CHAPTER1

Introduction

1 MOTIVATION

Cluster analysis is the art of finding groups in data. To see what is meant by
this, let us look at Figure 1. It is a plot of eight objects, on which two
variables were measured. For instance, the weight of an object might be
displayed on the horizontal axis and its height on the vertical one. Because
this example contains only two variables, we can investigate it by merely
looking at the piot.

In this small data set there are clearly two distinct groups of ohjects,
namely {TIN, TAL, KIM, ILA} and {LIE, JAC, PET, LEO}. Such groups
are called chlusters, and to discover them is the aim of cluster analysis.
Basically, one wants to form groups in such a way that objects in the same
group are similar to each other, whereas objects in different groups are as
dissimilar as possible.

The classification of similar objects into groups is an important human
activity. In everyday life, this is part of the learning process: A child learns
to distinguish between cats and dogs, between tables and chairs, between
men and women, by means of continuously improving subconscious classi-
fication schemes. {This explains why cluster analysis is often considered as a
branch of pattern recognition and artificial intelligence.) Classification has
always played an essential role in science. In the eighteenth century,
Linnaeus and Sauvages provided extensive classifications of animals, plants,
minerals, and diseases (for a recent survey, see Holman, 1985). In astron-
omy, Hertzsprung and Russell classified stars in various categories on the
basis of two variables: their light intensity and their surface temperature. In
the social sciences, one frequently classifies people with regard to their
behavior and preferences. In marketing, it is often attempted to identify
market segments, that is, groups of customers with similar needs. Many
more examples could be given in geography (clustering of regions), medicine
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Figure 1 A plot of eight objects.

{(incidence of specific types of cancer), chemistry (classification of com-
pounds), history (grouping of archeological findings), and so on. Moreover,
cluster analysis can be used not only to identify a structure already present
in the data, but also to impose a structure on a more or less homogeneous
data set that has to be split up in a “fair” way, for instance when dividing a
country into telephone areas. Note that cluster analysis is quite different
from discriminant analysis in that it actually establishes the groups, i.rn_dmm
discriminant analysis assigns objects to groups that were defined in ad-
vance. .

In the past, clusterings were usually performed in a subjective way, by
relying on the perception and judgment of the Rmnmnmroﬁ In the mxm:ﬁ_w of
Figure 1, we used the human eye-brain mu_mnoa.i?ow is very 46: m_.h:ma
(through millenia of evolution) for classification in up to three dimensions.
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However, the need to classify cases in more than three dimensions and the
upcoming objectivity standards of modern science have given rise to so-
called automatic classification procedures. Over the last 30 years, a wealth
of algorithms and computer programs has been developed for cluster
analysis. The reasons for this variety of methods are probably twofold. To
begin with, automatic classification is a very young scientific discipline in
vigorous development, as can be seen from the thousands of articles
scattered over many periodicals (mostly journals of statistics, biology,
psychometrics, computer science, and marketing). Nowadays, automatic
classification is establishing itself as an independent scientific discipline, as
witnessed by a full-fledged periodical (the Journal of Classification, first
published in 1984) and the International Federation of Classification Soci-
eties (founded in 1985). The second main reason for the diversity of
algorithms is that there exists no general definition of a cluster, and in fact
there are several kinds of them: spherical clusters, drawn-out clusters, linear
clusters, and so on. Moreover, different applications make use of different
data types, such as continuous variables, discrete variables, similarities, and
dissimilarities. Therefore, one needs different clustering methods in order to
adapt to the kind of application and the type of clusters sought. Cluster
analysis has become known under a variety of names, such as numerical
taxonomy, automatic classification, botryology (Good, 1977), and typologi-
cal analysis (Chandon and Pinson, 1981).

In this book, several algorithms are provided for transforming the data,
for performing cluster analysis, and for displaying the results graphically.
Section 2 of this introduction discusses the various types of data and what
to do with them, and Section 3 gives a brief survey of the clustering
methods contained in the book, with some guidelines as to which algorithm
to choose. In particular the crucial distinction between partitioning and
hierarchical methods is considered. In Section 4 a schematic overview is
presented. In Section 5, it is explained how to use the program DAISY to
transform your data.

2 TYPES OF DATA AND HOW TO HANDLE THEM

Our first objective is to study some types of data which typically occur and
to investigate ways of processing the data to make them suitable for cluster
analysis.

Suppose there are n objects to be clustered, which may be persons,
flowers, words, countries, or whatever. Clustering algorithms typically oper-
ate on either of two input structures. The first represents the objects by
means of p measurements or attributes, such as height, weight, sex, color,
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and so on. These measurements can be arranged in an n-by-p matrix, where
the rows correspond to the objects and the columns to the attributes. In
Tucker’s (1964) terminology such an objects-by-variables matrix is said to
be two-mode, since the Tow and column entities are different. The second
structure is a collection of proximities that must be available for all pairs of
objects. These proximities make up an a-by-n table, which is calied a
one-mode matrix because the row and column entities are the same set of
objects. We shall consider two types of proximities, namely dissimilarities
(which measure how far away two objects ar¢ from each other) and
similarities (which measure how much they resemble each other). Let us
now have a closer look at the types of data used in this book by considering
them one by one.

2.1 Interval-Scaled Variables

In this situation the » objects are characterized by p continuous measure-
ments. These values are positive or negative real numbers, such as height,
weight, temperature, age, cost,..., which foliow a linear scale. For in-
stance, the time interval between 1905 and 1915 was equal in length to that
between 1967 and 1977. Also, it takes the same amount of energy to heat an
object of —16.4°C to —12.4°C as to bring it from 35.2°C to 39.2°C. In
general it is required that intervals keep the same importance throughout
the scale.

These measurements can be organized in an #-by-p matrix, where the
rows correspond to the objects (or cases) and the columns correspond to the
variables. When the fth measurement of the ith object is denoted by x,,
(where i =1,...,n and f=1,..., p) this matrix looks like

p variables
x1n Xy Xy
. . (1)
# objects X Xip o Xy
HBH LR Huﬂl‘» LR R:E

For instance, consider the following real data set. For eight people, the
weight (in kilograms) and the height (in centimeters) is recorded in Table 1.
In this situation, n = 8 and p = 2. One could have recorded many more
variables, like age and blood pressure, but as there are only two variables in
this example it is easy to make a scatterplot, which corresponds to Figure 1
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Table 1 Weight and Height of Eight People, Expressed
in Kilograms and Centimeters

Weight Height
Name (kg) (cm)
Ilan 15 95
Jacqueline 49 156
Kim 13 95
Lieve 45 160
Leon 85 178
Peter 66 176
Talia 12 90
Tina 10 78

given earlier. Note that the units on the vertical axis are drawn to the same
size as those on the horizontal axis, even though they represent different
physical concepts. The plot contains two obvious clusters, which can in this
case be interpreted easily: the one consists of small children and the other
of adults.

Note that other variables might have led to completely different cluster-
ings. For instance, measuring the concentration of certain natural hormones
might have yielded a clear-cut partition into three male and five female
persons. By choosing still other variables, one might have found blood
types, skin types, or many other classifications.

Let us now consider the effect of changing measurement units. If weight
and height of the subjects had been expressed in pounds and inches, the
results would have looked quite different. A pound equals 0.4536 kg and an
inch is 2.54 cm. Therefore, Table 2 contains larger numbers in the column
of weights and smaller numbers in the column of heights. Figure 2,
although plotting essentially the same data as Figure 1, looks much flatter.
In this figure, the relative importance of the variable “weight” is much
larger than in Figure 1. (Note that Kim is closer to Ilan than to Talia in
Figure 1, but that she is closer to Talia than to Ilan in Figure 2.) As a
consequence, the two clusters are not as nicely separated as in Figure 1
because in this particular example the height of a person gives a better
indication of adulthood than his or her weight. If height had been expressed
in feet (1 ft = 30.48 cm), the plot would become fiatter still and the variable
“weight” would be rather dominant.

In some applications, changing the measurement units may even lead
one to see a very different clustering structure. For example, the age (in
years) and height (in centimeters) of four imaginary people are given in
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Table 2 Weight and Height of the Same Eight People,
But Now Expressed in Pounds and Inches

Weight Height
Name (b} (in)
Ilan 331 374
Jacqueline 108.0 61.4
Kim 287 37.4
Lieve 99.2 63.0
Leon 187.4 70.0
Peter 145.5 69.3
Talia 26.5 . 35.4
Tina 220 - 30.7

Table 3 and plotted in Figure 3. It appears that {4, B} and {C, D} are
two well-separated clusters. On the other hand, when height is expressed in
feet one obtains Table 4 and Figure 4, where the obvious clusters are now
{A4,C} and {B, D}. This partition is completely different from the first
because each subject has received another companion, (Figure 4 would have
been flattened even morte if age had been measured in days.)

To avoid this dependence on the choice of measurement units, one has
the option of standardizing the data. This converts the original measure-
ments to unitless variables. First one calculates the mean value of variable
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Figure 2 Plot corresponding to Table 2.
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Table 3 Age (in years) and Height (in centimeters) of Four People

Age Height
Person (yr) {cm)
A 35 190
B 40 190
C 35 160
D 40 160
1
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Figure 3 Plot of height (in centimeters) versus age for four people.

Table 4 Age (in years) and Height (in feet) of the Same Four People

Age Height
Person (yr) (fH
A 35 6.2
B 40 6.2
C 35 52
D 40 32
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Figure 4 Plot of height (in feet) versus age for the same four people.

f, given by

1
m; = M?Q+ Xqp+ oo +R=L (2)

for each f=1,..., p. Then one computes a measure of the dispersion or
“spread” of this fth variable. Traditionally, people use the standard

deviation

|~|?€| ::% +{(xy,— ELM 4+ (x,, \:Luv

masu 1

for this purpose. However, this measure is affected very much by the
presence of outlying values. For instance, suppose that one of the Xy has
been wrongly recorded, so that it is much too _Emn” In this case std, will be
unduly inflated, because x,, — m is squared. Hartigan ﬁﬂu., p. 299} notes
that one needs a dispersion measure that is not too sensitive to outliers.
Therefore, from now on we will use the mean absolute deviation

1
&HMSHQIE\_;,?&I&\_+ +_H=\I3w: (3)

where the contribution of each measurement x,, is proportional to the
absolute value |x,, — m,|. This measure is more robust (see, e.g., Hampel
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et al., 1986) in the sense that one outlying observation will not have such a
large influence on s;. (Note that there exist estimates that are much more
robust, but we would like to avoid a digression into the field of robust
statistics.)

Let us assume that s, is nonzero (otherwise variable f is constant over
all objects and must be removed). Then the standardized measurements are
defined by

X, —m
zy=—t— )
i

and sometimes called z-scores. They are unitless because both the numera-
tor and the denominator are expressed in the same units. By construction,
the z,, have mean value zero and their mean absolute deviation is equal to
1. When applying standardization, one forgets about the originat data (1)
and uses the new data matrix

variables
NH— EREEY Nﬂ.\. - aw Nﬂﬁ
objects 2y Zyy ottt (5)
Zn - N:._s PN N:ﬁ

in all subsequent computations. The advantage of using s, rather than std 7
in the denominator of (4) is that s, will not be blown up so much in the
case of an outlying x,,, and hence the corresponding z,, will still “stick
out” so the ith object can be recognized as an outlier by the clustering
algorithm, which will typically put it in a separate cluster. [This motivation
differs from that of Milligan and Cooper {1988), who recommended the use
of a nonrobust denominator.]

The preceding description might convey the impression that standardiza-
tion would be beneficial in all situations. However, it is merely an option
that may or may not be useful in a given application. Sometimes the
variables have an absolute meaning, and should not be standardized (for
instance, it may happen that several variables are expressed in the same
units, so they should not be divided by different s,). Often standardization
dampens a clustering structure by reducing the large effects because the
variables with a big contribution are divided by a large 5y

For example, let us standardize the data of Table 3. The mean age equals
m, = 37.5 and the mean absolute deviation of the first variable works out
to be s = {25+ 25+ 25+ 25}/4 =2.5. Therefore, standardization
converts age 40 to +1 and age 35 to — 1. Analogously, 1, = 175 ¢cm and
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Table 5 Standardized Age and Height of the Same Four People

Person Variable 1 Variable 2
A -1.0 1.0
B 1.0 1.0
C -1.0 -10
D 10 -1.0

5, = {15+ 15 + 15 + 15} /4 = 15 cm, so 190 cm is is.ama&N.ma to +1
and 160 c¢m to — 1. The resulting data matrix, which is unitless, is given in
Table 5. Note that the new averages are zero and that the mean deviations
equal 1. Of course, standardizing Table 4 would yield exactly the same
result, so Table 5 is the standardized version of both Tables 3 and 4. mcmu
when the data are converted to very strange units (such as the proverbial
fortnights and furlongs), standardization will always yield the same num-
bers. However, plotting the values of Table 5 in Figure 5 does not give a
very exciting result. Figure 5 looks like an intermediate between m._mE,mm 3
and 4 and shows no clustering structure because the four points lie at the
vertices of a square. One could say that there are four clusters, each

HEIGHT{STANDARDIZ ED)

-1 a 1
AGE {STANDARDIZED]

Figure 5 Standardized height versus standardized age.
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consisting of a single point, or that there is only one big cluster containing
four points.

From a philosophical point of view, standardization does not really solve
the problem. Indeed, the choice of measurement units gives rise to relative
weights of the variables. Expressing a variable in smaller units will lead to a
larger range for that variable, which will then have a large effect on the
resulting structure. On the other hand, by standardizing one attempts to
give all variables an equal weight, in the hope of achieving objectivity. As
such, it may be used by a practitioner who possesses no prior knowledge.
However, it may well be that some variables are intrinsically more impor-
tant than others in a particular application, and then the assignment of
weights should be based on subject-matter knowledge (see, e.g., Abra-
hamowicz, 1985). On the other hand, there have been attempts to devise
clustering techniques that are independent of the scale of the variables
(Friedman and Rubin, 1967). The proposal of Hardy and Rasson (1982) is
to search for a partition that minimizes the total volume of the convex hulls
of the clusters. In principle such a method is invariant with respect to lincar
transformations of the data, but unfortunately no algorithm exists for its
implementation (except for an approximation that is restricted to two
dimensions). Therefore, the dilemma of standardization appears unavoid-
able at present and the programs described in this book leave the choice up
to the user.

Of course, the data offered to the program may already be the result of
some transformation: Often people find it useful to replace some variable
by its inverse or its square, which may be more meaningful in that
particular context. However, we shall assume from now on that such
transformations have been performed prior to the cluster analysis.

The next step is to compute distances between the objects, in order to
quantify their degree of dissimilarity. It is necessary to have a distance for
each pair of objects i and ;. The most popular choice is the Euclidean
distance

d(i, u.v = V\AH; - Huvm + A.xs - bv» + .- +Ak€ - kbuvm (6)

(When the data are being standardized, one has to replace all x by z in this
expression.) Formula {6) corresponds to the true geometrical distance
between the points with coordinates (x,..., X;p) and (xp,...,x;). To
illustrate this, let us consider the special case with p = 2. Figure 6 shows
two points with coordinates (x,,, x,,) and (x j1» X;2)- It is clear that the
actual distance between objects i and j is given by the length of the
hypothenuse of the triangle, yielding expression (6) by virtue of Pythagoras’
theorem. For this reason, Gower (1971b) calls (6) the Pythagorean distance.
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Figure 6 [Nustration of the Euclidean distance formula.

Another well-known metric is the city block or Manhattan distance,
defined by

a(i, J)=1lxa - .ab_ + Xy = Xplt+ oo +xp Xl (7)

In Figure 6, this corresponds to the sum of the lengths of the other two
sides of the triangle. The Manhattan distance was used in a cluster analysis
context by Carmichael and Sneath (1969) and owes its peculiar name to the
following reasoning. Suppose you live in a city where the streets are all
north-south or éast-west, and hence perpendicular to each other. Let
Figure 6 be part of a street map of such a city, where :un.m:maa are
portrayed as vertical and horizontal lines. Then the actual distance you
would have to travel by car to get from location i to location j would total
lx = Xl + |x;3 — X2} corresponding to (7). This SmEE be the shortest
length among all possible paths from i to j. Only a bird could fly straight
from point i to point j, thereby covering the Euclidean &mﬂ.m:nm .Goﬂinnn
these points. The use of the Manhattan distance is advised in those
situations where for example a difference of 1 in the first variable and of 3
in the second variable is the same as a difference of 2 in the first variable

and of 2 in the second.
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Both the Euclidean metric (6) and the Manhattan metric (7) satisfy the
following mathematical requirements of a distance function:

DY) d(i, j)>0
D2 dii, ) =0

(D3) 4(i, j)=4d(}, i)

(D4) d(i, j) < d(i, h) + d(h, j)

for all objects i, j, and h. Condition (D1) merely states that distances are
nonnegative numbers and (D2) says that the distance of an object to itself is
zero. Axiom (D3) is the symmetry of the distance function. The triangle
inequality (D4) looks a little bit more complicated, but is necessary to allow
a geometrical interpretation, It says essentially that going directly from / to
J is shorter than making a detour over object A.

Note that d{i, j) = 0 does not necessarily imply that { = j, because it
can very well happen that two different objects have the same measure-
ments for the variables under study. However, the triangle inequality
implies that / and j will then have the same distance to any other object A,
because d(i, h) < d{i, j) + d(j, h) = d(j, A) and at the same time
d(j, h)y < d(j, i} + d(i, k) = d{i, k), which together imply that (i, &) =
d{j, h).

A generalization of both the Euclidean and the Manhattan metric is the
Minkowski distance given by

&?.. .: = :H; - b_a + X — L‘.u_.w + o +_H€ - he_n%\a
where g is any real number larger than or equal to 1. This is also called the
L, metric, with the Euclidean (g = 2} and the Manhattan (g = 1) as special
cases. Many other distance functions may be constructed (see, e.g., Bock,
1974, Section 3; Hartigan, 1973, Chapter 2; Romesburg, 1984, Chapter 8).
The clustering programs accompanying this book provide a choice between
Euclidean and Manhattan distances.

One sometimes computes weighted Euclidean distances like

d(i, j) = ,\E%H: - RL:VN + Euﬁkb - k‘bvm + o +§uAk€ - kt.vu Amv

where each variable receives a weight according to its perceived importance.
For instance, giving a variable weight 2 is the same thing as using it twice.
However, applying such weighted distances on the raw data is equivalent to
first choosing other measurement units, corresponding to rescaling the
coordinates by the factors w\ﬂl aers ,\ﬂ , and then computing ordinary
distances. (Therefore, it was not necessary to provide weighted distances in
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our programs.) This leads us back to the discussion on standardization. The
essential question remains: Which weights should be assigned to the vari-
ables? If one thinks the measurement units were not particularly well
chosen and one wants to assign equal weights to the variables, it is
preferable to standardize the data first and then to compute ordinary
Euclidean distances (6). But if one wants to keep the data intact, because
the measurement scales are believed to be meaningful, it is best not to
standardize (and hence to use the weights inherent in the raw data).
Furthermore, if one wants to impose certain weights on the variables, due to
prior beliefs or background information, one can either change the mea-
surement units or apply weighted distances like (8), which boils down to the
same thing. ,

In all this, it should be noted that a variable not containing any relevant
information (say, the telephone number of each person) is worse than
useless, because it will make the clustering less apparent. The occurrence of
several such “trash variables” will kill the whole clustering because they
vield a lot of random terms in the distances, thereby hiding the useful
information provided by the other variables. Therefore, such noninforma-
tive variables must be given a zero weight in the analysis, which amounts to
deleting them. A recent discussion of variable selection can be found in
Fowlkes et al. (1988). In general, the selection of “good” variables 1s a
nontrivial task and may involve quite some trial and error (in addition to
subject-matter knowledge and common sense). In this respect, cluster
analysis may be considered an exploratory technique.

Tt often happens that not all measurements are actually available, so
there are some “holes” in the data matrix (1). Such an absent measurement
is called a missing value and it may have several causes. The value of the
measurement may have been lost or it may not have been recorded at all by
oversight or lack of time. Sometimes the information is simply not avail-
able, as in the example of the birthdate of a foundling, or the patient may
not remember whether he or she ever had the measles, or it may be
impossible to measure the desired quantity due to the malfunctioning of
some instrument. In certain instances the question does not apply (such as
the color of hair of a bald person) or there may be more than one possible
answer (when two experimenters obtain very different results). Because of
all this, missing values are often encountered.

How can we handle a data set with missing values? In the matrix (1) we
indicate the absent measurements by means of some code (like the number
999,99 if it did not already occur), that can then be recognized by the
program. If there exists an object in the data set for which all measurements
are missing, there is really no information on this object so it has to be
deleted. Analogously, a variable consisting exclusively of missing values has
to be removed too.

i
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If the data are standardized, the mean value m, of the fth variable is
calculated by making use of the present values only. The same goes for s,
50 in the denominator of (2) and (3) we must replace » by the number of
nonmissing values for that variable. The z—scores z;, can then be computed
as in (4), but of course only when the corresponding x,, is not missing
itself. )

In the computation of distances (based on either the x,, or the z;)
similar precautions must be taken. When calculating the distances d(i, j)
given by (6) or (7), only those variables are considered in the sum for which
the measurements for both objects are present; subsequently the sum is
multiplied by p and divided by the actual number of terms (in the case of
Euclidean distances this is done before taking the square root). Obviously,
such a procedure only makes sense when the variables are thought of as
having the same weight (for instance, this can be done after standardiza-
tion), When computing these distances, one might come across a pair of
objects that do not have any common measured variables, so their distance
cannot be computed by means of the abovementioned approach. Several
remedies are possible: One could remove either object or one could fill in
some average distance value based on the rest of the data. A totally
different approach consists of replacing all missing x,, by the mean m, of
that variable; then all distances can be computed. Applying any of these
methods, one finally possesses a “full” set of distances. From this point on,
many clustering algorithms can be applied, even though the original data
set was not complete.

In any case, we now have a collection of distances (whether based on raw
or standardized data that contained missing values or not) that we want to
store in a systematic way. This can be achieved by arranging them in an
n-by-n matrix. For example, when computing Euclidean distances between
the objects of Table 1 we obtain

ILA JAC KiM LIE LEO PET TAL TIN

ILA | 0 698 20 76 1086 957 58 177 |

JAC | 698 @ 708 57 422 263 757 872

KIM| 20 708 0 725 1099 963 51 173

LIE | 716 57 725 0 439 264 T4 89.2 &)
LEO | 1086 422 1099 439 0 191 1143 1250

PET | 957 263 968 264 191 0 10L& 1129

TAL | 58 757 51 774 1143 1016 0 122

TIN | 177 8§72 173 892 1250 1129 122 0

.ﬂ:n &mH.MEon between object JAC and object LEO can be located at the
intersection of the fifth row and the second column, vielding 42.2. The same
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number can also be found at the intersection of the second row and the fifth
column, because the distance between JAC and LEO is equal to the
distance between LEQ and JAC. This is the symmetry property (D3), which
holds for any pair of objects [formula (6) gives the same result when i and j
are interchanged). Therefore, a distance matrix is always symmetric. More-
over, note that the entries on the main diagonal are always zero, because the
distance of an object to itself has to be zero. (The same remarks apply to
the Manhattan or any other distance.) Therefore, it would suffice to write
down only the lower triangular half of the distance matrix, which looks like

ILA JAC KIM LIE LEO PET TAL

JAC 69.8
KIM 20 708
LIE 71.6 57 2.5

LEO 1086 422 1099 439 (10)
PET 957 263 9.8 264 191
TAL 58 75.7 51 774 1143 10L6

TIN 177 872 17.3 892 1250 1129 12.2

Note that in the latter form there are only seven rows and seven columns,
because the upper row and the rightmost column of (9) were superfluous.

When the data are represented as in (9) or (10), the cluster structure we
saw so easily in Figure 1 is rather hidden from visual inspection. Neverthe-
less, the clustiering methods discussed in Chapters 2, 4, 5, and 6 only make
use of this information, without having to return to the original data matrix.

2.2 Dissimilarities

This leads us to our second input data structure, namely an r-by-n matrix
like (9), often presented as in (10). The entries of such a matrix may be
Euclidean or Manhattan distances. However, there are many other possibil-
ities, so we no longer speak of distances but of dissimilarities (or dissimilar-
ity coefficients). Basically, dissimilarities are nonnegative numbers d(i, j)
that are small (close to zero) when i and j are “near” to each other and
that become large when § and j are very different. We shall usually assume
that dissimilarities are symmetric and that the dissimilarity of an object to
itself is zero, but in general the triangle inequality does rot hold. Indeed, it
is often assumed that dissimilarities satisfy (D1), (D2}, and (D3) (see, e.g.,
Bock, 1974, p. 25), although none of these properties is really essential and
there are clustering methods that do not require any of them. But the main
difference with distances is that (D4) can no longer be relied on.
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Table 6 Subjective Dissimilarities between 11 Sciences

Astronomy 0.00 -
Biology 7.86 0.00

Chemistry 650 293 0.00

Computer sci. 500 686 6.50 0.00

Economics 8.00 814 821 479 0.00
Geography 429 700 764 771 593 0.00

History 807 814 871 857 586 3.86 0.00

Mathematics 3.64 714 443 143 357 707 907 0.00

Medicine 821 250 293 636 843 7.86 843 629 000
Physics 271 521 457 421 836 729 864 221 507 0.00

Psychology 936 557 729 721 686 829 764 871 379 8.64 000

Dissimilarities can be obtained in several ways. Often they can be
computed from variables that are binary, nominal, ordinal, interval, or a
combination of these (a description of such variables and possible formulas
will be given later in this chapter). Also, dissimilarities can be simple
subjective ratings of how much certain objects differ from each other, from
the point of view of one or more observers. This kind of data is typical in
the social sciences and in marketing.

Let us consider an example of this type. Fourteen postgraduate eco-
nomics students (coming from different parts of the world) were asked to
indicate the subjective dissimilarities between 11 scientific disciplines. All of
them had to fill in a matrix like Table 6, where the dissimilarities had to be
given as integer numbers on a scale from 0 (identical) to 10 (very different).
The actual entries of Table 6 are the averages of the values given by the
students. [t appears that the smallest dissimilarity is perceived between
mathematics and computer science, whereas the most remote fields were
psychology and astronomy.

Another example of the construction of dissimilarities is to record how
often consonants are misunderstood, because when two consonants are
often confused (like “s” and “z™) this indicates that their dissimilarity is
small [see, e.g., Johnson’s (1967) analysis of the Miller and Nicely (1955)
data). Such experiments lead to asymmetric matrices, because “z” may be
more often inadvertently taken for “s” than vice versa. However, in such
situations one can easily symmetrize the data [for instance by averaging
d(i, j) with d(J, i) for each pair of consonants].

If one wants to perform a cluster analysis on a set of variables that have
been observed in some population, there are other measures of dissimilarity,
For instance, one can compute the (parametric) Pearson product-moment
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correlation
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between the variables f and g, or m_ﬁnamaé_% the (nonparametric)
Spearman correlation. Both coefficients lie between —1 and +1 and do not
depend on the choice of measurement units. The main difference between
them is that the Pearson coefficient looks for a linear relation between the
variables f and g, whereas the Spearman coefficient searches for a mono-
tone relation. Both coefficients are provided by most statistical packages,
like SPSS, BMDP, or SAS, so they can simply be taken from their routine
output. Correlation coefficients are useful for clustering purposes because
they measure the extent to which two variables are related.

For instance, the Pearson correlation between the variables weight and
height in Table 1 is 0.957. It is very high because there appears to be a
positive relationship between these two variables: The larger somebody’s
weight, the larger his or her height is likely to be, as can be seen from the
upward trend in Figure 1. Table 7 also lists some other variables measured
on the same eight people, namely their month and year of birth. We see no
apparent relation between month of birth and weight: There is no obvious
reason why someone born in November (of any year) would be likely to be
heavier than someone born in February. Indeed, the correlation between
month and weight is approximately zero (the actual value in this example is
—0.036). A third situation occurs when we correlate weight with the year of
birth: The people with a large birth year will typically possess a smaller
weight and vice versa. In such a situation the correlation coefficient be-

Table 7 Data on Eight People. Weight is Expressed in Kilograms and Height
in Centimeters. Also the Month and Year of Birth are Provided

Name Weight Height Month Year
Han 15 95 1 82
Jacqueline 49 156 5 55
Kim 13 a5 11 81
Lieve 45 160 7 56
Leon &5 178 6 48
Peter 66 176 6 56
Talia 12 20 12 83
Tina 10 78 1 84

poir=
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Table 8 (a) Pearson Correlation Coeflicients between the Four Variables
in Table 7, (b) Corresponding Dissimilarities Obtained Through Formula (11),
and (c) Dissimilarities Computed by Means of (12)

Quantity Weight Height Month Year
(a) Correlations Weight 1.000
Height 0.957 1.000 .
Month —0.036 0.021 1.000
Year —0.953 —0.985 0.013 1.000
{(b) Dissimilarities Weight 0.600
According to (11) Height 0.021 0.000
Month 0.518 0.489 0.000
Year 0.977 0.992 0.493 0.000
{¢) Dissimilarities Weight 0.000
According to (12) Height 0.043 0.000
Month 0.964 0.97¢ 0.000
Year 0.047 0.015 0.937 0.000

comes strongly negative (in this example it is —0.953, which is close to —1,
becanse the relation is nearly linear). Continuing like this, we can fill up
Table 8(a).

Correlation coefficients, whether parametric or nonparametric, can be
converted to dissimilarities d( f, g), for instance by setting

d(f,8) = (1 - R(f,8))/2 (11)

With this formula, variables with a high positive correlation receive a
dissimilarity coefficient close to zero, whereas variables with a strongly
negative correlation will be considered very dissimilar. In other applications
one-might prefer to use

d(f.g) =1-[R(f, )] (12)

in which case also variables with a strongly negative correlation will be
assigned a small dissimilarity. Lance and Williams (1979) compared these
formulas by means of real data, and concluded that (11) was unequivocally
the best, whereas (12) still did relatively well. (A third possibility, given by
d(f,g) =1 — R(f, g)?, turned out to be uniformly unsatisfactory.) Table
8(b) contains the dissimilarities computed according to (11), in which case
weight and year are perceived to be very different. On the other hand, the
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use of (12) yields Table 8(c) in which the variable year joins the cluster
formed by weight and height.

Many other ad hoc dissimilarities between variables can be thought of.
For example, in a psychological application (I.ecompte et al., 1986) we once
had to cluster nominal variables, some of which possessed two classes and
some three. The resulting contingency tables of pairs of variables led to
chi-squared statistics that could not be.compared directly because they
possessed different degrees of freedom. However, the computed significance
level (also called P—value) of these statistics could be used to construct a
dissimilarity measure. The stronger the relationship between two variables,
the smaller their P—value becomes. )

In many applications, the input data simply consist of a dissimilarity
matrix, without any measurement values. Indeed, the dissimilarities may
have been computed from attributes that were not published or even have
been lost. It may also be that there never were any variabies in the first
place, because the dissimilarities were obtained in another way Qwo_.d
subjective assessments, confusion data, or whatever). For this reason it 1s
useful to have clustering algorithms that can operate directly on a dissimi-
larity matrix, without having to resort to any measurements. This is the case
for the programs PAM, FANNY, AGNES, and DIANA, which will be
briefly introduced in Section 3.

2.3 Similarities

Instead of using a dissimilarity coeflicient d(i, j) to indicate how remote
two objects i and j are, it is also possible to work with a similarity
coefficient s(i, j). The more objects i and j are alike (or close), the larger
s(i, j) becomes. Such a similarity s(i, j) typically takes on values between
0 and 1, where 0 means that / and j are not similar at all and 1 refiects
maximal similarity. Values in between ¢ and 1 indicate various degrees of
resemblance. Often it is assumed that the following conditions hold:

(S1) 0 < s(i, j)<1
(S2) s(i,i)=1
(83) s(4, j) = s(j, 1)

for all objects i and j (see Bock, 1974). The numbers s(i, j) can be
arranged in an s-by-n matrix like (9) or (10), which is then called a
similarity marrix. Both similarity and dissimilarity matrices are generaily
referred to as proximity matrices, or sometimes as resemblance matrices.
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Similarities may arise in several ways. Like dissimilarities, they may be
the results of subjective judgments. Also, there are formulas to compute
similarities between objects characterized by attributes, even when these
variables are of different types, as we shall see in Section 2.6 on mixed
measurements.

In order to define simiiarities between variables, we can again resort to
the Pearson or the Spearman correlation coefficient. However, neither
correlation measure can be used directly as a similarity coefficient because
they also take on negative values. Some transformation is in order to bring
the coefficients into the zero-one range. There are essentially two ways to do
this, depending on the meaning of the data and the purpose of the
application. If variables with a strong negative correlation are considered to
be very different because they are oriented in the opposite direction (like
mileage and weight of a set of cars), then it is best to take something like

s(f.g)={(1+R(f g))2 (13)

which yields s( f, g) = 0 whenever R(f, g) = — 1. On the other hand, there
are situations in which variables with a strong negative correlation should
be grouped, because they measure essentially the same thing. (For instance,
this happens if one wants to reduce the number of variables in a regression
data set by selecting one variable from each cluster.) In that case it is better
to use a formula like

s(f.g) =IR(/, g}l (14)

which yields s(f, g) =1 when R(f, g)= -1.

It must be noted that people have sometimes used correlation coefficients
for assessing similarity between objects by simply interchanging the roles of
objects and variables in the expression of R. This does not make much
sense because it involves such operations as averaging the measurements {in
different units) of the same object. The use of the correlation coefficient
between objects was criticized by Eades (19635), Fleiss and Zubin (1969),
and others, on several grounds.

Suppose the data consist of a similarity matrix but one wants to apply a
clustering algorithm designed for dissimilarities. Then it is necessary to
transform the similarities into dissimilarities. The larger the similarity
s(i, j) between i and j, the smaller their dissimilarity d(i, j) should be.
Therefore, we need a decreasing transformation, such as

d(i, j) =1-s(i, ) (15)
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One could also take the square root of 1 - s(i, ), as advocated by Gower
(1966) on the basis of a geometrical argument. This makes the differences
between large similarities more important, but on the other hand makes it
more difficult to obtain small dissimilarities. As a consequence, the resulting
dissimilarity matrix might be rather homogeneous and less likely to yield
clear-cut clusterings.

When applying (15) to correlation coefficients, expression (13) leads to
formula (11), which means that negatively correlated variables are consid-
ered far apart. In the opposite case, (14) yields formula (12).

In order to be able to process similarities and correlation coefficients, the
program DAISY executes (11), (12), and (15) as well as some other
calculations. In Section 5 it will be explained how to use this program.

24 Binary Variables

Binary variables have only two possible outcomes (or states). For instance,
when clustering people several binary variables may be used: male/female,
smoker /nonsmoker, answered yes/no to a particular question, and so on.
In the data matrix, such variables are often coded as zero or one. When
variable £ is binary, the objects i will have either x,, = 0 or x,, = 1. (It may
be useful to allow a third code for missing values, e.g., to indicate that we
do not know whether that particular person smokes or not.) Often 1 is
taken to mean that a certain attribute is present (e.g., smoking), whereas 0
indicates its absence. Sometimes people treat binary variables just as if they
were interval-scaled, that is, by applying the usual formulas for Euclidean
or Manhattan distance. Although this may sometimes lead to decent results,
it is good to know that there exist approaches designed specifically for
binary data.

To begin with, there are special clustering algorithms for this situation,
such as the monothetic analysis technique described in Chapter 7 and
implemented in the program MONA. This algorithm operates directly on
the binary data matrix, by dissecting the data according to a well-chosen
variable. For instance, if the variable “smoking™ were selected, the data
would first be split into two clusters: the one consisting of smokers and the
other of nonsmokers.

Another possibility is to compute a dissimilarity matrix (or a similarity
matrix) from binary data and then simply to apply one of the clustering
algorithms that operates on such a matrix (such as the methods described in
Chapters 2, 4, 5, and 6). If all binary variables are thought of as having the
same weight, one typically proceeds as follows. When computing a similar-
ity s(i, j) or a dissimilarity d(i, j) between two objects { and j, one draws
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a 2-by-2 contingency table {or association table) such as

object j
1 0
1 a b +5b
object § ¢ 16)
0 c d c+d :
a+c b+d p

Here, a is the number of variables that equal 1 for both objects. Analo-
gously, b is the number of variables f for which x,, =1 and x = 0, and
so on. Obviously a + b + ¢ + d = p, the total number of variables. (When
missing values occur, one has to replace p by the number of variables that
are available for both i and j. One could also compute weighted sums: If a
variable is perceived to be very important, it may be given a higher weight
than the other variables. In such a situation, p wili be replaced by the sum
of all the weights.) The values a, b, ¢, and 4 are then combined in a
coefficient describing to what extent objects i and j agree with regard to
the collection of binary variables.

Table 9 provides an example of binary data. For 8 people, a total of 10
binary variables were considered, such as male/female, blue eyes/brown
eyes, round face/oval face, and so on. The attribute listed first is always the
one coded as 1, for insiance blue eyes = 1 and brown eyes = 0. When
comparing llan with Talia, we make up a table like {16) which yields a = 1,
b=3, ¢ =1, and d = 5. Note that interchanging Ilan and Talia would
permute b and ¢ (while leaving ¢ and d unchanged), so a good similarity
or dissimilarity coeflicient must treat » and ¢ in the same way in order to
satisfy (D3) or (83).

At this point a crucial remark is in order. Following Gower (1971a,
p. 858) and Bock (1974, Section 4) we can distinguish between fwo kinds of
binary variables, depending on the particular application.

The binary variable “sex” possesses the possible states “male” and
“female.” Both are equally valuable and carry the same weight. There is no
preference which outcome should be coded as 0 and which as 1. Such a
variable is called symmetric. This is the first type of binary variable, which
occurs very frequently. For symmetric variables, it is natural to work with
invariant similarities, that is, the result must not change when some or ail of
the binary variables are coded differently. Therefore, a and 4 should play
the same role. One looks for coefficients that only depend on the number of
agreements (a + 4) and the number of disagreements (b + ¢) between the
objects i and j that are being compared. Table 10 gives the most common
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Table 9 Binary Variables for Eight People
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Table 10 Some Invariant Coefficients for Binary Data

Name s(i, j)

dii, j)

a+d

Simple matching coefficient a+btctd

{Zubin, 1938; Dumas, 1955;
Sokal and Michener, 1958,
Sneath, 1962; Hill et al., 1965)

b+ ¢
a+b+c+d

2(b + ¢€)

(a+d)+2{b+c)

b+c

a+d
Rogers and Tanimoto (1966) (atd) +2Ab <o)
Na+d)
Sokal and Sneath (1963) Wa+d) +(b+c)

(Duran and Odell 1974)

Aa+d)+(b+c)
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invariant similarities s(/, f), together with the corresponding invariant
dissimilarities d(i, j) = 1 - (i, j).

The most well known of these is the simple matching coefficient, which
looks for the percentage of matches (i.e., agreements), or equivalently the
percentage of mismatches (i.e., disagreements) between objects i and j. For
the distance between Ilan and Talia it yields 4(i, j) = 3+ 1)/(1 + 3 +
1 + 5) = 0.4. Sometimes it is also called M-coefficient or affinity index. If
one treats binary variables as if they were interval-scaled and computes the
Manhattan distance (without first standardizing the measurements), one
obtains d(i, j} = b + ¢ which corresponds to the simple matching dissimi-
larity except for a constant factor p. In the same way, the Euclidean
distance between objects i and j corresponds to the square root of the
simple matching dissimilarity. Note that treating binary variables as if they
were interval-scaled implies that they are assumed to be symmetric, because
interchanging the codes 0 and 1 for some or all variables will still yield the
same distance.

The other coefficients in Table 10 are less often used. In the Rogers and
Tanimoto (1960) formulas, the disagreements (b + ¢) carry twice the weight
of the agreements (a + 4). On the other hand, Sokal and Sneath (1963)
doubly weight the agreements. However, there is a simple monotone rela-
tion between all three coefficients, because the Rogers—Tamimoto dis-
similarity can be written as a monotone function of the simple matching
dissimilarity:

2(b+ c) 2
(a+dy+2b+c) 1/((b+c)/{atb+ct+d))+1 (17)

and the same holds for the dissimilarity coefficient proposed by Sokal and
Sneath:

b+e¢ | 1
Ha+d)+(b+c) 2/((b+c)/(a+b+c+d))-1

(18)

Therefore, it often makes little difference which of these three coefficients is
used (especially if one applies a clustering algorithm that only depends on
the ranks of the dissimilarities, such as the single linkage method discussed
later). In this book, we prefer to work with the matching coefficient because
1t is simple and intuitive. In Section 5 we shall explain how to compute it by
means of the program DAISY.

The situation changes drastically if one works with asymmerric binary
variables, for which the outcomes are not equally important. An example of

]
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such a variable is the presence or absence of a relatively rare attribuie, EMW
s bloodtype AB negative. While it can be said that two people with -
negative have something in common, it is not so clear if the same nmw q
said of two people who do not have it. In medicine, one may want {0 § M M
the incidence of diseases, the presence of which are Eaﬁmmo.a by 1 and thet
absence by 0. For a typical sample of people, the data matrix would .noEww:
many zeroes, and most of the counts of the contingency tables like ( Fw
would be in d. Applying one of the invariant coefficients o..m Table 10 wou
lead to the conclusion that most people are very similar. Bock Qoﬁw
Section 4) gives an illuminating example concerning the color of flowers:
The binary variable red = 1/not red = 0 is very mmuﬂpamn.ﬁo. as the state-
ment “x,;= 1 and x,, =17 implies that flowers i and j have the same
color, whereas “x,; = 0 and x;, = 0” is much weaker and allows the flowers
to have very different colors. .

When working with asymmetric binary variables, we need oEo.H proxim-
ity coefficients. By convention, we shall always code the most important
outcome (which is typically the rarest one) by 1, and the other by (. .ﬂﬁ:
the agreement of two 1s (called a positive match or a 1-1 maich) will .@n
considered more significant than the agreement of two Os Aom:om_ a negative
match or a 0-0 match). Therefore, coefficients will be applied in which a,
the number of positive matches, carries more immmrﬁ. Emﬁ d, the number of
negative matches. Such coefficients are no longer invariant and the most
common of them, listed in Table 11, do not even count d at all.

The most famous noninvariant coefficient is due to Jaccard Goo@. and
looks like the simple matching coefficient except for leaving out d entirely.
It has occasionally been called S-coefficient. The other 85:.:3 in Table 11
assign double weight to a or to (b + ¢), and are monotonically related to
the Jaccard coefficient in a manner analogous to (17) and (18). There are
still other variants, some of which will be listed in Exercise 15. When

Table 11 Some Noninvariant Coefficients for Binary Data

Name s(i, ) di, j)

a b+
Jaccard coefficient (1908) PRI a4 bte
(Sneath, 1957; Hill et al., 1963)

2a b+ec
Dice {1945), Sorensen (1948) et bte e+ bte

a 2b+c)
Sokal and Sneath (1963) a+Ab+c) a+2(b+c)

(Duran and Odell, 1974)

TYPES OF DATA AND HOW TO HANDLE THEM 27

dealing with asymmetric binary variables, we prefer to use the Jaccard
coefficient, which has also been implemented in the program DAISY.

There have been some philosophical debates as to whether or not
negative matches should be counted at all. From a mathematical point of
view, the invariant coefficients are more elegant, whereas in some applica-
tions it may be more appropriate to use a formula of Table 11. In our
opinion there can be no single best coefficient because one should make the
distinction between symmetric and asymmetric variables. Symmetric binary
variables possess two equally important states, so for them the simple
matching coefficient appears to be a logical choice. On the other hand,
asymmetric binary variables are mostly concerned with the presence of a
relatively rare attribute (coded 1), the absence of which (coded 0) is
uneventful. By abuse of the word binary, one might call them monary
variables. In this situation 0-0 matches do not contribute much to the
similarity hetween two individuals, so the Jaccard coefficient appears to give
a reasonable description. Therefore, DAISY lets the user decide whether the
binary variables are symmetric, in which case simple matching will be
performed, or asymmetric, in which siteation the Jaccard coefficient will be
computed.

To illustrate why it is important to make this distinction, let us return to
the example of Table 9. Based on their interpretation, these binary variables

appear to be symmetric. When the simple matching coefficient is used, we
find

4(JAC,LIE) = 0.3  d(ILA,PET) = 0.5

On the other hand, applying the Jaccard coefficient (which would be rather
inappropriate in this context) would yield

d(JAC,LIE) = 0.750  d{ILA,PET) = 0.714

The main point is not that the actual values are different (which was to be
expected), but that the results are not monotone: In the first situation we
find that d(JAC,LIE) < d(ILA, PET), whereas in the second situation it
turns out that J(JAC,LIE) > 4(ILA, PET), which could lead ito quite
different clusterings. [Applying either of the remaining coefficients of Table
10 would still yield d(JAC, LIE) < J(ILA, PET) because they have a mono-
tone relation with the simple matching coefficient, while the measures of
Table 11 all yield 4(JAC, LIE) > d(ILA, PET) because they depend in a
monotone way on the Jaccard coefficient.]

When both symmetric and asymmetric binary variables occur in the

same data set, one can apply the “mixed variables” approach described in
Section 2.6,



INTRODUCTION
28

2.5 Nominal, Ordinal, and Ratio Variables

Apart from binary and interval-scaled variables, there exist at least E.Hma
other types of data, which are less commonly used. We shall briefly describe
these scales with some discussion as to how to treat them.

a. Nominal Variables .
In the previous section we studied binary variables, s_En: can only take ﬂ:
two states, typically coded as 1 and 0. This generalizes naturally to the
concept of a nominal variable, which may Ew.n on more than two states.
For instance, in Table 9 we had the binary <E,5,Ea blue nw.om\_uao.gE eyes,
which was appropriate for that collection of people. However, in larger
populations one will need at least four states: blue eyes/brown eyes \m_.mM:
eyes/grey eyes. In general, we denote the =E=¢9.. of states ._uw M and code
the outcomes as 1,2,..., M in the data matrix (sometimes the codes
0,1,..., M — 1 are also used). For instance, we could choose 1 = blue eyes,
2 = brown eyes, 3 = green eyes, and 4 = grey eyes. Note :E.H these m.SSm
are not ordered in any way: It is not because grey eyes are given a higher
code number than brown eyes that they would in some sense be better. ..:6
code numbers are only used to facilitate data handling, but one could just
as well code the different outcomes by letters or other symbols. .moBm
examples of nominal variables are the nationality of waov_m.ﬁc_. ..Eﬁow M
may be very large) or their marital status (bachelor /married /divorced /
widowed). . .
Sometimes nominal variables are converted to binary ones. By c@:mvm_nm
some states until only two remain, a binary variable _.om__:m. For instance,
one can group green eyes with brown eyes and grey with blue. However,
this clearly amounts to a loss of information. Another strategy ,S.EE be to
recode the data to a larger number of (asymmetric) binary <m5md_mmu.mo_.
instance by creating a new binary variable for each of the M nominal
states, and then to put it equal to 1 if the corresponding state occurs and to
0 otherwise. After that, one could resort to one of the dissimilarity coeffi-
cients of the previous subsection. ) .
By far the most common way of measuring the similarity or a_mm_nim.nQ
between some objects i and j that are characterized through nominal
variables is to use the simple matching approach:

and d(i, j) = T— (19)

s(i, j) = .

o R

(Sokal and Michener, 1958). Here, u is the number of Empormm,. that is, the
number of variables for which objects i and j happen to be in the same
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state. As before, p is the total number of variables (or, in a situation with
missing values, the number of variables that are available for both i and j).
Therefore, simple matching has exactly the same meaning as in the preced-
ing section. For instance, it is invariant with respect to different codings of
the variables because this does not affect the number of matches,

Again it is possible to give a higher weight to u, the number of
agreements, or to p -~ u, the number of disagreements. Such variants were
considered by Rogers and Tanimoto (1960) and Sokal and Sneath (1963),
corresponding to the formulas in Table 10. It must also be noted that
different variables may have different values of M. Therefore, Hyvarinen
{1962) assigns more weight to matches in variables with a large number of
states. Lingoes (1967) extends this by counting, for all variables, the
frequency with which each state actually occurs and by giving a higher
weight to matches corresponding to rare states. (This is reminiscent of the
treatment of asymmetric binary variables.) Some other variants can be
found in Bock (1974, Section 5).

We personally prefer the simple matching approach (19) because of its
intuitive appeal and widespread acceptance. Simple matching dissimilarities
can be computed by means of the program DAISY. It is not necessary to
know the number of states for each variable because the program will itself
produce an inventory with the number of states and the number of missing
values. Also, the codes entered may be arbitrary real numbers, so the
variables do not have to be coded in a discrete way. The main purpose of
DAISY is to deliver a dissimilarity matrix which can be used by some of
the clustering algorithms described in the following chapters.

b. Ordinal Variables

A discrete ordinal variable looks like a nominal variable, only now the M
states are ordered in a meaningful sequence. The codes 1,..., M are no
longer arbitrary. The distance between two states becomes larger when their
codes are further apart, so the states coded 1 and M differ most from each
other.

Ordinal variables are very useful for registering subjective assessments of
qualities that cannot be measured objectively. For example, you may ask
someone to convey his or her appreciation of some paintings in terms of
the following categories: detest = 1/dislike = 2 /indifferent = 3 /like =
4 /admire = 5. This person’s taste will then be modelled as an ordinal
variable with M = 5 states. Another possibility is to rank 20 paintings in
increasing order of appreciation, yielding an ordinal variable with states
1,2,...,20 and M = 20. (Note that in the latter example each state will
occur exactly once, whereas in the first it may happen that some states
occur very often and others not at all)} One may also obtain ordinal
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variables from the discretization of interval-scaled guantities, by splitting
up the continuous axis in a finite number of classes. Some examples are
weight categories for boxers and tax brackets. ) ]

Sometimes there does exist an underlying interval-scaled variable, but it
has not been measured. For instance, one can construct a ranking of the
hardness of stones by making scratches on one stone with another, without
necessarily being able to measure their hardness in absolute HQEm..Oa one
can organize a race without needing a stopwatch, by merely Rmﬁﬁﬁzm who
came in first, second, ..., and so on, as in the ancient olympics.

Continuous ordinal variables are very similar. They occur when the
measurements are continuous, but one is not certain whether they are in
anything like a linear scale, so the only trustworthy information is in the
ordering of the observations. Indeed, if a scale is transformed 5. an
exponential, a logarithmic or another nonlinear monotone transformation,
it loses its interval property: A difference of 3.2 on one end of the new scale
may be much more important than a difference of 3.2 on the other end.
Therefore, one replaces the observations by their ranks 1,..., M where M
is the number of different values taken on by the continuous variable. (Of
course, two equal measurements receive the same rank.) This is also very
useful when the original data were roughly on an interval scale, but
contained some gross errors. By switching to the ranks, such errors will
have a much smaller influence on the result. It is as if we do have the
running times of the race, but we are only interested in the ranking because
we consider the exact time intervals irrelevant (imagine the last runner,
seeing he is going to lose anyway and just walking the final part). Also,
maybe we do not know whether the “right” variable should be the total
running time or the average speed, which is on the inverse scale. In such
situations, it is often useful to reduce the data to the essentials by convert-
ing them to ranks.

Whatever its origin, we are left with a variable with ordered states
1,2,..., M. It would be a waste of information to treat it as if it were
nominal, because the further two states are apart, the larger the resulting
dissimilarity should become. Therefore, most authors advise treating the
ranks as interval-scaled and applying the usual formulas for obtaining
dissimilarities (like the Euclidean or Manhattan distance). As it may
happen that the ordinal variables under study possess different values of M,
it is useful to convert all variables to the 0-1 range in order to achieve equal
weighting of the variables. This can be done by replacing the rank r;. of the
ith object in the fth variable by

ik (20)
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where M, is the highest rank for variable f. In this way, all z,, will lie
between ) and 1,

The program DAISY can be applied to a data set with ordinal variables,
whether discrete or continuous. It will first convert each variable f to ranks
1,2,..., M, in such a way that equal measurements lead to equal ranks and
that each rank occurs at least once. Then it will replace all ranks by z;, as in
(20}. The final dissimilarity between objects i and / is then taken to be the
Manhattan distance (7} divided by the number of variables that are non-
missing for both abjects.

Note that when the variables are to be clustered one can compute a full
set of nonparametric correlations between them (say, Spearman coefficients)
by means of any standard statistical package and then apply DAISY to
transform these into a dissimilarity matrix by means of (11) or (12).

¢. Ratio Scale Variables

We have seen that interval-scaled variables are positive or negative numbers
on some kind of linear scale, for instance, the interval between 41°C and
51°C is equally important as the interval between - 28°C and —18°C. By
contrast, ratio-scaled variables are always positive measurements, for which
the distinction between 2 and 20 has the same meaning as the distinction
between 20 and 200. Typical examples are the concentration of a chemical
substance in a certain solvent or the radiation intensity of some radicactive
isotope. Often such ratio-scaled quantities follow exponential laws in time,
For instance, the total amount of microorganisms that evolve in a time ¢ (in
a closed system with abundant nourishment) is approximately given by

Ae® (21)

where 4 and B are positive constants, Formula (21) is usually referred to as
exponential growth and has been a reasonable model for the world popula-
tion over certain time periods. Similarly, the concentration of some alien
substances in human blood or the radiation intensity of an isotope can be
modelled by an exponential decay formula

Ae . (22)

In both (21) and (22), equal time intervals will lead to equal ratios of the
quantities described, for instance, each year the radioactivity will decrease
by the same percentage when compared to the level of the previous year.
When clustering objects that are characterized by ratio scale variables,
one has at least three options. The first is to simply treat them as if they
were on an interval scale. This is often done by people who only distinguish
between qualitative and quantitative variables, without considering the fine
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distinction between interval and ratio scales. In general, we would not
recommend this because the scale might become distorted. A second
approach, which is very common in chemistry, is to begin with a logarithmic
transformation of the ratio scale variables x, sy At least when they are all
nonzero, that is, one computes

Y= _om?qv . (23)

and treats these y;, as interval-scaled. This is quite a sensible procedure,
especially in situations where (21) or (22) apply. A third approach is to treat
the x,, as continuous ordinal data and switch to their ranks. This could also
be done after the logarithmic transformation (23) and would then yield
exactly the same result. The ranks are then treited as interval-scaled data,
in the way already described. This third approach is especially suitable
when there are doubts whether the original data are interval or ratio scaled,
or in case of uncertainty about the quality of the measurements. By only
making use of the ordinal information, the distinction between interval and
ratio disappears. Dissimilarities between objects (according to all three
approaches) can be computed by means of the program DAISY, the use of
which will be explained in Section 3.

2.6 Mixed Variables

In this section we have seen six types of variables:

symmetric binary
asymmetric binary
nominal

ordinal

interval

ratio

and we have discussed methods of dealing with data sets of one of these
types. However, in practical applications it can easily happen that several
kinds of variables occur in the same data set. For example, we could
combine the interval variables of Table 7 with the binary variables of Table
9 because they pertain to the same individuals. A larger example is Table
12, listing certain characteristics of garden flowers. In the first column it 1s
indicated whether the plant winters, that is, whether it may be left in the
garden when it freezes. The second column shows whether the flower may
stand in the shadow; those for which this is not so should be planted where
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Table 12 Characteristics of Some Garden Flowers
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1. Begonia { Bertinii boliviensis) 0 1 1 4 3 15 25 15
2. Broom ( Cytisus praecox) 1 0 0 2 1 3 150 50
3. Camellia (Japonica) g 1 0 3 13 1 150 50
4. Dahlia (Tartini) ¢ 0o 1 4 2 16 125 50
5. Forget-me-not ( Myosotis sylvaticay 0 1 0 5 2 2 20 15
6. Fuchsia (Marinka) 0 1 0 4 3 12 50 4B
7. Geranium (Rubin) o ¢ 0 4 3 13 40 20
8. Gladiolus (Flowersong) o 0o 1 2 2 7 100 15
9. Heather ( Erica carnea) 1 1 0 3 1 4 25 15
10. Hydrangea (Hortensis) 1 1 0 5 2 14 100 60
11. Iris (Versicolor) 1 1 1 5 3 8 45 10
12. Lily ( Lifium regale) 1 1 1 1 2 9 90 25
13. Lily-of-the-valley (Convallaria} 1 1 0 1 2 &6 20 10
14. Peony ( Paeonia lactiflora) 1 1 1 4 2 1 80 30
15. Pink Carnation (Dianthus) 1 0 ¢ 3 2 10 40 20
16. Red Rose ( Rosa rugosa) i 0 0 4 2 18 200 60
17. Scotch Rose ( Rosa pimpinelia) 1 0 0 2 2 17 150 60
18. Tulip (Twlipa sylvestris) c o 1 2 1 5 25 10

they are exposed to direct sunlight. These columns are symmetric binary
variables, with equally important states. The third binary variable is coded
1 for tuberous plants and 0 for plants without tubers. This variable is
asymmetric because two plants with tubers have at least something in
common, whereas plants without tubers may grow in completely different
ways. The next column describes the color of the flowers. This variable is
nominal, with m = 35 states occurring in these data (white = 1, yellow = 2,
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pink = 3, red = 4, and blue = 5). The fifth column says whether the E.E:
thrives best in dry (1), normal (2), or humid (3) soil. This is an ordinal
variable, the states being ranked according to increasing moisture. The sixth
column is someone’s preference ranking, going from 1 to 18. The code 18
next to the red rose indicates that this flower is best liked, whereas the code
1 is assigned to the plant least liked. This ordinal variable possesses many
states, but each state occurs only once. The last columns list the height of
the plants and the distances that should be left between them, both
expressed in centimeters. Therefore, this data set contains only two
interval-scaled variables out of a total of eight attributes.

Data with mixed variables can be treated in several ways. To begin with,
it is possible not to mix these types at all but to perform a separate cluster
analysis for each kind of variable. When the conclusions of these analyses
more or less agree, all is well. However, when different results are obtained,
it may be difficult to reconcile them.

Therefore, it is more practical to process the data together and then to
perform a single cluster analysis. For instance, one can treat all variables as
if they were interval-scaled. This is quite appropriate for symmetric binary
variables, for the ranks originating from ordinal variables, and for the
logarithms of ratio variables. However, for nominal variables with more
than two states this does not make much sense because some codes may be
further apart than others without reflecting an intrinsic “remoteness” of the
corresponding states. Also, asymmetric binary variables would be treated
symmetrically.

The opposite approach is to reduce everything to binary variables. How
to do this for nominal variables was already discussed. It is also easy to
obtain a binary variable from interval-scaled measurements y;, by cutting
the measurement axis in two, that is, by applying a rule like

if y,; < ay, then put x,, =0
if y,; > a;, then put x;, = 1

where the threshold a, may be chosen by means of subject-matter informa-
tion or simply by selecting a value in the center of the data. (It may even be
that the y,, form two clear clusters in one dimension, in which case a, may
be chosen between them.) The same rule can be applied to ordinal and ratio
variables. However, by converting the whole data set to binary attributes
one may lose quite a bit of information, which is often considered a
disadvantage.

In our opinion, the most convenient approach is to combine the different
variables into a single proximity matrix, as was proposed by Ducker et al.
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{1965), Rubin (1967), and Colless (1967). The definition of Gower (1971a)
takes care of interval, nominal, and binary data. We shall describe a slight
generalization of this method, also covering ordinal and ratio variables.
Actually, Gower’s original definition was a similarity coefficient between 0
and 1, but we shall transform it to a dissimilarity by means of (15).
Conversely, one can always return to similarities by computing s(i, j) =
1 — d(i, j) at the end.

Suppose the data set contains p variables of mixed nature. Then the
disstmilarity d{¢, j) between ohjects i and j is defined as

£z 8 d{P

dii, j) = 24

The indicator 8%/’ is put equal to 1 when both measurements x,, and x;
for the fth variable are nonmissing, and it is put equal to 0 otherwise.
Moreover, m,_m\ ) is also put equal to 0 when variable f is an asymmetric
binary attribute and objects i and j constitute a 0-0 match. Expression (24)
cannot be computed when all 8{/) are zero, in which case d(i, j) must be
assigned a conventional value or object 7 or j must be removed.

The number d{/? is the contribution of the fth variable to the dissimilar-
ity between 7 and j. We may assume that both x,, and x, are nonmissing:
otherwise 4!/’ does not have to be computed. If variable f is either binary

i
or nominal, then d{f? is defined as

d =1 ifx,# x;

Il

o mmxm\" .Hbq ANMW

[f all variables are nominal, expression (24) becomes the number of matches
over the total number of available pairs, so it coincides with the simple
matching coefficient (19). The same holds for symmetric binary variables,
for which the simple matching coefficient of Table 10 is recovered. When
the data consist of asymmetric binary variables, we obtain the Jaccard
coefficient of Table 11 because the 0-0 matches are not counted (because
their 8{/) equals zero).
If variable f is interval-scaled, then df/’ is given by

|Xip = X il

ayp = =

(26)
s
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where R I is the range of variable f, defined as

x.‘.” —.D_WXHE..I EM—HH_:\ ANQV

where # runs over all nonmissing objects for variable f. Therefore, (26) is
always a number between O and 1. Ordinal variables are first replaced by
their ranks, after which (26) is applied. Ratio variables may be treated as
interval variables: They can be converted to ranks or a logarithmic transfor-
mation may be carried out. In either case, (26) is applied to the result.

When all variables are interval-scaled, Gower’s formula (24) becomes the
Manhattan distance, assuming that the variables were first divided by their
range [note that this standardization is quite different from (4)]. When all
variables are ordinal, (24) yields the same result as the method described in
Section 2.5. The same is true for ratio variables.

We conclude that the combined method (24) generalizes the dissimilari-
ties of the homogeneous data discussed earlier. The computations can be
performed with the program DAISY, as described in Section 5. For
instance, it easily deals with Table 12. The same program is used for data
with variables of a single type and for processing similarities and correla-
tion coefficients. In ail cases, it delivers a dissimilarity matrix that can be
used to run four of the clustering programs of this book. Figure 15 of
Section 4 contains a survey of the function of DAISY, among other
information.

Note that we followed Gower in restricting /) to the 0-1 range, so each
variable yields a contribution between 0 and 1 to the average dissimilarity
(24). |As a consequence, the resulting dissimilarity d(7, j) also lies between
0 and 1, and can be turned back into Gower’s original formula by
computing s(i, j} =1 — d(i, j).] Why restrict ourselves to this range?
Suppose we were to allow contributions with very different ranges, as done
by Romesburg (1984) in his combined resemblance matrix approach. Then
some interesting anomalies are possible. Take an example with a few
asymmetric binary variables and many interval variables, the latter yielding
contributions d .m\ ) around 3 or 4. Consider an asymmetric binary variable
with x,,= 0 and x;, =1, which yields a contribution d{/) of 1. Now
change x, to 0, so we obtain a 0-0 match and the term &h.w.\ ) <m=~wrom. UO.E
in the numerator and the denominator. This yields a larger dissimilarity
d(i, j) than before. This effect is, of course, opposite to what was expected.
It appears necessary to have equal ranges if one wants to be able to delete
certain contributions, or else the effects of such deletions may be unwar-
ranted.

ﬁ
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As a final remark, it must be noted that it is even possible to cluster
objects that are characterized by a combination of measurements and
proximities. For instance, suppose we have a similarity matrix, a dissimilar-
ity matrix, and a mixed collection of attributes, all pertaining to the same n
objects. Then DAISY can convert the similarity matrix into a dissimilarity
matrix as in (15), and compute another dissimilarity matrix from the
attributes according to (24). The three resulting dissimilarity matrices can
then be combined into a single one by means of

EH.&_AP ,___.v + ENQMT.u .: + Eu&uT., uv
W+ Wy + oy

b.:_ .\v =

where w,, w,, and wy are some positive weights that may be chosen in a
subjective way.

This section was devoted to clustering objects that are characterized by
attributes of mixed types. In some situations, however, one might want to
cluster the variables themselves. This was discussed by Lance and Williams
(1979), who compute dissimilarities between variables of mixed types.

3 WHICH CLUSTERING ALGORITHM TO CHOOSE

Let us give an overview of the clustering methods implemented in this
book, together with their most important characteristics and some hints
toward typical applications. The choice of a clustering algorithm depends
both on the type of data available and on the particular purpose. Some-
times several algorithms are applicable, and a priori arguments may not
suffice to narrow down the choice to a single method. In such a situation it
is probably a good idea to run more than one program and to carefully
analyze and compare the resulting classifications, making use of their
graphical displays. The interpretation of these results must then be based
on insight into the meaning of the original data, together with some
experience with the algorithms used. It is permissible to try several algo-
rithms on the same data, because cluster analysis is mostly used as a
descriptive or exploratory tool, in contrast with statistical tests which are
carried out for inferential or confirmatory purposes. That is, we do not wish
to prove (or disprove) a preconceived hypothesis; we just want to see what
the data are trying to tell us.

Of course there exist very many clustering algorithms in the literature,
and it would be infeasible to try to review all of them. Bock (1974)
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