Dealing with missing values – part 1

Applied Multivariate Statistics – Spring 2012

Overview

- Bad news: Data Processing Inequality
- Types of missing values: MCAR, MAR, MNAR
- Methods for dealing with missing values:
 - Case-wise deletion
 - Single Imputation
 - (- Multiple Imputation in Part 2)

Information Theory 101

Entropy: Amount of uncertainty

 $H(X) = -\sum_{x \in X} p(x) \log(p(x))$

- Mutual Information btw. X and Y
 - What do you learn about X, if you know Y?
 - Decrease in entropy of X, if Y is known

I(X,Y) = H(X) - H(X|Y)

Information Theory 101: Data Processing Inequality

For a Markov Chain: $I(X, Z) \cdot I(X, Y)$

Postprocessing can never add information

Natur

Postprocessing can never add information

Information Theory on dealing with missing values

- The information is lost!
 You cannot retrieve it just from the data!
- Try to avoid missing values where possible!
- When dealing with the data, don't waste even more information!

Use clever methods!

Get an overview of missing values in data

R: Function "md.pattern" in package "mice"

Types of missing values

- Missing Completely At Random (MCAR)
- Missing At Random (MAR)
- Missing Not At Random (MNAR)

OK PROBLEM

Distribution of Missingness

Complete data $\mathrm{Y}_{\mathrm{com}}$

Α	В	С
1.3	2.5	6.3
2.0	3.6	5.4
1.6	2.3	4.3

Some values are missing

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Example: Blood Pressure

- 30 participants in January (X) and February (Y)
- MCAR: Delete 23 Y values randomly
- MAR: Keep Y only where X > 140 (follow-up)
- MNAR: Record Y only where Y > 140 (test everybody again but only keep values of critical participants)

	Y			
X	Complete	MCAR	MAR	MNAR
	Data for in	ndividual par	ticipants	
169	148	148	148	148
126	123	—	_	_
132	149	—	_	149
160	169	—	169	169
105	138	—	_	_
116	102	_	_	_
125	88	_	_	_
112	100	_	_	_
133	150	_	_	150
94	113	_	_	_
109	96		_	_
109	78	_	_	_
106	148	_	_	148
176	137	_	137	_
128	155	_	_	155
131	131	_	_	_
130	101	101	_	_
145	155	_	155	155
136	140	_	_	_
146	134	_	134	_
111	129	_	_	_
97	85	85	_	_
134	124	124	_	_
153	112	_	112	_
118	118	_	_	
137	122	122	_	_
101	119	_	_	_
103	106	106	_	
78	74	74	_	
151	113		113	_

Distribution of Missingness

- MCAR $P(R|Y_{com}) = P(R)$ Missingness does not depend on data
- MAR $P(R|Y_{com}) = P(R|Y_{obs})$ Missingness depends only on observed data
- MNAR $P(R|Y_{com}) = P(R|Y_{obs})$ Missingness depends on missing data

Distribution of Missingness: Intuition

Problems in practice

- Type is not testable.
- Pragmatic:
 - Use methods which hold in MAR
 - Don't use methods which hold only in MCAR

Dealing with missing values

- Complete-case analysis valid for MCAR
- Single Imputation valid for MAR
- (Multiple Imputation valid for MAR)

Complete-case analysis

- Delete all rows, that have a missing value
- Problem:
 - waste of information; inefficient
 - introduces bias if MAR
- OK, if 95% or more complete cases
- R: Function "complete.cases" in base distribution

Α	В	С	D
NA	3	4	6
3	2	3	NA
2	NA	5	4
5	7	NA	5
6	NA	9	2

- 25% missing values
- ZERO complete cases
 Complete-case analysis is useless

Single Imputation

- Unconditional Mean
- Unconditional Distribution
- Conditional Mean
- Conditional Distribution

Easy / Inaccurate

Hard / Accurate

Unconditional Mean: Idea

Α	В	С	Mean = 4.75	Α	В	С
2.1	6.2	3.2		2.1	6.2	3.2
3.4	3.7	6.3		3.4	3.7	6.3
4.1	4.5	NA		4.1	4.5	4.75

Unconditional Distribution: Hot Deck Imputation

Α	В	С
2.1	6.2	3.2
3.4	3.7	6.3
4.1	4.5	NA

Α	В	С
2.1	6.2	3.2
3.4	3.7	6.3
4.1	4.5	6.3

Conditional Mean: E.g. Linear Regression

Estimate Im(C ~ A + B) or something similar

Apply to predict C

Conditional Mean: E.g. Linear Regression

Α	В	С	linear regression	Α	В	С
2.1	6.2	3.2		2.1	6.2	3.2
3.4	3.7	6.3		3.4	3.7	6.3
4.1	4.5	NA		4.1	4.5	8

Conditional Distribution: E.g. Linear Regression

- Start with Conditional Mean as before
- Add randomly sampled residual noise

Α	В	С	PLUS NOISE	Α	В	С
2.1	6.2	3.2		2.1	6.2	3.2
3.4	3.7	6.3		3.4	3.7	6.3
4.1	4.5	NA		4.1	4.5	8.3

Prediction of

EITH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Being pragmatic:

Conditional Mean Imputation with missForest

- Use Random Forest (see later lecture) instead of linear regression
- Good trade-off between ease of use / accuracy
- Works with mixed data types (categorical, continuous and mixed)
- Estimates the quality of imputation OOBerror: Imputation error as percentage of total variation close to 0 - good close to 1 - bad

Idea of missForest

Α	В	SEX
2.1	NA	Μ
3.4	3.7	F
4.1	4.5	NA

Idea of missForest

Α	В	SEX
2.1	3.0	Μ
3.4	3.7	F
4.1	4.5	F

Fill in random values

Idea of missForest: Step 1

Α	В	SEX
2.1	3.0	Μ
3.4	3.7	F
4.1	4.5	F

Apply $B \sim A + SEX$

Learn B ~ A + SEX with Random Forest

Idea of missForest: Step 1

Α	В	SEX
2.1	3.2	Μ
3.4	3.7	F
4.1	4.5	F

Apply B ~ A + SEX \rightarrow update value

Learn B ~ A + SEX with Random Forest

Idea of missForest: Step 2

Learn SEX ~ A + B with Random Forest Apply SEX ~ A + B \rightarrow update

Repeat steps 1 & 2 until some stopping criterion is reached (no real convergence; stop if updates start getting bigger again)

Measuring quality of imputation

Normalized Root Mean Squared Error (NRMSE):

$$NRMSE = \sqrt{\frac{mean(Y_{com} - Y_{imputed})^2}{var(Y_{com})}}$$

 Proportion of falsely classified entries (PFC) over all categorical values

$$PFC = \frac{nmb.\ missclassified}{nmb.\ categorical\ values}$$

Pros and Cons of missForest

- Effects are OK, if MAR holds
- Easily available: Function "missForest" in package "missForest"
- Estimation of imputation error
- Accuracy might be too optimistic, because
 - imputed values have no random scatter
 - model for prediction was taken to be the true model, but it is just an estimate
- Solution: Multiple Imputation

Concepts to know

- Data Processing Inequality and connection to missing values
- Distributions of missing values
- Case-wise deletion
- Methods for Single Imputation
- Idea of missForest; error measures for imputed values

R functions to know

- md.pattern
- complete.cases
- missForest