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(not relevant for exam) 

Can one extract  

causal information from  

high-dimensional observational data? 
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Another example: Smoking 
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Scenario 1: Observe 1000 smoker and count the 

incidence of lung cancer 
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Scenario 1: Observe 1000 smokers and count the 

incidence of lung cancer 

 

 

Scenario 2: Make 1000 random people smoke and 

count the incidence of lung cancer 
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Scenario 1: Observe 1000 smokers and count the 

incidence of lung cancer 

 

 

Scenario 2: Make 1000 random people smoke and 

count the incidence of lung cancer 

 

 

are different. 
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What is a causal effect? 
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CHANGE 

BY 

INTERVENTION 
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How to find causal effects? 

19 Markus Kalisch, ETH Zurich 

Two groups of plots: Identical in all aspects (sunlight, water, soil quality, …) 

Practice: Randomized assignment 

Experimental 

Data 
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Experimental 

Data 

Outcome due to fertilizer,  
since everything else was equal 



How to find causal effects? 

Sometimes, randomized controlled experiments are  

 too expensive (gene experiments) 

 too time-consuming (gene experiments) 

 unethical (HIV treatment) 

 just not practical (smoking). 
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If experiment is impossible… 
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Observational 

Data 



… observe fields of two farmers. 
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Observational 
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… observe fields of two farmers. 
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Observational 

Data 

Groups not guaranteed  

to be identical in all aspects (sunlight, water, soil quality, …) 



… observe fields of two farmers. 
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… observe fields of two farmers. 
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Observational 

Data 

Is outcome due to fertilizer? 

We can’t tell ! 



… observe fields of two farmers. 
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Observational 

Data 



… observe fields of two farmers. 
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Observational 

Data 



How to find causal effects? 

 

Can one extract causal information  

from observational data alone? 
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Goal of this talk 

 IDA finds a set of possible causal effects given 

observational data consistently even in high dimensions. 

 One element of the set is the true causal effect; 

 bounds on set are useful 

 Does not replace randomized experiments 

 Helps prioritizing and designing random experiments 
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IDA 



Example 

 Yeast: Saccharomyces cerevisiae 
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Example 
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 What are the causal effects among  

 the thousands of genes? 
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Example 

 Yeast: Saccharomyces cerevisiae 

 What are the causal effects among  

 the thousands of genes? 

 Approach:  

Model gene expression of each gene 

as a random variable. 

 

Can we use the  

joint distribution of gene expression 

to extract  

causal information? 
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Distribution 

oracle 

Here is a distribution 

oracle. 

Now find the causal 

effect! 



Outline in Theory 
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Causal 

Structure 

do-calculus 

with known 

causal structure 

Causal 

effects 

Distribution  

oracle 

IDA 



Pearl’s do-operator 

 Notation for causal intervention 

 

P(Y=y | do(X=x)) 

  

“distribution of Y, if there is an intervention in variable X” 

 Causal effect 

 

C(x’) = d/dx E[Y=y | do(X=x)]|x=x’ 

 

 “change in expected value of Y, if there is an intervention 

 in variable X” 
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do-calculus 

with known 

causal structure 



P(Y=y | X=x) ≠ P(Y=y | do(X=x)) 
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P(rain | wet) = high 

 

P(rain | do(wet)) =  
= P(rain) = 
= low 

Pick a random day: 

do-calculus 

with known 

causal structure 



Pearl’s do-calculus 
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Causal structure 

X 

Y 

Z Rules: 

Expression with “do” 

 

 

Expression without “do” 

Judea Pearl, “Causality”, 2010, Cambridge University Press 

do-calculus 

with known 

causal structure 



Example: Back-door Adjustment 
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Causal structure 

X 

Y 

Z 

Rules 

P(Y=y | do(X=x))  

P(Y=y | X=x, Z=0) * P(Z=0) + 

P(Y=y | X=x, Z=1) * P(Z=1) 

Assume Z is binary (0/1) 

do-calculus 

with known 

causal structure 
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Causal structure 

X 

Y 

Z 

Rules 

P(Y=y | do(X=x))  

P(Y=y | X=x, Z=0) * P(Z=0) + 

P(Y=y | X=x, Z=1) * P(Z=1) 

Assume Z is binary (0/1) 

“do” 

do-calculus 

with known 

causal structure 



Example: Back-door Adjustment 
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Causal structure 

X 

Y 

Z 

Rules 

P(Y=y | do(X=x))  

P(Y=y | X=x, Z=0) * P(Z=0) + 

P(Y=y | X=x, Z=1) * P(Z=1) 

Assume Z is binary (0/1) 

No “do” 

do-calculus 

with known 

causal structure 



Conclusion 1 
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If causal structure is known,  

we can infer causal effects  

from observations 

do-calculus 

with known 

causal structure 



Outline in Theory 
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Causal 

Structure 

do-calculus 

with known 

causal structure 

Causal 

effects 

Distribution  

oracle 

IDA  



Estimate Causal Structure 
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Causal 

Structure 

Oftentimes, causal structure is unknown 

Estimate causal structure 
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Causal Directed Acyclic Graph (DAG) 

X W 

Z Y 

Causal 

Structure 
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Random 
Variables 

Direct 
cause 

Causal 

Structure 



50 Markus Kalisch, ETH Zurich 

Causal Directed Acyclic Graph (DAG) 

X W 

Z Y 

Random 
Variables 

Direct 
cause 

implies 

Conditional independence relations  

among variables 

Causal 

Structure 



Estimate a DAG model 
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DAG encodes independence information 

Independencies 
among 

variables given 
by oracle 

Reverse 
engineering 

DAG 

Causal 

Structure 



Estimate a DAG model 
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DAG encodes independence information 

Independencies 
among 

variables given 
by oracle 

Reverse 
engineering 

DAG 

PC Algorithm 

P. Spirtes, C. Glymour, R. Scheines, “Causation, Prediction, and Search”, 2000, MIT Press 

Causal 

Structure 
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Z Y 

X W 
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Equivalence class: PARTIALLY Directed Acyclic Graph (PDAG) 

Causal 

Structure 
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Ambiguity: Equivalence class 
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Some DAGs describe exactly the same list of independence relations 

X W 

Z Y 

X W 

Z Y 

X W 

Z Y 

Equivalence class: PARTIALLY Directed Acyclic Graph (PDAG) 

PC Algorithm 

finds  

equivalence class 

Causal 

Structure 



Outline in Theory 
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Causal 

Structure 

do-calculus 

with known 

causal structure 

Causal 

effects 

Distribution  

oracle 

IDA  
Up to    

equivalence  
class 



Putting everything together 
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Distribution 

oracle 
PDAG 

DAG 1 

…
 

DAG n 

Effect 1 

Effect n 

Set of causal effects 
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Distribution 
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PDAG 

DAG 1 

…
 

DAG n 

Effect 1 

Effect n 

Set of causal effects 

PC Algorithm 
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Putting everything together 
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Distribution 

oracle 
PDAG 

DAG 1 

…
 

DAG n 

Effect 1 

Effect n 

Set of causal effects 

PC Algorithm 
do-calculus 

Bounds, e.g. 

minimum absolute value 



Outline in Theory 
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Equivalence 
class of 
Causal 

Structure 

Set of 
Causal 

effects 

Distribution  

oracle 

 
 

do-calculus 

with known 

causal structure  IDA 
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I’m busy! 

Find your own 

information on the 

distribution… 



Outline in Theory Practice 
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Equivalence 
class of 

Causal 

Structure 

Set of 

Causal 

effects 

Observational 

data 

IDA 
do-calculus 

with known 

causal structure 
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Equivalence 
class of 

Causal 

Structure 

Set of 

Causal 

effects 

Observational 

data 

IDA 
do-calculus 

with known 

causal structure 

Conditional 

independence tests 

Estimated properties 

of distribution 



Consistency in high-dimensions: Gaussian case 

Estimating graphical models with PC algorithm 
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M. Kalisch, P. Bühlmann, “Estimating high-dimensional DAGs with the PC algorithm”,  

2007, JMLR 8, 613 - 636 

Do-calculus in high dimensions 

M.H. Maathuis, M. Kalisch, P. Bühlmann,  

“Estimating high-dimensional intervention effects from observational data”, 

2009, Annals of Statistics 37, 3133 - 3164 



Consistency in high-dimensions: Gaussian case 

Estimating graphical models with PC algorithm 
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M. Kalisch, P. Bühlmann, “Estimating high-dimensional DAGs with the PC algorithm”,  

2007, JMLR 8, 613 - 636 

Do-calculus in high dimensions 

M.H. Maathuis, M. Kalisch, P. Bühlmann,  

“Estimating high-dimensional intervention effects from observational data”, 

2009, Annals of Statistics 37, 3133 - 3164 

Intervention effects if 

DAG is 

Absent 



Main assumptions & requirements 
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• Gaussian data from unknown causal DAG 

• Faithfulness to this DAG 

• No hidden or selection variables 

• Involves a tuning parameter 



Experimental validation 
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Complex system 

Experiment 

Top causal effects 

Observational data 

Top causal effects 

Agreement ? 

IDA 



Back to the beer: 

 

Experimental 

validation of IDA 

in 

Saccharomyces 

cerevisiae 
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Setting 

 5361 observed genes 

 Experiments: 234 single-gene deletion mutants 

 Observational data: 63 wild-type cultures 

 Very high dimensional: 5361 variables, 63 observations 
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Top 5000  

Causal effects 

Using IDA Top 10% causal 

effects from 

experiment 

Top 5000  

effects using other 

methods 

234 * 5360 effects 
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Top 10% causal 

effects from 

experiment 

234 * 5360 effects 

False  

Positives 

True 

Positives 
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0 1000 2000 3000 4000 

IDA 

Lasso 

Elastic net 

Random 

guessing 

M.H. Maathuis, 

D. Colombo, 

M. Kalisch, 

P. Bühlmann, 

“Predicting 

causal effects 

in large-scale 

systems from 

observational 

data”, 

2010, 

Nature Methods 

7, 247 - 248 
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causal structure 
IDA 



Outline in Theory Practice 
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Structure 
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Summary of assumptions 
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• Data is faithful to an underlying causal DAG 

• No hidden or selection variables 

• Consistent in high-dimensions if 
 - data multivariate normal 
 - some regularity conditions on partial correlations 
 - underlying DAG is sparse 

• For IDA also: All conditional expectations are linear 



R 

 Function “ida” in package “pcalg” 
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