results. We conclude this section by showing the results for the permafrost
example.

 Page 121

The transfer function model coefficients in the example are based on the cross
correlation between the AR(5) residuals of the air temperature changes and the
soil temperature changes that had been filtered with the air’s AR(5) coefficients.

> dd.air <- resid(fit.air)
> coefs <- coef(fit.air)[1:5])
> zz.soil <- filter(diff(soil.na), c(1, -coefs, sides=1)
> as.int <- ts.intersect(dd.air, zz.soil)
> acf.val <- acf(as.int, na.action=na.pass)

Again, in all except for the bottom left panel, the correlation coefficients are mostly
zero, respectively only insignificantly or by chance different from that value. This is
different in the bottom left panel. Here, we have substantial cross correlation at
lags 1 and 2. Also, these values are proportional to the transfer function model
coefficients. We can extract these as follows:

> multip <- sd(zz.soil, na.rm=TRUE)/sd(dd.air, na.rm=TRUE)
> multip*acf.val$acf[,2,1]
 [1] 0.054305137 0.165729551 0.250648114 0.008416697
 [5] 0.036091971 0.042582917 -0.014780751 0.065008411
 [9] -0.002900099 -0.001487220 -0.062670672 0.073479065
[13] -0.049352348 -0.060899602 -0.032943583 -0.025975790

Thus, the soil temperature in the permafrost boreholes reacts to air temperature
changes with a delay of 1-2 days. An analysis of further boreholes has suggested
that the delay depends on the type of terrain in which the measurements were
made. Fastest response times are found for a very coarse-blocky rock glacier site,
whereas slower response times are revealed for blocky scree slopes with smaller
grain sizes.

0 5 10 15

-1
.0

0.
0

1.
0

Lag

A
C

F

dd.air

0 5 10 15
-1

.0
0.

0
1.

0

Lag

dd.air & zz.soil

-15 -10 -5 0

-1
.0

0.
0

1.
0

Lag

A
C

F

zz.soil & dd.air

0 5 10 15

-1
.0

0.
0

1.
0

Lag

zz.soil

 Page 122

10 Spectral Analysis
During this course, we have encountered several time series which show periodic
behavior. Prominent examples include the number of shot lynx in the Mackenzie
River district in Canada, as well as the wave tank data from section 4.3. In these
series, the periodicity is not deterministic, but stochastic. An important goal is to
understand the cycles at which highs and lows in the data appear.

In this chapter, we will introduce spectral analysis as a descriptive means for
showing the character of, and the dependency structure within a time series. This
will be based on interpreting the series as a superposition of cyclic components,
namely as a linear combination of harmonic oscillations. We will introduce the
periodogram, where the aim is to show which frequencies contribute most
importantly to the variation in the series.

In spirit, such an analysis is related to the correlogram. In fact, one can show that
the information in the correlogram and the periodogram are mathematically
equivalent. However, the two approaches still provide different, complementary
views on a series and it is thus often worthwhile to pursue both approaches.
Finally, we here also mention that in some areas time series are preferably
analyzed in the time domain, whereas in other applied fields, e.g. electrical
engineering, geophysics and econometrics, the frequency approach
predominates.

10.1 Decomposing in the Frequency Domain

We will here first introduce some background and theory on how to decompose
time series into cyclic components and then lay the focus on the efficient
estimation of these.

10.1.1 Harmonic Oscillations

The simplest and best known periodic functions are sine and cosine. It is thus
appealing to use these as a basis for decomposing time series. A harmonic
oscillation is of the form

 () cos(2)y t a t .

Here, we call a the amplitude, v is the frequency and is the phase. Apparently,
the function ()y t is periodic, and the period is 1/T . It is common to write the
above harmonic oscillation in a different form, i.e.:

 () cos(2) sin(2)y t t t ,

where in fact cos()a and sin()a . The advantage of this latter form is that
if we want to fit a harmonic oscillation with fixed frequency to data, which means

 Page 123

estimating amplitude and phase, we face a linear problem instead of a non-linear
one, as it was the case in the previous formulation. The time can be either
continuous or discrete. In the context of our analysis of discrete time series, only
the latter will be relevant.

Now, if fitting a harmonic oscillation to discrete data, we face an identification
problem: If frequency fits, then all higher frequencies such as 1, 2, ... will
fit as well. This phenomenon is now as aliasing. The plot below shows harmonics
where 1a and 0 . As frequencies, we choose both 1/ 6 and 1 1/ 6 .
We observe that we cannot decide upon which of the two frequencies generated
our discrete time observations. Naturally, the time resolution of our series
determines which frequencies we can identify. Or more clearly: we take the point
that our data do not allow to identify periodicities with frequency 1/ 2 , i.e. that
harmonics which oscillate more than once between two observations.

10.1.2 Superposition of Harmonics

In a real-world stationary time series, it is rare to inexistent that only one single
periodicity that can be attributed to a single frequency makes up for all the
variation that is observed. Thus, for a decomposition of the series into a number of
periodicities with different frequency, we choose the following regression-type
approach:

 0
1

(cos(2) sin(2))
m

t k k k k t
k

X t t E

 ,

where ,k k are interpreted as the unknown parameters, tE is an iid error term
with expectation zero and 1, ..., m is a set of pre-defined frequencies. Under
these assumptions, we can obtain estimates ˆˆ ,k k with the ordinary least squares
algorithm. As for the frequencies, we choose multiples of 1/ n , i.e.

 /k k n , for 1, ...,k m with / 2m n .

These are called the Fourier frequencies. Using some mathematics, one can
prove that the above regression problem has orthogonal design. Thus, the
estimated coefficients ˆˆ ,k k are uncorrelated and (for 0k) have variance

22 / 2E . Because we are also spending n parameters for the n observations, the
frequency decomposition model fits perfectly, i.e. all residuals are zero. Another
very important result is that the

sum of squared residuals 2

1

n

i
i

r

 increases by 2 2ˆˆ()

2 k k

n

if the frequency k is omitted from the model. We can use this property to gauge
the prominence of a particular frequency in the decomposition model. This is what
is done with the periodogram, which we will discuss in detail in the following
section.

 Page 124

10.1.3 The Periodogram

The periodogram quantifies the presence of periodicities in a time series. It is
based on half of the increase in sum of squared residuals in the decomposition
model if a particular frequency is omitted. We can rewrite that directly as a function
of the observations:

2 2

2 2

1 1

ˆˆ() ()
4

1 1
cos(2) sin(2)

n k k k

n n

t k t k
t t

n
I

x t x t
n n

The result is then plotted versus the frequency k , and this is known as the raw
periodogram. In R, we can use the convenient function spec.pgram(). We
illustrate its use with the lynx and the wave tank data:

> spec.pgram(log(lynx), log="no", type="h")
> spec.pgram(wave, log="no", type="h")

The periodogram of the logged lynx data is easy to read: the most prominent
frequencies in this series with 114 observations are the ones near 0.1, more
exactly, these are 11 11/114 0.096 and 12 12 /114 0.105 . The period of these
frequencies is 1/ k and thus, 114 /11 10.36 and 114 /12 9.50 . This suggests that
the series shows a peak at around every 10th observation which is clearly the case
in practice. We can also say that the highs/lows appear between 11 and 12 times
in the series. Also this can easily be verified in the time series plot.

Time Series Plot of log(lynx)

lo
g(

ly
nx

)

1820 1840 1860 1880 1900 1920

4
5

6
7

8
9

0.0 0.1 0.2 0.3 0.4 0.5

0
5

10
20

30

sp
ec

tr
um

Raw Periodogram of log(lynx)

H
ei

gh
t

0 20 40 60 80 100 120

-5
00

0
50

0

Time Series Plot of Wave Tank Data

0.0 0.1 0.2 0.3 0.4 0.5

0e
+

00
4e

+
05

8e
+

05

sp
ec

tr
um

Raw Periodogram of Wave Tank Data

 Page 125

Then, there is a secondary peak at 3 3 /114 . This must be a cyclic component
that appears three times in our data, and the period is 114 / 3 38 . Thus, these are
the 40-year-superhighs and -lows that we had identified already earlier.

For the wave tank data, we here consider the first 120 observations only. The
periodogram is not as clean as for the logged lynx data, but we will try with an
interpretation, too. The most prominent peaks are at 12, 17k and 30 . Thus we
have a superposition of cycles which last 4, 7 and 10 observations. The
verification is left to you.

10.1.4 Leakage

While some basic inspections of the periodogram can and sometimes do already
provide valuable insight, there are a few issues which need to be taken care of.
The first one which is discussed here is the phenomenon called leakage. It
appears if there is no Fourier frequency that corresponds to the true periodicity in
the data. Usually, the periodogram then shows higher values in the vicinity of the
true frequency. The following simulation example is enlightening:

2 13 2 20

cos 0.8 cos
140 140t

t t
X

, for 0, ..., 139t

We have a series of 140 observations which is made up as the superposition of
two harmonic oscillations with frequencies 13 /140 and 20 /140 . These correspond
to periods of 7.00 and 10.77 , and both are Fourier frequencies. We display the
time series plot, as well as the periodogram:

Simulated Periodic Series

xx

0 20 40 60 80 100 120 140

-1
.5

0
.0

1
.5

0 10 20 30 40 50 60 70

0
2

4

p
e

ri
o

d
o

g
ra

m
(x

x)

Raw Periodogram of Simulated Series

 Page 126

Now if we shorten this very same series by 16 data points so that 124
observations remain, the true frequencies 20 /140 and 13 /140 do no longer
appear in the decomposition model, i.e. are not Fourier frequencies anymore. The
periodogram now shows leakage:

If not all of the true frequencies in the data generating model are Fourier
frequencies, then, ˆˆ ,k k from the decomposition model are only approximations
to the true contribution of a particular frequency for the variation in the series.

0 10 20 30 40 50 60

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

1:62

Raw Periodogram of Shortened Series

 Page 127

11 State Space Models
State space modeling is a very flexible tool that can be applied in almost all
applied fields. It would certainly merit a full course focusing on applied aspects on
its own. Due to restrictions in time, we here provide only a small overview on the
potential of the method. While it is possible to write most time series models in
state space formulation, it is usually simpler to do without and use their own
genuine notation. The real benefits of state space models only become unveiled
when one has to deal with observations that are blurred with additional noise, or
with situations, where some parameters are required to adapt over time.

We will here first introduce the general formulation of state space models, and
then illustrate with a number of examples. The first two concern AR processes with
additional observation noise, and the latter two are dynamic linear models, i.e.
regression problems with time-varying coefficients, and the growth model.

The coefficients of state space models are usually estimated with the Kalman
Filter. Because this is mathematically rather complex and in the primary focus of
the user, this scriptum does not provide many details about it.

11.1 State Space Formulation

State space models are built on two equations. One is the state equation, and the
other is the observation equation. We here introduce the general notation; their
meaning will become clearer with examples discussed below.

State Equation

The values of the state at time t are represented by a column matrix tX , and are
a linear combination of the values of the state at time 1t and random variation
(system noise) from a multivariate normal distribution. The linear combination of
values of the state at time 1t is defined with a matrix tG , and the covariance
matrix of the multivariate normal is denoted with tw .

 1t t t tX G X W , where ~ (0,)t tW N w

Observation Equation

The observation at time t is denoted by a column matrix tY that is a linear
combination of the states, determined by a matrix tF , and random variation
(measurement noise) from a normal distribution with covariance matrix tv .

 t t t tY F X V , where ~ (0,)t tV N v

Note that in this general formulation, all matrices can be time varying, but in most
of our examples, they will be constant. Also, the nomenclature is different
depending on the reference, but we here adopt the notation of R.

 Page 128

11.2 AR Processes with Measurement Noise

We are interested in a stochastic process tX (which may be an AR process).
Then, one usually makes measurements to obtain observations, i.e. acquires a
realization of the process. So far, we operated under the assumption that the
measurements were error-free, i.e. that there was no measurement noise. In many
cases, this is hardly realistic, and we may rather have realizations of some random
variable

 t t tY X V , where 2~ (0,)t VV N .

Thus, the realizations of the process of interest, tX are latent, i.e. hidden under
some random noise. We will now discuss how this issue can be solved in practice.

Example: AR(1)

As the simplest example of a state space model, we consider an AR(1) process
which is superposed with some additional measurement noise. The state equation
is as follows:

 1 1t t tX X W .

We assume that tW is an iid innovation with Gaussian distribution, i.e.
2~ (0,)t WW N . Also note that matrix tG has dimension 1 1 , is time-constant and

equal to 1 . Under some additional measurement noise, our observations can be
perceived as realizations of the random variable tY :

t t tY X V , where 2~ (0,)t VV N .

This is the observation equation, note that tF is also time-constant and equal to
the 1 1 identity matrix. We here assume that the errors tV are iid, and also
independent of sX and sW for all t and s . It is important to note that tW is the
process innovation that impacts future instances t kX . In contrast, tV is pure
measurement noise with no influence on the future of process tX .

For illustration, we consider a simulation example. We use 1 0.7 , the innovation
variance 2

W is 0.1 and the measurement error variance 2
V is 0.5. The length of

the simulated series is 100 observations. On the next page, we show a number of
plots. They include a time series plot with both series tX and tY , and the individual
plots of tX with its ACF/PACF, and of tY with ACF/PACF.

We clearly observe that the appearance of the two processes is very different.
While tX looks like an autoregressive process, and has ACF and PACF showing
the stylized facts very prominently, tY almost appears to be White Noise. Please
note that this is not true. There is some dependency also in tY , but it is blurred by
some very strong noise component.

 Page 129

We here emphasize, that the state space formulation allowed to write a model
comprised of a true signal plus additional noise. However, if we face an observed
series of this type, we are not any further yet. We need some means to separate
the two components. Kalman filtering allows doing so. In R package sspir, there
are procedures that do the job, but they require a correctly formulated state space
model as an input. The next page shows the details.

Time

yt
1

0 20 40 60 80 100

-2
-1

0
1

State X_t
Observed Y_t

State X_t
Observed Y_t

State X_t
Observed Y_t

AR(1) Simulation Example

Process X_t

Time

yt
1[

, 1
]

0 20 40 60 80 100

-1
.0

0.
0

0.
5

1.
0

0 5 10 15 20

-1
.0

-0
.5

0.
0

0.
5

1.
0

Lag

A
C

F

ACF of Process X_t

5 10 15 20

-1
.0

-0
.5

0.
0

0.
5

1.
0

Lag

P
ar

tia
l A

C
F

PACF of Process X_t

Observed Y_t

Time

yt
1[

, 2
]

0 20 40 60 80 100

-2
-1

0
1

0 5 10 15 20

-1
.0

-0
.5

0.
0

0.
5

1.
0

Lag

A
C

F

ACF of Observed Y_t

5 10 15 20

-1
.0

-0
.5

0.
0

0.
5

1.
0

Lag

P
ar

tia
l A

C
F

PACF of Observed Y_t

 Page 130

Load the package for Kalman filtering
library(sspir)

State Space Formulation
ssf <- SS(y = as.matrix(obs),
 Fmat = function(tt,x,phi) { return(matrix(1)) },
 Gmat = function(tt,x,phi) { return(matrix(0.7)) },
 Vmat = function(tt,x,phi) { return(matrix(0.5)) },
 Wmat = function(tt,x,phi) { return(matrix(0.1)) },
 m0 = matrix(0),
 C0 = matrix(0.1))

Kalman Filtering
fit <- kfilter(ssf)
plot(fit$m, col="blue", lwd=2, ...)

Kalman filter in R requires to specifiy the state space model first. We need to
supply argument y which stands for the observed time series data. They have to
come in the form of a matrix. Moreover, we have to specify the matrices ,t tF G , as
well as the covariance structures ,t tv w . In our case, these are all simple 1 1
matrices. Finally, we have to provide m0, the starting value of the initial state, and
C0, the variance of the initial state.

We can then employ the Kalman filter to recover the original signal tX . It was
added as the blue line in the above plot. While it is not 100% accurate, it still does
a very good job of filtering the noise out. However, note that with this simulation
example, we have some advantage over the real simulation. It was easy for us to
specify the correct state space formulation. In practice, we might have problems to
identify good values for tG (the true AR(1) parameter) and the variances in ,t tv w .
On the other hand, in practice the precision of many measurement devices is more
or less known, and thus some educated guess is possible.

Time

yt
1

0 20 40 60 80 100

-2
-1

0
1

State X_t
Observed Y_t
KF-Output

AR(1) Simulation Example with Kalman Filter Output

 Page 131

Example: AR(2)

Here, we demonstrate the formulation of a state space model for an AR(2) process
that is superimposed with some measurement error. This example is important,
because now, we need to use matrices in the state equation. It is as follows:

 11 2

1 21 0 0
t t t

t t

X X W

X X

Apparently, this is a two-dimensional model. The observation equation is:

1

(1 0) t
t t

t

X
Y V

X

Once the equations are set up, it is straightforward to derive the matrices:

 1 2

0 0tG G

, (1 0)tH H ,
2 0

0 0
W

tw

, 2
t Vv

Similar to the example above, we could now simulate from an AR(2) process, add
some artificial measurement noise and then try to uncover the signal using the
Kalman filter. This is left as an exercise.

11.3 Dynamic Linear Models

A specific, but very useful application of state space models is to generalize linear
regression such that the coefficients can vary over time. We consider a very
simple example where the sales manager in a house building company uses the
following model: the company’s house sales at time t , denoted as tS , depends on
the general levels of sales in that area tL and the company’s pricing policy tP .

 t t t t tS L P V

This is a linear regression model with price as the predictor, and the general level
as the intercept. The assumption is that their influence varies over time, but
generally only in small increments. We can use the following notation:

 1t t tL L L

 1t t t

In this model, we assume that tv , tL and t are random deviations with mean
zero that are independent over time. While we assume independence of tL and

t , we could also allow for correlation among the two. The relative magnitudes of
these perturbations are accounted for with the variances in the matrices tV and tW
of the state space formulation. Note that if we set 0tW , then we are in the case

 Page 132

of plain OLS regression with constant parameters. Hence, we can also formulate
any regression models in state space form. Here, we have:

 t tY S , t
t

t

L
X

, t
t

t

L
W

,

1
t

t

F
P

 ,
1 0

0 1
G

Because we do not have any data for this sales example, we again rely on a
simulation. Apparently, this also features the advantage that we can evaluate the
Kalman filter output versus the truth. Thus, we let

 t t ty a bx z

 2 /10tx t

We simulate 30 data points from 1,...,30t and assume errors which are standard
normally distributed, i.e. ~ (0,1)tz N . The regression coefficients are 4a and

2b for 1,...,15t and 5a and 1b for 16,...,30t . We will fit a straight line
with time-varying coefficients, as this is the model that matches what we had found
for the sales example above.

Simulation
set.seed(1)
x1 <- 1:30
x1 <- x1/10+2
aa <- c(rep(4,15), rep(5,15))
bb <- c(rep(2,15), rep(-1,15))
nn <- length(x1)
y1 <- aa+bb*x1+rnorm(nn)
x0 <- rep(1,nn)
xx <- cbind(x0,x1)
x.mat <- matrix(xx, nrow=nn, ncol=2)
y.mat <- matrix(y1, nrow=nn, ncol=1)

State Space Formulation
ssf <- SS(y=y.mat, x=x.mat,
 Fmat=function(tt,x,phi)
 return(matrix(c(x[tt,1],x[tt,2]),2,1)),
 Gmat=function(tt,x,phi) return(diag(2)),
 Wmat=function(tt,x,phi) return(0.1*diag(2)),
 Vmat=function(tt,x,phi) return(matrix(1)),
 m0=matrix(c(5,3),1,2),
 C0=10*diag(2))

Kalman-Filtering
fit <- kfilter(ssf)
par(mfrow=c(1,2))
plot(fit$m[,1], type="l", xlab="Time", ylab="")
title("Kalman Filtered Intercept")
plot(fit$m[,2], type="l", xlab="Time", ylab="")
title("Kalman Filtered Slope")

 Page 133

The plots show the Kalman filter output for intercept and slope. The estimates pick
up the true values very quickly, even after the change in the regime. It is worth
noting that in this example, we had a very clear signal with relatively little noise,
and we favored recovering the truth by specifying the state space formulation with
the true error variances that are generally unknown in practice.

0 5 10 15 20 25 30

4
.0

4
.4

4
.8

5
.2

Time

Kalman Filtered Intercept

0 5 10 15 20 25 30

-1
0

1
2

Time

Kalman Filtered Slope

