Zurich University of Applied Sciences

#### Applied Time Series Analysis FS 2012 – Week 04



Marcel Dettling

Institute for Data Analysis and Process Design

**Zurich University of Applied Sciences** 

marcel.dettling@zhaw.ch

http://stat.ethz.ch/~dettling

ETH Zürich, March 12, 2012

### Where are we?

For much of the rest of this course, we will deal with (weakly) stationary time series. They have the following properties:

- $E[X_t] = \mu$
- $Var(X_t) = \sigma^2$
- $Cov(X_t, X_{t+h}) = \gamma_h$

If a time series is non-stationary, we know how to decompose into deterministic and stationary, random part.

#### Our forthcoming goals are:

- understanding the dependency in a stationary series
- modeling this dependency and generate forecasts

### **Autocorrelation**

The aim of this section is to explore the dependency structure within a time series.

#### **Def:** Autocorrelation

$$\rho(k) = Cor(X_{t+k}, X_t) = \frac{Cov(X_{t+k}, X_t)}{\sqrt{Var(X_{t+k}) \cdot Var(X_t)}}$$

The autocorrelation is a dimensionless measure for the amount of linear association between the random variables collinearity between the random variables  $X_{t+k}$  and  $X_t$ .

### Interpretation of Autocorrelations

How to interpret autocorrelation from a practical viewpoint?

 $\rightarrow$  We e.g. assume that  $\rho(k) = 0.7$ .

- → Then, the square of the correlation coefficient, i.e.  $\rho(k)^2 = 0.49$ , , is the percentage of variability explained by the linear association between  $X_t$  and its respective predecessor  $X_{t-1}$ .
- → Here in our example,  $X_{t-1}$  accounts for roughly 49% of the variability observed in random variable  $X_t$ .
- → From this we can also conclude that any  $\rho(k) < 0.4$  is not a very strong association, i.e. has small effect.

### Autocorrelation Estimation: lag k

How does it work?

 $\rightarrow$  Plug-in estimate with sample covariance

$$\hat{\rho}(k) = \frac{\hat{\gamma}(k)}{\hat{\gamma}(0)} = \frac{Cov(X_t, X_{t+k})}{Var(X_t)}$$

where

$$\hat{\gamma}(k) = \frac{1}{n} \sum_{s=1}^{n-k} (x_{s+k} - \overline{x})(x_s - \overline{x})$$

and 
$$\overline{x} = \frac{1}{n} \sum_{t=1}^{n} x_t$$

### Application: Variance of the Arithmetic Mean

**Practical problem:** we need to estimate the mean of a realized/ observed time series. We would like to attach a standard error.

- If we estimate the mean of a time series without taking into account the dependency, the standard error will be flawed.
- This leads to misinterpretation of tests and confidence intervals and therefore needs to be corrected.
- The standard error of the mean can both be over-, but also underestimated. This depends on the ACF of the series.
- → For the derivation, see the blackboard...

### Outlook to AR(p)-Models

Suppose that  $E_t$  is an i.i.d random process with zero mean and variance  $\sigma_E^2$ . Then a random process  $X_t$  is said to be an autoregressive process of order p if

$$X_{t} = \alpha_{1}X_{t-1} + \dots + \alpha_{p}X_{t-p} + E_{t}$$

This is similar to a multiple regression model, but  $X_t$  is regressed not on independent variables, but on past values of itself. Hence the term auto-regressive.

We use the abbreviation **AR(p)**.

### Partial Autocorrelation Function (PACF)

The  $k^{th}$  partial autocorrelation  $\pi_k$  is defined as the correlation between  $X_{t+k}$  and  $X_t$ , given all the values in between.

$$\pi_{k} = Cor(X_{t+k}, X_{t} \mid X_{t+1} = x_{t+1}, \dots, X_{t+k-1} = x_{t+k-1})$$

#### Interpretation:

- Given a time series  $X_t$ , the partial autocorrelation of lag k, is the autocorrelation between  $X_t$  and  $X_{t+k}$  with the linear dependence of  $X_{t+1}$  through to  $X_{t+k-1}$  removed.
- One can draw an analogy to regression. The ACF measures the "simple" dependence between  $X_t$  and  $X_{t+k}$ , whereas the PACF measures that dependence in a "multiple" fashion.

### Facts About the PACF and Estimation

We have:

•  $\pi_1 = \rho_1$ 

• 
$$\pi_2 = \frac{\rho_2 - \rho_1^2}{1 - \rho_1^2}$$
 for AR(1) models, we have  $\pi_2 = 0$ ,  
because  $\rho_2 = \rho_1^2$ 

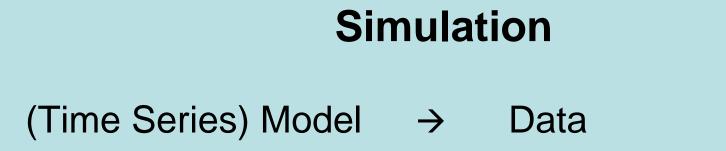
• For estimating the PACF, we utilize the fact that for any AR(p) model, we have:  $\pi_p = \alpha_p$  and  $\pi_k = 0$  for all k > p.

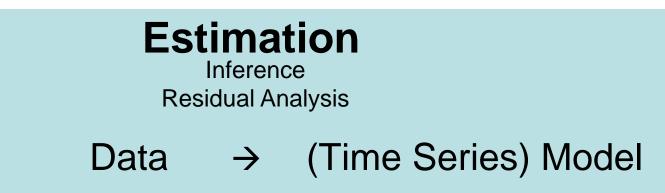
Thus, for finding  $\hat{\pi}_p$ , we fit an AR(p) model to the series for various orders p and set  $\hat{\pi}_p = \hat{\alpha}_p$ 

### Facts about the PACF

- Estimation of the PACF is implemented in R.
- The first PACF coefficient is equal to the first ACF coefficient. Subsequent coefficients are not equal, but can be derived from each other.
- For a time series generated by an AR(p)-process, the  $p^{th}$ PACF coefficient is equal to the  $p^{th}$  AR-coefficient. All PACF coefficients for lags k > p are equal to 0.
- Confidence bounds also exist for the PACF.

### **Basics of Modeling**





### A Simple Model: White Noise

A time series  $(W_1, W_2, ..., W_n)$  is a White Noise series if the random variables  $W_1, W_2, ...$  are independent and identically distributed with mean zero.

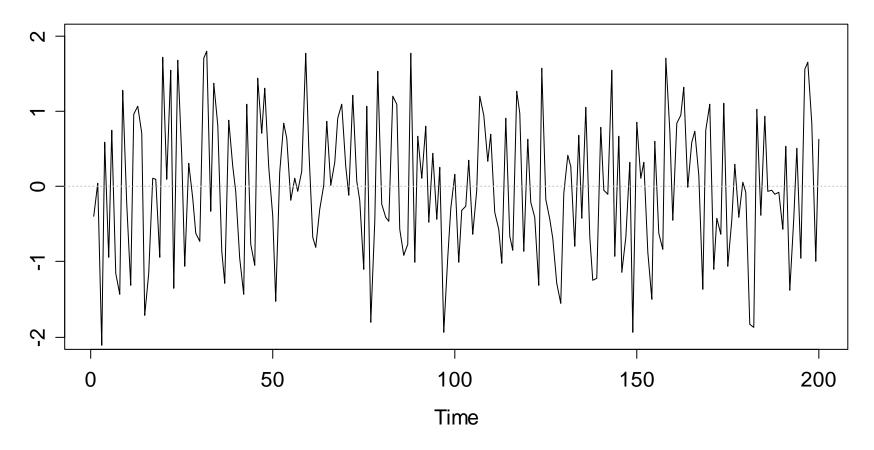
This imples that all variables  $W_t$  have the same variance  $\sigma_w^2$ , and

$$Cov(W_i, W_j) = 0$$
 for all  $i \neq j$ .

Thus, there are no autocorrelations either:  $\rho_k = 0$  for all  $k \neq 0$ .

If in addition, the variables also follow a Gaussian distribution, i.e.  $W_t \sim N(0, \sigma_w^2)$ , the series is called Gaussian White Noise.

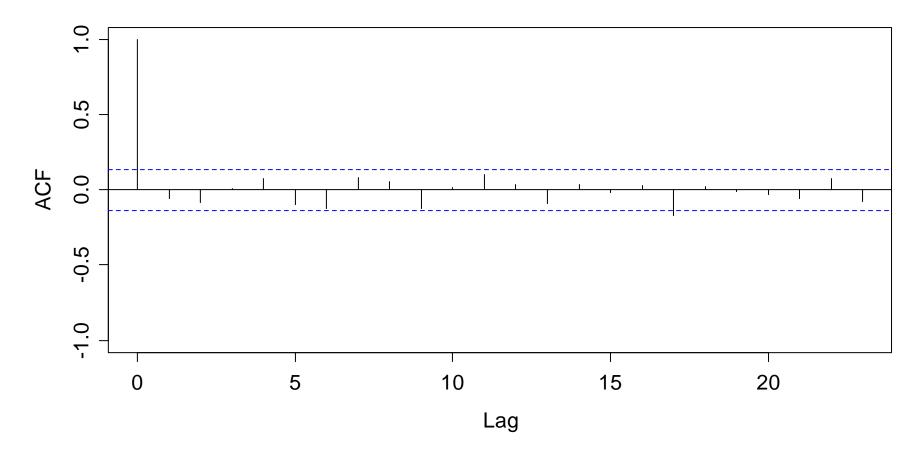
### **Example: Gaussian White Noise**



**Gaussian White Noise** 

### **Example: Gaussian White Noise**

**ACF of Gaussian White Noise** 



### **Time Series Modeling**

There is a wealth of time series models

- AR autoregressive model
- MA moving average model
- ARMA combination of AR & MA
- ARIMA non-stationary ARMAs
- SARIMA seasonal ARIMAs
- ...

## Autoregressive models are among the simplest and most intuitive time series models that exist.

### **Basic Idea for AR-Models**

We have a time series where, resp. we model a time series such that the random variable  $X_t$  depends on a linear combination of the preceding ones  $X_{t-1}, ..., X_{t-p}$ , plus a "completely independent" term called innovation  $E_t$ .

$$X_{t} = \alpha_{1}X_{t-1} + \dots + \alpha_{p}X_{t-p} + E_{t}$$

*p* is called the order of the AR-model. We write AR(p). Note that there are some restrictions to  $E_t$ .

### AR(1)-Model

The simplest model is the AR(1)-model

 $X_t = \alpha_1 X_{t-1} + E_t$ 

where

$$E_t$$
 is i.i.d with  $E[E_t] = 0$  and  $Var(E_t) = \sigma_E^2$ 

Under these conditions,  $E_t$  is a white noise process, and we additionally require **causality**, i.e.  $E_t$  being an **innovation**:

 $E_t$  is independent of  $X_s$ , s < t

### Causality

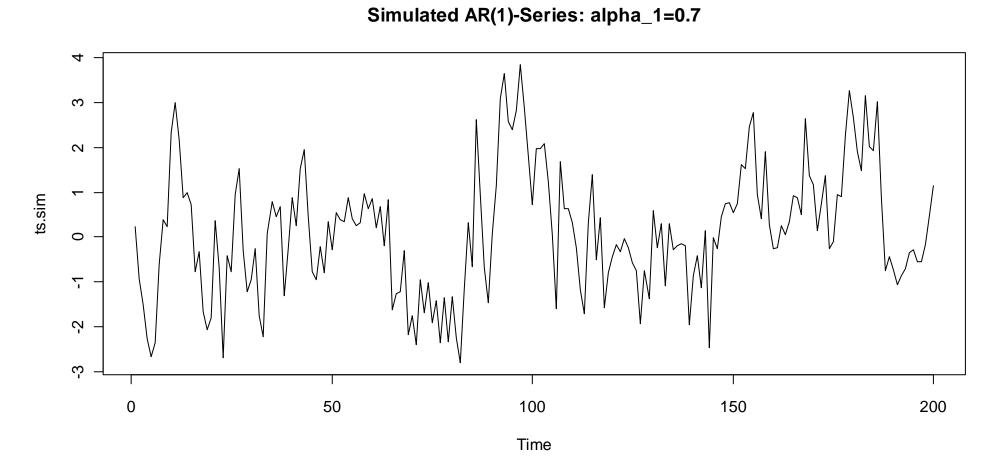
Note that causality is an important property that, despite the fact that it's missing in much of the literature, is necessary in the context of AR-modeling:

 $E_t$  is an innovation process  $\rightarrow E_t$  all are independent

All  $E_t$  are independent

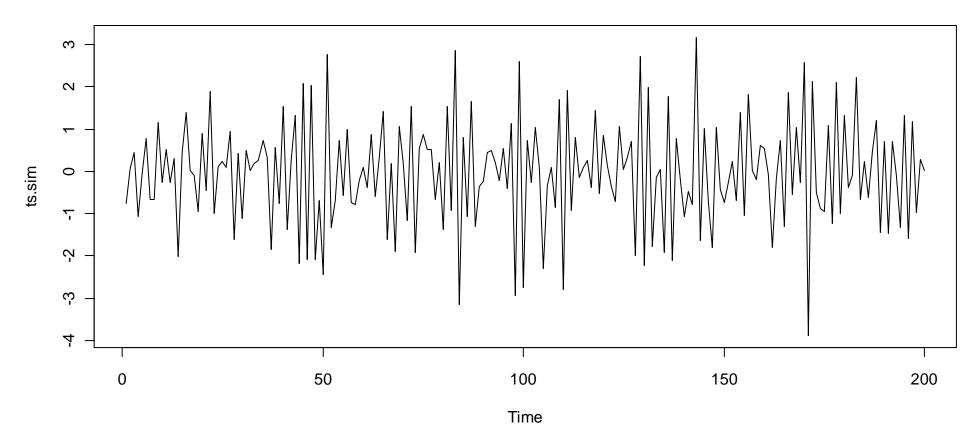
 $\rightarrow E_t \text{ all are independent}$   $\overleftarrow{E_t} \text{ is an innovation}$ 

### Simulated AR(1)-Series



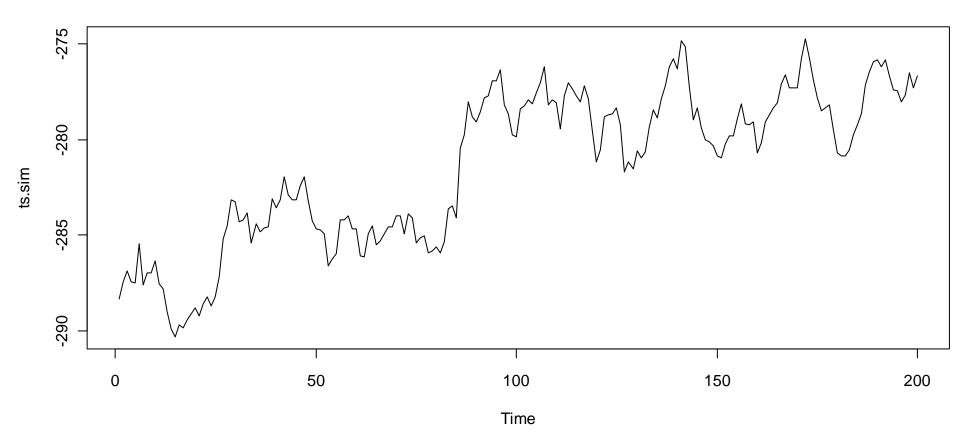
### Simulated AR(1)-Series





### Simulated AR(1)-Series

Simulated AR(1)-Series: alpha\_1=1



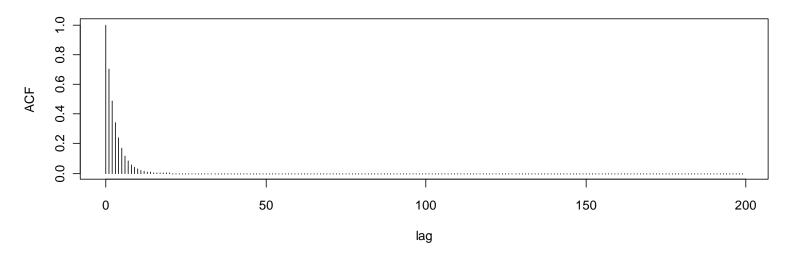
### Moments of the AR(1)-Process

Some calculations with the moments of the AR(1)-process give insight into stationarity and causality

Proof: See blackboard...

#### **Theoretical vs. Estimated ACF**

True ACF of AR(1)-process with alpha\_1=0.7

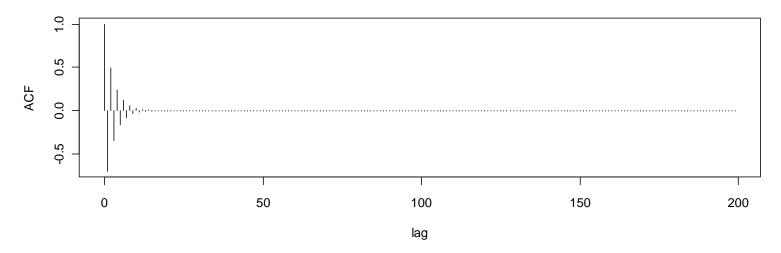


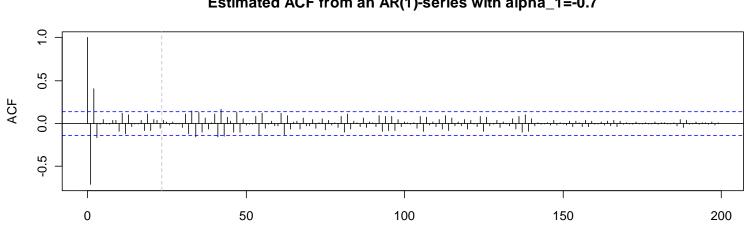
Estimated ACF from an AR(1)-series with alpha\_1=0.7

23

#### Theoretical vs. Estimated ACF

True ACF of AR(1)-process with alpha\_1=-0.7





Lag

Estimated ACF from an AR(1)-series with alpha\_1=-0.7

### AR(p)-Model

We here introduce the AR(p)-model

$$X_{t} = \alpha_{1}X_{t-1} + \dots + \alpha_{p}X_{t-p} + E_{t}$$

where again

$$E_t$$
 is i.i.d with  $E[E_t] = 0$  and  $Var(E_t) = \sigma_E^2$ 

Under these conditions,  $E_t$  is a white noise process, and we additionally require **causality**, i.e.  $E_t$  being an **innovation**:

$$E_t$$
 is independent of  $X_s$ ,  $s < t$ 

### Mean of AR(p)-Processes

As for AR(1)-processes, we also have that:

 $(X_t)_{t \in T}$  is from a stationary AR(p) =>  $E[X_t] = 0$ 

- Thus: If we observe a time series with  $E[X_t] = \mu \neq 0$ , it cannot be, due to the above property, generated by an AR(p)process
- But: In practice, we can always de-"mean" (i.e. center) a stationary series and fit an AR(p) model to it.

## Yule-Walker-Equations

#### On the blackboard...

We observe that there exists a linear equation system built up from the AR(p)-coefficients and the ACF-coefficients of up to lag p. These are called Yule-Walker-Equations.

We can use these equations for fitting an AR(p)-model:

Estimate the ACF from a time series
Plug-in the estimates into the Yule-Walker-Equations
The solution are the AD(n) coefficients

3) The solution are the AR(p)-coefficients

## Stationarity of AR(p)-Processes

We require:

- 1)  $E[X_t] = \mu = 0$
- 2) Conditions on  $(\alpha_1, ..., \alpha_p)$

All (complex) roots of the characteristic polynom

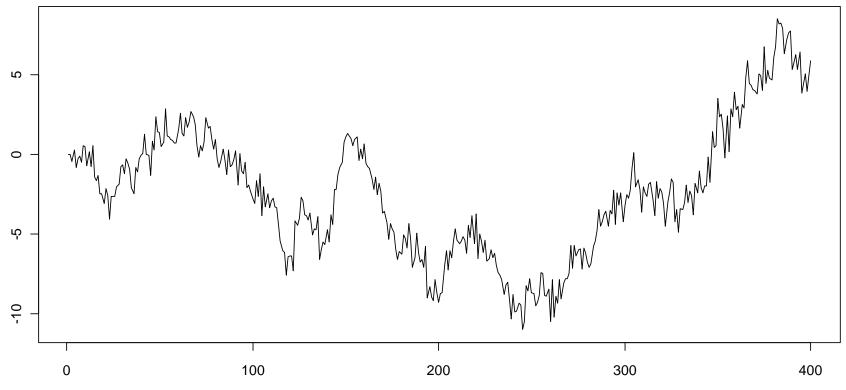
$$1 - \alpha_1 z - \alpha_2 z^2 - \alpha_p z^p = 0$$

need to lie outside of the unit circle. This can be checked with R-function polyroot()

### A Non-Stationary AR(2)-Process

 $X_{t} = \frac{1}{2}X_{t-1} + \frac{1}{2}X_{t-2} + E_{t}$  is not stationary...

Non-Stationary AR(2)



Marcel Dettling, Zurich University of Applied Sciences

## Fitting AR(p)-Models

This involves 3 crucial steps:

1) Is an AR(p) suitable, and what is p?

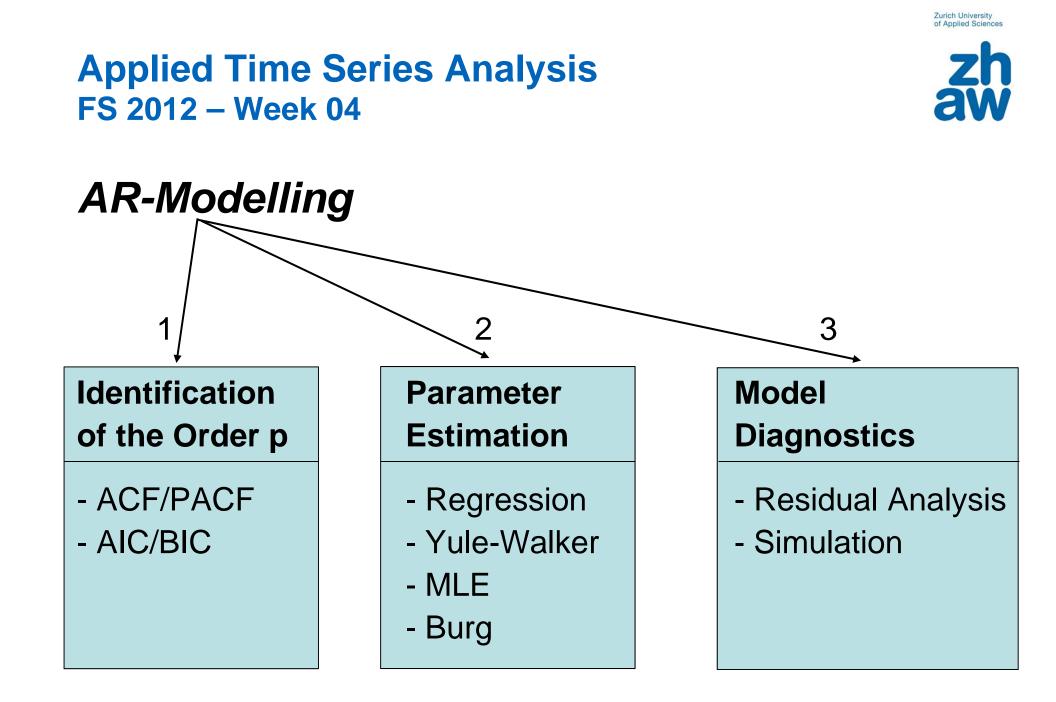
- will be based on ACF/PACF-Analysis

#### 2) Estimation of the AR(p)-coefficients

- Regression approach
- Yule-Walker-Equations
- and more (MLE, Burg-Algorithm)

#### 3) Residual Analysis

- to be discussed





## Is an AR(p) suitable, and what is p?

- For all AR(p)-models, the **ACF** decays exponentially quickly, or is an exponentially damped sinusoid.
- For all AR(p)-models, the PACF is equal to zero for all lags k>p.

If what we observe is fundamentally different from the above, it is unlikely that the series was generated from an AR(p)-process. We thus need other models, maybe more sophisticated ones.

# Remember that the sample ACF has a few peculiarities and is tricky to interpret!!!

#### Applied Time Series Analysis FS 2012 – Week 04 Model Order for sqrt(purses)



**Zurich University** 

#### ക ŝ series 4 $\sim$ < ► 1971 1972 1968 1969 1970 1973 Time 0 part. Autokorr -0,2 , 0,2 , Auto-Korr. 4 Ō N q 15 5 10 5 10 15 0 1 Lag k Lag k

Marcel Dettling, Zurich University of Applied Sciences

#### Applied Time Series Analysis FS 2012 – Week 04 Model Order for log(lynx)



**Zurich University** 

