Marcel Dettling

Institute for Data Analysis and Process Design

Zurich University of Applied Sciences

marcel.dettling@zhaw.ch

http://stat.ethz.ch/~dettling

ETH Zürich, March 26, 2012

Looking Back & Outlook

We did consider AR(p)-models

$$(X_{t} - \mu) = \alpha_{1}(X_{t-1} - \mu) + \dots + \alpha_{p}(X_{t-p} - \mu) + E_{t}$$

where the correlation structure was as follows:

ACF:	"exponential decay"		
PACF:	= 0 for all lags k>p		

Now, in practice we could well observe a time series whose autocorrelation differs from the above.

We will thus discuss ARMA-models, a class that is suitable for modeling a wider spectrum of dependency structures.

Backshift Operator

- **Purpose**: more convenient notation
- What it is:function $B(\cdot)$
"go back 1 observation"
"increment the time series index t by -1"

Examples:

$$B(X_t) = X_{t-1}$$
, or also $BX_t = X_{t-1}$

and

$$B^{3}X_{t} = B(B(B(X_{t}))) = B(B(X_{t-1})) = B(X_{t-2}) = X_{t-3}$$

Using the Backshift Operator

The backshift operator allows for convenient differencing:

a) First order difference with lag
$$Y_t = X_t - X_{t-1} = (1-B)X_t$$

b) Second order difference with lag 1

$$Z_t = Y_t - Y_{t-1} = (1 - B)Y_t = (1 - B)^2 X_t = (1 - 2B + B^2)X_t$$

c)
$$b^{\text{th}}$$
 order difference with lag a
 $W_t = (1 - B^a)^b X_t$

Moving Average Models

Whereas for AR(p) models, the current observation of a time series is written as a linear combination of its own past, MA(q) models can be seen as an extension of the "pure" model

 $X_t = E_t$, where E_t is a white noise process,

in the sense that past innovation terms E_{t-1}, E_{t-2}, \dots are included, too. We call this a moving average model:

$$X_{t} = E_{t} + \beta_{1}E_{t-1} + \beta_{2}E_{t-2} + \dots + \beta_{q}E_{t-q}$$

Note that there are other interpretations, too. We will discuss them later.

Notation for MA(q)-models

The backshift operator, and the characteristic polynom, allow for convenient notation:

MA(q): $X_{t} = E_{t} + \beta_{1}E_{t-1} + \beta_{2}E_{t-2} + \dots + \beta_{q}E_{t-q}$ MA(q) with BS: $X_{t} = \left(1 + \beta_{1}B + \beta_{2}B^{2} + \dots + \beta_{q}B^{q}\right)E_{t}$ MA(q) with BS+CP: $X_{t} = \Theta(B)E_{t}$

where

$$\Theta(z) = 1 + \beta_1 z + \beta_2 z^2 + ... + \beta_q z^q$$

is the characteristic polynom

Stationarity of MA(1)-Models

We first restrict ourselves to the simple MA(1)-model

 $X_t = E_t + \beta_1 E_{t-1}$, where E_t is an innovation

The series X_t is weakly stationary, no matter what the choice of the parameter β_1 is.

Remember that for proving this, we have to show that:

- the expected value is 0
- the variance is constant and finite
- the autocovariance only depends on the lag k

\rightarrow see the blackboard for the proof

ACF of the MA(1)-Process

We can deduct the ACF for the MA(1)-process:

$$\rho(1) = \frac{\gamma(1)}{\gamma(0)} = \frac{\beta_1}{(1 + \beta_1^2)}$$

and

$$\rho(k) = 0$$
 for all k>1.

Thus, similar behavior to the PACF of an AR(1).

Applied Time Series Analysis FS 2012 – Week 06 Simulated Process with $\beta_1=0.5$

Marcel Dettling, Zurich University of Applied Sciences

Applied Time Series Analysis FS 2012 – Week 06 Simulated Process with β_1 =-0.5

Marcel Dettling, Zurich University of Applied Sciences

MA(1): Remarks

Without additional assumptions, the ACF of an MA(1) doesn't allow identification of the generating model.

In particular, the two processes

$$X_t = E_t + 0.5 \cdot E_{t-1}$$

$$U_t = E_t + 2 \cdot E_{t-1}$$

have identical ACF:

$$\rho(1) = \frac{\beta_1}{1 + \beta_1^2} = \frac{1/\beta_1}{1 + (1/\beta_1^2)}$$

MA(1): Invertibility

- An MA(1)-, or in general an MA(q)-process is said to be invertible if the roots of the characteristic polynom lie outside of the unit circle.
- Under this condition, there exists only one MA(q)-process for any given ACF.
- This translates to restrictions on the coefficients. For a MA(1)-model, $|\beta_1| < 1$ is required.
- See blackboard for further explanation...

Invertible $MA(1) = AR(\infty)$

Invertible MA(1)-processes can be written as an AR(∞):

$$\begin{aligned} X_{t} &= E_{t} + \beta_{1} E_{t-1} \\ &= E_{t} + \beta_{1} (X_{t-1} - \beta_{1} E_{t-2}) \\ &= E_{t} + \sum_{j=1}^{\infty} \psi_{j} X_{t-j} \end{aligned}$$

MA(1): More Remarks

- MA(1)-processes have mean zero: $E[X_t] = 0$
- If an observed time series shows MA(1)-properties in ACF/PACF, but has a mean different from zero, we can always model the centered series (idem AR(p)).
- For an MA(1)-process,

 $|\rho(1)| \le 0.5$

always holds. If the estimated first ACF-coefficient clearly exceeds 0.5, this is counter-evidence to a MA(1).

MA(1): Example

- daily return of an AT&T bond from 04/1975 to 12/1975
- the time series has 192 observations
- we are looking at the first-order differences
- an MA(1) model seems to fit the data (\rightarrow next slide)
- since we are looking at a differenced series, this is in fact an ARIMA(0,1,1) model (→ will be discussed later...)

MA(1): Example

MA(q)-Models

The MA(q)-model is defined as follows:

$$X_{_{t}}=E_{_{t}}+\beta_{\!1}E_{_{t-1}}+\beta_{_{2}}E_{_{t-2}}+\ldots+\beta_{_{q}}E_{_{t-q}}$$
 ,

where E_t are i.i.d. innovations (=a white noise process).

The ACF of this process can be computed from the coefficients:

$$\rho(k) = \frac{\sum_{i=0}^{q-k} \beta_i \beta_{i+k}}{\sum_{i=0}^{q} \beta_i^2}, \quad \text{for all } k=1,..., \text{ q with } \beta_0 = 1$$
$$\rho(k) = 0, \quad \text{for all } k>q$$

ACF/PACF of MA(q)

ACF

- the ACF of an MA(q) has a cut-off at lag k=q
- it behaves thus like the PACF of an AR(q)-model

PACF

- the PACF is (again) complicated to determine, but:
- the PACF of an MA(q) has an "exponential decay"
- it behaves thus like the ACF of an AR-model

Applied Time Series Analysis FS 2012 – Week 06 MA(4): Example

 $X_{t} = E_{t} + 0.3 \cdot E_{t-1} + 0.3 \cdot E_{t-2} - 0.2 \cdot E_{t-3} - 0.2 \cdot E_{t-4}, \quad E_{t} \sim N(0,1)$

ARMA(p,q)-Models

An ARMA(p,q)-model combines AR(p) and MA(q):

$$X_{t} = \alpha_{1}X_{t-1} + \dots + \alpha_{p}X_{t-p} + E_{t} + \beta_{1}E_{t-1} + \dots + \beta_{q}E_{t-q}$$

where E_t are i.i.d. innovations (=a white noise process).

It's easier to write an ARMA(p,q) with the characteristic polynom:

$$\Phi(B)X_t = \Theta(B)E_t$$
, where

$$\Phi(z) = 1 - \alpha_1 z - ... \alpha_p z^p$$
 is the cP of the AR-part, and

$$\Theta(z) = 1 - \beta_1 z - ... \beta_q z^q$$
 is the cP of the MA-part

Stationarity/Invertibility of ARMA(p,q)

- both properties are determined by the cP
- the AR-cP determines stationarity
- the MA-cP determines invertibility
- condition: roots of the cP outside of the unit circle
- stationarity: model can be written as a $MA(\infty)$
- invertibility: model can be written as an $AR(\infty)$

True ACF/PACF of an ARMA(2,1)

 $X_{t} = 1.2 \cdot X_{t-1} - 0.8 \cdot X_{t-2} + E_{t} + 0.4 \cdot E_{t-1}, E_{t} \sim N(0,1)$

Marcel Dettling, Zurich University of Applied Sciences

Applied Time Series Analysis FS 2012 – Week 06 Simulated ACF/PACF of an ARMA(2,1)

 $X_t = 1.2 \cdot X_{t-1} - 0.8 \cdot X_{t-2} + E_t + 0.4 \cdot E_{t-1}, E_t \sim N(0,1)$

Properties of ACF/PACF in ARMA(p,q)

р
decay
r k>p
r k>p

→ all linear time series processes can be approximated by an ARMA(p,q) with possibly large p,q. They are thus are very rich class of models.

Fitting ARMA(p,q)

What needs to be done?

- Achieve stationarity
 → transformations, differencing, modeling, ...
- 2) Choice of the order \rightarrow determining (p,q)
- 3) **Parameter estimation** \rightarrow Estimation of α , β , μ , σ_E^2
- 4) Residual analysis
 → if necessary, repeat 1), and/or 2)-4)

Identification of the Order (p,q)

Please note:

- We only have one single realization of the time series with finite length.
- The plots (etc.) we base the order choice on are not "facts", but are estimations with uncertainty.
- This holds especially for the ACF/PACF plots.
- Every ARMA(p,q) can be written as $AR(\infty)$ or $MA(\infty)$
- \rightarrow There is usually >1 model that describes the data well.

ARMA(p,q)-Modeling

Parameter Estimation

For parameter estimation with AR(p) models, we had 4 choices:

- a) Regression
- b) Yule-Walker
- c) Maximum-Likelihood
- d) Burg's Algorithm

For ARMA(p,q) models, only two options are remaining, and both of them require numerical optimization:

Conditional Sum of Squares Maximum-Likelihood

Conditional Sum of Squares

Idea: This is an iterative approach where the parameters are determined such that the sum of squared errors (between observations and fitted values) are minimal.

$$S(\hat{\beta}_1, \dots, \hat{\beta}_q) = \sum_{t=1}^n \hat{E}_t^2 = \sum_{t=1}^n (X_t - (\hat{\beta}_1 \hat{E}_{t-1} - \dots - \hat{\beta}_1 \hat{E}_{t-q})^2$$

This requires starting values which are chosen as:

$$\hat{E}_0 = 0, \ \hat{E}_{-1} = 0, \ ..., \ \hat{E}_{1-q} = 0$$

A numerical search is used to find the parameter values that minimize the entire conditional sum of squares. They also serve as starting values for MLE.

Maximum-Likelihood-Estimation

- **Idea**: Determine the parameters such that, given the observed time series $x_1, ..., x_n$, the resulting model is the most plausible (i.e. the most likely) one.
- → This requires the choice of a probability distribution for the time series $X = (X_1, ..., X_n)$

Maximum-Likelihood-Estimation

If we assume the ARMA(p,q)-model

$$X_{t} = \alpha_{1}X_{t-1} + \dots + \alpha_{p}X_{t-p} + E_{t} + \beta_{1}E_{t-1} + \dots + \beta_{q}E_{t-q}$$

and i.i.d. normally distributed innovations

$$E_t \sim N(0, \sigma_E^2)$$

the time series vector has a multivariate normal distribution

$$X = (X_1, ..., X_n) \sim N(\mu \cdot \underline{1}, V)$$

with covariance matrix V that depends on the model parameters $lpha, \beta$ and $\sigma_{\rm E}^2$.

Maximum-Likelihood-Estimation

We then maximize the density of the multivariate normal distribution with respect to the parameters

$$lpha$$
, eta , μ and $\sigma^2_{_E}$.

The observed x-values are hereby regarded as fixed values.

This is a highly complex non-linear optimization problem that requires sophisticated algorithms and starting values which are usually provided by CSS (at least that's the default in R's arima()).

Maximum-Likelihood-Estimation

- > r.Pmle <- arima(d.Psqrt,order=c(2,0,0),include.mean=T)</pre>
- > r.Pmle

Call: arima(x=d.Psqrt, order=c(2,0,0), include.mean=T)

Coefficients:

	ar1	ar2	intercept			
	0.275	0.395	3.554			
s.e.	0.107	0.109	0.267			
sigma	^2 = 0.	6: log	likelihood =	-82.9,	aic = 1	73.8

MLE: Remarks

- The MLE approach would work for any distribution. However, for innovation distributions other than Gaussian, the joint distribution might be "difficult".
- For "reasonable" deviations from the normality assumption, MLE still yields "good" results.
- Besides the parameter estimates, we also obtain an estimate of their standard error
- Other software packages such as for example SAS don't rely on MLE, but use CSS, which is in spirit similar to Burg's algorithm.

Applied Time Series Analysis FS 2012 – Week 06 Douglas Fir: Original Data

Applied Time Series Analysis FS 2012 – Week 06 Douglas Fir: Differenced Series

Applied Time Series Analysis FS 2012 – Week 06 Douglas Fir: Differenced Series

Applied Time Series Analysis FS 2012 – Week 06 Residuals of MA(1)

Applied Time Series Analysis FS 2012 – Week 06 Residuals of ARMA(1,1)

Another Example: Fitting ARMA(p,q)

What needs to be done?

- Achieve stationarity
 → transformations, differencing, modeling, ...
- 2) Choice of the order \rightarrow determining (p,q), plus integration order d for ARIMA
- 3) Parameter estimation \rightarrow ML-estimation of α , β , μ , σ_E^2
- 4) Residual analysis
 → if necessary, repeat 1), and/or 2)-4)

The Series, ACF and PACF

Model 1: AR(4)

> fit1

Call: arima(x = my.ts, order = c(4, 0, 0))

Coefficients:

	arl	ar2	ar3	ar4	intercept
	1.5430	-1.2310	0.7284	-0.3000	0.6197
s.e.	0.0676	0.1189	0.1189	0.0697	0.2573

sigma^2=0.8923, log likelihood=-273.67, aic=559.33

Residuals of Model 1: AR(4)

Model 2: MA(3)

> fit2

Call: arima(x = my.ts, order = c(0, 0, 3))

Coefficients:

	mal	ma2	ma3	intercept
	1.5711	1.0056	0.3057	0.6359
s.e.	0.0662	0.0966	0.0615	0.2604

sigma^2=0.9098, log likelihood=-275.64, aic=561.29

Residuals of Model 2: MA(3)

Model 3: ARMA(1,1)

> fit3

Call: arima(x = my.ts, order = c(1, 0, 1))

Coefficients:

	arl	mal	intercept
	0.6965	0.7981	0.6674
s.e.	0.0521	0.0400	0.3945

sigma^2=0.9107, log likelihood=-275.72, aic=559.43

Residuals of Model 3: ARMA(1,1)

Model 4: ARMA(2,1)

> fit4

Call: arima(x = my.ts, order = c(2, 0, 1))

Coefficients:

	arl	ar2	mal	intercept
	0.8915	-0.2411	0.7061	0.6420
s.e.	0.0855	0.0856	0.0625	0.3208

sigma^2=0.8772, log likelihood=-272.01, aic=554.02

Residuals of Model 4: ARMA(2,1)

Model 5: ARMA(4,1)

> fit5

Call: arima(x = my.ts, order = c(4, 0, 1))

Coefficients:

ar1ar2ar3ar4ma1intercept1.0253-0.46930.2190-0.12800.57330.6312s.e.0.17250.26580.21240.10620.16530.2930

sigma^2=0.8708, log likelihood=-271.3, aic = 556.59

Residuals of Model 5: ARMA(4,1)

Summary of the Order Choice Problem

- Regarding ACF/PACF, all 5 models are plausible
 → ARMA(2,1) would be my favorite
- The residuals look fine (i.e. independent) for all 5 models
 → no further evidence for a particular model
- Regarding AIC, the ARMA models do better
 → ARMA(2,1) would be my favorite
- Significance of the coefficients
 → excludes the ARMA(4,1) as the last contender

Best choice: ARMA (2,1)