Measuring distances

Applied multivariate statistics – Spring 2012

Overview

- Distances between samples or variables?
- Scaling gives equal weight to all variables
- Dissimilarity is a generalization of Distance
- Dissimilarity for different data types:
 - interval scaled
 - binary (symmetric / asymmetric)
 - nominal
 - ordinal
 - mixed

Different perspective of one thing

- Data context (e.g. biologist, doctor, ...) determines distance measure, not statistician
- In practice: Statistician has to offer choices with pros and cons

Between samples or variables?

Rest of this lecture

X ₁	X ₂	X ₃
2.5	3.4	1.6
4.3	5.3	5.3
6.3	9.4	8.9

Use correlation

$$d(X_i, X_j) = \frac{1 - Cor(X_i, X_j)}{2}$$

Properties of distance measures

- D1: d(i,j) >= 0
- D2: d(i,i) = 0
- D3: d(i,j) = d(j,i)
- D4: d(i,j) <= d(i,h) + d(h,j) (triangle inequality)</p>

Examples

Euclidean distance:

 $d(i,j) = \sqrt{(x_{i1} - x_{j1})^2 + (x_{i2} - x_{j2})^2 + \dots + (x_{ip} - x_{jp})^2}$

- Manhattan distance: $d(i,j) = |x_{i1} - x_{j1}| + |x_{i2} - x_{j2}| + ... + |x_{ip} - x_{jp}|$
- Maximum distance:

$$d(i,j) = (|x_{i1} - x_{j1}|^{\infty} + |x_{i2} - x_{j2}|^{\infty} + \dots + |x_{ip} - x_{jp}|^{\infty})^{\frac{1}{\infty}} = max_{k=1}^{p}|x_{ik} - x_{jk}|$$

Special cases of Minkowski distance:

$$d(i,j) = (|x_{i1} - x_{j1}|^q + |x_{i2} - x_{j2}|^q + \dots + |x_{ip} - x_{jp}|^q)^{\frac{1}{q}}$$

Intuition for Minkowski Distance

- p: Index of Minkowski Distance
- Points on the line have equal Minkowski Distance from center

Distance metrics in practice

- Euclidean Distance: By far most common Our intuitive notion of distance
- Manhattan Distance: Sometimes seen
- Rest: Very rare

To scale or not to scale...

age [years]

Age

35

40

35

40

[years]

Height

[feet]

6.232

6.232

5.248

5.248

Example 1: scaled

4 persons

Person	Age [scaled]	Height [scaled]
А	-0.87	0.87
В	0.87	0.87
С	-0.87	-0.87
D	0.87	-0.87

No subgroups anymore

Example 2

4 objects

Object	x1	x2
А	13.3	38.0
В	12.4	45.4
С	-122.7	45.6
D	-122.4	37.7

EITH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich	N	eed	knc	wledge
	0	t COI	ntex	t Č

Example 2

4 objects

Object	Long.	Lat.
Palermo	13.3	38.0
Venice	12.4	45.4
Portland	-122.7	45.6
San Francisco	-122.4	37.7

To scale or not to scale...

- If variables are not scaled
 - variable with largest range has most weight
 - distance depends on scale
- Scaling gives every variable equal weight
- Similar alternative is re-weighing: $d(i,j) = \sqrt{w_1(x_{i1} - x_{j1})^2 + w_2(x_{i2} - x_{j2})^2 + ... + w_p(x_{ip} - x_{jp})^2}$
- Scale if,
 - variables measure different units (kg, meter, sec,...)
 - you explicitly want to have equal weight for each variable
- Don't scale if units are the same for all variables
- Most often: Better to scale.

Dissimilarities

More flexible than distances

D1: d(i,j) >= 0

D2: d(i,i) = 0

D3: d(i,j) = d(j,i)

	Μ	Ρ	Н
Μ	10	1	8
Ρ		10	5
н			10

- Example: What do you think, how different are the topics Mathematics, Physics, History on a scale from 0 to 10 (very different)?
- Could also work with "Similarities" (e.g. 1-Dissimilarity)

Dissimilarities for different data types

- Interval-scaled:
 - continuous, positive or negative
 - examples: height, weight, temperature, age, cost,... Difference of values has a fixed interpretation
 - use metrics we just discussed
- Ratio-scaled:
 - continuous, positive
 - example: concentration

Ratio of values has fixed interpretation

- use log-transformation, then metrics we just discussed

R:

- Function "dist" in base distribution (includes Minkowski)
- Function "daisy" in package "cluster"

Binary symmetric: Simple matching coefficient

- "Symmetric": No clear asymmetry between group 0 and group 1
- Example: Gender, Right-handed
 Two right-handed people are as similar as two left-handed
 people
- Counter-example: Having AIDS, being Nobel Laureate Two Nobel Laureates are more similar than two non-Nobel-Laureates (e.g. Uni Prof at Harvard without Nobel Prize and baby from Sudan)

Binary symmetric: Simple matching coefficient

Simple matching coefficient

$$d(i,j) = \frac{b+c}{a+b+c+d}$$

Proportion of variables, in which people disagree

Binary asymmetric: Jaccard distance

Nominal: Simple matching coefficient

Simple matching coefficient

- mm: Number of variables in which object i and j mismatch
- p: Number of variables

$$d(i,j) = \frac{mm}{p}$$

Proportion of variables, in which people disagree

Ordinal: Normalized ranks

- Rank outcome of variable f=1,2,...,M: r_{if}
- Normalize: $z_{if} = \frac{r_{if}-1}{M_f-1}$
- Treat z_{if} as interval-scaled

Mixed: Gower Distance

- Idea: Use distance measure between 0 and 1 for each variable: d^(f)_{ij}
- Aggregate: $d(i,j) = \frac{1}{p} \sum_{i=1}^{p} d_{ij}^{(f)}$
- Binary (a/s), nominal: Use methods discussed before
- Interval-scaled: d^(f)_{ij} = ^{|x_{if}-x_{jf}|}_{R_f}
 x_{if}: Value for object i in variable f
 R_f: Range of variable f for all objects
- Ordinal: Use normalized ranks; then like interval-scaled based on range

Concepts to know

- Effect of scaling / no scaling
- Distance measures for
 - interval scaled
 - binary (s/a)
 - nominal
 - categorical
 - mixed data

R functions to know

dist, daisy