1. The dataset **fossilien.dat** contains measurements (length, width of the corpus, ...) of “cocoliths” of the species *Gephyrocapsa* and other variables as salt content, temperature and Chlorophyll. There is a short explanation of some variables:

- **LLength**: log10(Length)
- **sAngle**: sqrt(Angle)
- **rWidth**: Width/Length
- **rClength**: CLength/Length
- **Cratio**: Cwidth/Clength / (Width/Length)
- **SST.mean**: Annual Mean Temperature
- **Salinity**: salinity
- **lChlorophyll**: log10(Chlorophyll)

In this exercise we would like to learn the method of multivariate regression.

a) Load the data and have a first look at it.

b) We would like to test, whether the body size is associated with the environmental conditions during that period. Make a multivariate regression. Target variables are sAngle, LLength and rWidth; predictors are SST.Mean, Salinity and lChlorophyll.

c) Make a Wilks Test to check if any predictor has an influence on any target variable.

d) Have a look at the individual regression summaries.
Does lChlorophyll have an equally significant effect on all three responses?

2. We test the differences between the unforged and forged banknotes: **CODE**: 0 unforged banknotes, 1 forged banknotes

LENGTH, LEFT, RIGHT, BOTTOM, TOP, DIAGONAL: different measures of the banknotes.

You may find the data in http://stat.ethz.ch/Teaching/Datasets/WBL/banknot.dat.

a) Load the data and have a first look at it.

b) We would like to know whether the variable **LENGTH** differs significantly for the unforged and the forged banknotes. Make a *t*-Test for the variable **LENGTH**. Make the same test for all other variables - we would like to know whether the other variables can separate the unforged from the forged banknotes significantly. Write a small program that returns the *p*-value of the test. Use `apply()`.

R-Hint:
```
t.test(LENGTH ~ CODE, ...)
f.ttest <- function(y) {
  r.ttest <- t.test(y ~ bn[,"CODE")
  r.ttest$...
}apply(...., f.ttest)
c) Install the package ICSNP. Look at the help file of the function `HotellingsT2`.
d) Use Hotellings's T-test for unpaired groups in order to decide, whether the unforged banknotes differ from the forged ones.

3. **Model-Based Clustering**: In this exercise we would like to apply the Model-Based-Clustering to the dataset **banknot.dat**.

a) Make a clustering with `Mclust()` from the package `mclust` using the maximum likelihood method. What number of clusters and what model do you propose?

**R-hint**: Look in the helpfile for more information.
library(mclust)
d.banknot <- read.table("http://stat.ethz.ch/Teaching/Datasets/WBL/banknot.dat")
ml.banknot<-Mclust(d.banknot[-1])
plot(... , what="BIC")
ml.cluster<-Mclust(... , modelNames="" , G= ...)
where modelNames is the choice of method for the structure of the covariance matrix (EEE to VVV) and G the number of clusters.

b) Make a table with the misclassification of the model based method with respect to CODE. Keep in mind: CODE=0 are the genuine banknotes an CODE=1 the forged ones.
Make a pairs plot of the variables by chosing the color of the dots according to CODE (col=) and the shape according to their model based method (pch=). Comment?
c) Carry out the PAM-algorithm for the same number of clusters as above and the euclidean metric.
Make a table with the "misclassification" of the model based method compared to the PAM algorithm.
Make a pairs plot of the variables by chosing the color of the dots according to the PAM cluster (col=) and the shape according to their model based method (pch=). Comment?

4. Agglomerative Clustering: In the dataframe empl2.dat (of employment.dat), the rounded rate (in percent) of employment in 9 different sectors in 10 chosen european states are given. The data are from 1979. The observation (states) are:

<table>
<thead>
<tr>
<th>State</th>
<th>Acronym</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belgium</td>
<td>B</td>
</tr>
<tr>
<td>CH</td>
<td>Switzerland</td>
</tr>
<tr>
<td>CS</td>
<td>Czechoslovakia</td>
</tr>
<tr>
<td>D</td>
<td>BRD</td>
</tr>
<tr>
<td>GB</td>
<td>Great Britain</td>
</tr>
<tr>
<td>GR</td>
<td>Greece</td>
</tr>
<tr>
<td>H</td>
<td>Hungary</td>
</tr>
<tr>
<td>S</td>
<td>Sweden</td>
</tr>
<tr>
<td>TR</td>
<td>Turkey</td>
</tr>
<tr>
<td>YU</td>
<td>Yugoslavia</td>
</tr>
</tbody>
</table>

a) First look at the data using the scatterplot. Can you find clusters by eye?

R-hint: With the following R-Code, you can label the points in the scatterplotmatrix with the acronym of their countries (you can find further examples in the helpfile of pairs()).
t.url <- "http://stat.ethz.ch/Teaching/Datasets/WBL/empl2.dat"
empl <- read.table(t.url, header=T)
labempl <- rownames(empl)
pairs(empl, panel=function(x,y) text(x,y, labels=labempl, xpd=T))

b) Calculate the euclidean distances between the states. Which two states are first combined into a cluster?

R-hint: With as.matrix() you can convert the result of daisy() (Package cluster) into a distance matrix. Useful R-commands include sort() and unique().
c) Carry out a hierarchical cluster analysis by hand using the “Single Linkage”-method.
d) Carry out the previous cluster analysis using the function agnes(). Verify your result of c) by comparing the first five steps.

R-hint:
sing.empl <- agnes(empl, method="single")
# 2 Plots (Bannerplot und Dendrogramm)
par(mfrow=c(1,2))
plot(sing.empl)
e) Carry out the cluster analysis with the same distances but with the methods average and complete. Compare the dendrograms of all three methods (including the Single Linkage Method).
R-hint: If you set the arguments which.plot in plot to 2, only the dendrogram is plotted.
f) Group the states into k clusters. Choose for instance k = 3 and k = 4. Compare the different methods. Also plot an MDS-plot and mark the observed groups of states with colors (for one k and one method).

R-hint:
# Classification in four groups using average Linkage
r.4cl <- cutree(aver.empl, k=4)
split(labempl, r.4cl)
# MDS-Plot:
r.mds <- cmdscale(daisy(empl))
plot(r.mds, type = "n", main = "'Average clustering, MDS coordinates")
text(r.mds, labempl, col = 1 + r.4cl)
5. Load the data banknot.dat - we will need this data again in this exercise. We use the partitions algorithm PAM to separate the forged from the unforgerd banknotes and compare it with the K-means method. In order to be able to compare your results with the sample solution use set.seed(10). Take the whole dataset banknot.dat and choose the variables CODE, BOTTOM and DIAGONAL. You will need the package cluster and MASS. Reading in the data:

```
> d.bank.org <- read.table("http://stat.ethz.ch/Teaching/Datasets/WBL/banknot.dat")
> d.bank <- d.bank.org[,c("CODE","BOTTOM","DIAGONAL")]
```

a) K-means-algorithm:
- Apply the K-means algorithm (without CODE), to obtain 2 optimal clusters.
- Make a table of the misclassifications with respect to the "true" classifications (CODE).
- Make a silhouette-plot. Comments?
  **R-Hint:** For the silhouette-plot we need the distance matrix and proceed as follows:
  ```r
 ?kmeans
 ... <- dist(... ,method="euclidean")
 ... <- silhouette(...$cluster,t.bank)
 plot(...)
  ```

b) PAM-algorithm:
- Find the optimal partition in 2 clusters for this dataset (without CODE) using the PAM method for the euclidean metric.
- Represent the two variables by producing different point shapes for the different clusters and different colors for the CODE. Which observations were classified wrong?
- Make a table of the misclassifications, as in a).
- Make e silhouette-plot. Comments?
  **R-Hint:** The silhouette-plot is easier for pam: `plot(... , which=2)`. What does `plot(... , which=1)` yield?

c) Compare the two results. Make a table with the differences with respect to the two clusterings.
Note: The clustervalues of a point do not have to be the same - this means a point can have value 1 with the K-means-method and value 2 with the PAM-method (`...$cluster` and `...$clustering`)

d) We would like to show by means of simple simulation, that the K-means algorithm finds local minima. Use the K-means algorithm for 3 clusters 100 times and change the size of the 3 clusters (number of points in the cluster) in each run. You can use the following code:

```
set.seed(10)
v.einer1 <- rep(1,dim(d.bank)[1])
v.einer2 <- rep(1,100)
t.kmeans <- NULL
for (i in 1:100){
kmean.bank.cluster <- kmeans(d.bank[,-1],centers=3)$cluster
t.kmeans <- cbind(t.kmeans,sort(aggregate(v.einer1,by=list(kmean.bank.cluster),
FUN=sum) [,2]))
}
trans.kmeans <- t(t.kmeans)
m.kmeans <- aggregate(v.einer2,by=list(trans.kmeans[,1],trans.kmeans[,2],
trans.kmeans[,3]),FUN=sum)
m.kmeans
```

Adapt the code for the PAM-algorithm. Comment? Do the same with 2,4,5 etc. clusters.

**Preliminary discussion:** 21.05.12.

**Deadline:** No hand-in.