
Computational Statistics

Spring 2008
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Chapter 1

Multiple Linear Regression

1.1 Introduction

Linear regression is a widely used statistical model in a broad variety of applications. It
is one of the easiest examples to demonstrate important aspects of statistical modelling.

1.2 The Linear Model

Multiple Regression Model:

Given is one response variable: up to some random errors
it is a linear function of several predictors (or covariables).
The linear function involves unknown parameters. The goal is to estimate these
parameters, to study their relevance and to estimate the error variance.

Model formula:

Yi = β1xi1 + . . .+ βpxip + εi (i = 1, . . . , n) (1.1)

Usually we assume that ε1, . . . , εn are i.i.d. (independent, identically distributed) with
E[εi] = 0, Var(εi) = σ2.

Notations:

• Y = {Yi; i = 1, . . . , n} is the vector of the response variables

• x(j) = {xij ; i = 1, . . . , n} is the vector of the jth predictor (covariable) (j = 1, . . . , p)

• xi = {xij ; j = 1, . . . p} is the vector of predictors for the ith observation
(i = 1, . . . , n)

• β = {βj ; j = 1, . . . , p} is the vector of the unknown parameters

• ε = {εi; i = 1, . . . , n} is the vector of the unknown random errors

• n is the sample size, p is the number of predictors

The parameters βj and σ2 are unknown and the errors εi are unobservable. On the
other hand, the response variables Yi and the predictors xij have been observed.

Model in vector notation:

Yi = xi
ᵀβ + εi (i = 1, . . . , n)

1



2 Multiple Linear Regression

Model in matrix form:

Y = X × β + ε
n× 1 n× p p× 1 n× 1

(1.2)

where X is a (n× p)-matrix with rows xi
ᵀ and columns x(j).

The first predictor variable is often a constant, i.e., xi1 ≡ 1 for all i. We then get an
intercept in the model.

Yi = β1 + β2xi2 + . . .+ βpxip + εi.

We typically assume that the sample size n is larger than the number of predictors
p, n > p, and moreover that the matrix X has full rank p, i.e., the p column vectors
x(1), . . . ,x(p) are linearly independent.

1.2.1 Stochastic Models

The linear model in (1.1) involves some stochastic (random) components: the error terms
εi are random variables and hence the response variables Yi as well. The predictor vari-
ables xij are here assumed to be non-random. In some applications, however it is more
appropriate to treat the predictor variables as random.

The stochastic nature of the error terms εi can be assigned to various sources: for
example, measurement errors or inability to capture all underlying non-systematic effects
which are then summarized by a random variable with expectation zero. The stochastic
modelling approach will allow to quantify uncertainty, to assign significance to various
components, e.g. significance of predictor variables in model (1.1), and to find a good
compromise between the size of a model and the ability to describe the data (see section
1.7).

The observed response in the data is always assumed to be realizations of the random
variables Y1, . . . , Yn; the xij ’s are non-random and equal to the observed predictors in the
data.

1.2.2 Examples

Two-sample model:

p = 2, X =



1 0
1 0
...

...
1 0
0 1
0 1
...

...
0 1


, β =

(
µ1
µ2

)
.

Main questions: µ1 = µ2? Quantitative difference between µ1 and µ2?
From introductory courses we know that one could use the two-sample t-test or two-sample
Wilcoxon test.
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Regression through the origin: Yi = βxi + εi (i = 1, . . . n).

p = 1, X =


x1
x2
...
xn

 , β = β.

Simple linear regression: Yi = β1 + β2xi + εi (i = 1, . . . n).

p = 2 X =


1 x1
1 x2
...

...
1 xn

 , β =

(
β1
β2

)
.

Quadratic regression: Yi = β1 + β2xi + β3x
2
i + εi (i = 1, . . . n).

p = 3, X =


1 x1 x21
1 x2 x22
...

...
...

1 xn x2n

 , β =

 β1
β2
β3

 .

Note that the fitted function is quadratic in the xi’s but linear in the coefficients βj and
therefore a special case of the linear model (1.1).

Regression with transformed predictor variables:
Yi = β1 + β2 log(xi2) + β3 sin(πxi3) + εi (i = 1, . . . n).

p = 3, X =


1 log(x12) sin(πx13)
1 log(x22) sin(πx23)
...

...
...

1 log(xn2) sin(πxn3)

 , β =

 β1
β2
β3

 .

Again, the model is linear in the coefficients βj but nonlinear in the xij ’s.

In summary:

The model in (1.1) is called linear because it is linear in the coefficients βj .
The predictor (and also the response) variables can be transformed versions
of the original predictor and/or response variables.

1.2.3 Goals of a linear regression analysis

• A good “fit”. Fitting or estimating a (hyper-)plane over the predictor variables to
explain the response variables such that the errors are “small”. The standard tool
for this is the method of least squares (see section 1.3).

• Good parameter estimates. This is useful to describe the change of the response
when varying some predictor variable(s).

• Good prediction. This is useful to predict a new response as a function of new
predictor variables.

• Uncertainties and significance for the three goals above. Confidence intervals
and statistical tests are useful tools for this goal.
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• Development of a good model. In an interactive process, using methods for the
goals mentioned above, we may change parts of an initial model to come up with a
better model.

The first and third goal can become conflicting, see section 1.7.

1.3 Least Squares Method

We assume the linear model Y = Xβ+ε. We are looking for a “good” estimate of β. The
least squares estimator β̂ is defined as

β̂ = arg min
β

‖Y −Xβ‖2 , (1.3)

where ‖·‖ denotes the Euclidean norm in Rn.

1.3.1 The normal equations

The minimizer in (1.3) can be computed explicitly (assuming that X has rank p). Com-
puting partial derivatives of ‖Y −Xβ‖2 with respect to β (p-dimensional gradient vector),
evaluated at β̂, and setting them to zero yields

(−2) Xᵀ(Y −Xβ̂) = 0 ((p× 1)− null-vector).

Thus, we get the normal equations

XᵀXβ̂ = XᵀY. (1.4)

These are p linear equations for the p unknowns (components of β̂).

Assuming that the matrix X has full rank p, the p × p matrix XᵀX is invertible, the
least squares estimator is unique and can be represented as

β̂ = (XᵀX)−1XᵀY.

This formula is useful for theoretical purposes. For numerical computation it is much more
stable to use the QR decomposition instead of inverting the matrix XᵀX. 1

From the residuals ri = Yi − xi
ᵀβ̂, the usual estimate for σ2 is

σ̂2 =
1

n− p

n∑
i=1

r2i .

Note that the ri’s are estimates for εi’s; hence the estimator is plausible, up to the some-
what unusual factor 1/(n − p). It will be shown in section 1.4.1 that due to this factor,
E[σ̂2] = σ2.

1Let X = QR with orthogonal (n × p) matrix Q and upper (Right) triangular (p × p) R. Because of

XᵀX = RᵀQᵀQR = RᵀR, computing β̂ only needs subsequent solution of two triangular systems: First
solve Rᵀc = XᵀY for c, and then solve Rβ̂ = c. Further, when Cov(β̂) requires (XᵀX)−1, the latter is
R−1(R−1)ᵀ.
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Figure 1.1: The pill kink.

1.3.2 Assumptions for the Linear Model

We emphasize here that we do not make any assumptions on the predictor variables,
except that the matrix X has full rank p < n. In particular, the predictor variables can
be continuous or discrete (e.g. binary).

We need some assumptions so that fitting a linear model by least squares is reasonable
and that tests and confidence intervals (see 1.5) are approximately valid.

1. The linear regression equation is correct. This means: E[εi] = 0 for all i.

2. All xi’s are exact. This means that we can observe them perfectly.

3. The variance of the errors is constant (“homoscedasticity”). This means:

Var(εi) = σ2 for all i.

4. The errors are uncorrelated. This means: Cov(εi, εj) = 0 for all i 6= j.

5. The errors {εi; i = 1, . . . , n} are jointly normally distributed. This implies

that also {Yi; i = 1, . . . , n} are jointly normally distributed.

In case of violations of item 3, we can use weighted least squares instead of least
squares. Similarly, if item 4 is violated, we can use generalized least squares. If the
normality assumption in 5 does not hold, we can use robust methods instead of least
squares. If assumption 2 fails to be true, we need corrections known from “errors in
variables” methods. If the crucial assumption in 1 fails, we need other models than the
linear model.

The following example shows violations of assumption 1 and 4. The response variable
is the annual number of births in Switzerland since 1930, and the predictor variable is the
time (year).

We see in Figure 1.1 that the data can be approximately described by a linear relation
until the “pill kink” in 1964. We also see that the errors seem to be correlated: they are
all positive or negative during periods of 10 – 20 years. Finally, the linear model is not
representative after the pill kink in 1964. In general, it is dangerous to use a fitted model
for extrapolation where no predictor variables have been observed (for example: if we had
fitted the linear model in 1964 for prediction of number of births in the future until 2005).
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X

Ŷ

r

Y

E[Y]

Figure 1.2: The residual vector r is orthogonal to X .

1.3.3 Geometrical Interpretation

The response variable Y is a vector in Rn. Also, Xβ describes a p-dimensional subspace
X in Rn (through the origin) when varying β ∈ Rp (assuming that X has full rank p).
The least squares estimator β̂ is then such that Xβ̂ is closest to Y with respect to the
Euclidean distance. But this means geometrically that

Xβ̂ is the orthogonal projection of Y onto X .

We denote the (vector of ) fitted values by

Ŷ = Xβ̂.

They can be viewed as an estimate of Xβ.

The (vector of) residuals is defined by

r = Y − Ŷ.

Geometrically, it is evident that the residuals are orthogonal to X , because Ŷ is the
orthogonal projection of Y onto X . This means that

rᵀx(j) = 0 for all j = 1, . . . , p,

where x(j) is the jth column of X.

We can formally see why the map

Y 7→ Ŷ

is an orthogonal projection. Since Ŷ = Xβ̂ = X(XᵀX)−1XᵀY, the map can be repre-
sented by the matrix

P = X(XᵀX)−1Xᵀ. (1.5)
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It is evident that P is symmetric (P ᵀ = P ) and P is idem-potent (P 2 = P ). Furthermore∑
i

Pii = tr(P ) = tr(X(XᵀX)−1Xᵀ) = tr((XᵀX)−1XᵀX) = tr(Ip×p) = p.

But these 3 properties characterize that P is an orthogonal projection from Rn onto a
p-dimensional subspace, here X .

The residuals r can be represented as

r = (I − P )Y,

where I − P is now also an orthogonal projection onto the orthogonal complement of X ,
X⊥ = Rn \ X , which is (n − p)-dimensional. In particular, the residuals are elements of
X⊥.

1.3.4 Don’t do many regressions on single variables!

In general, it is not appropriate to replace multiple regression by many single regressions
(on single predictor variables). The following (synthetic) example should help to demon-
strate this point.

Consider two predictor variables x(1), x(2) and a response variable Y with the values

x(1) 0 1 2 3 0 1 2 3

x(2) −1 0 1 2 1 2 3 4

Y 1 2 3 4 −1 0 1 2

Multiple regression yields the least squares solution which describes the data points exactly

Yi = Ŷi = 2xi1 − xi2 for all i (σ̂2 = 0). (1.6)

The coefficients 2 and -1, respectively, describe how y is changing when varying either x(1)

or x(2) and keeping the other predictor variable constant. In particular, we see that Y
decreases when x(2) increases.

On the other hand, if we do a simple regression of Y onto x(2) (while ignoring the values
of x(1); and thus, we do not keep them constant), we obtain the least squares estimate

Ŷi =
1

9
xi2 +

4

3
for all i (σ̂2 = 1.72).

This least squares regression line describes how Y changes when varying x(2) while ignoring
x(1). In particular, Ŷ increases when x(2) increases, in contrast to multiple regression!

The reason for this phenomenon is that x(1) and x(2) are strongly correlated: if x(2)

increases, then also x(1) increases. Note that in the multiple regression solution, x(1) has a
larger coefficient in absolute value than x(2) and hence, an increase in x(1) has a stronger
influence for changing y than x(2). The correlation among the predictors in general makes
also the interpretation of the regression coefficients more subtle: in the current setting,
the coefficient β1 quantifies the influence of x(1) on Y after having subtracted the effect
of x(2) on Y , see also section 1.5.

Summarizing:

Simple least squares regressions on single predictor variables yield the multiple
regression least squares solution, only if the predictor variables are orthogonal.

In general, multiple regression is the appropriate tool to include effects of
more than one predictor variables simultaneously.
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The equivalence in case of orthogonal predictors is easy to see algebraically. Or-
thogonality of predictors means XᵀX = diag(

∑n
i=1 x

2
i1, . . . ,

∑n
i=1 x

2
ip) and hence the least

squares estimator

β̂j =

n∑
i=1

xijYi/

n∑
i=1

x2ij (j = 1, . . . , p),

i.e., β̂j depends only on the response variable Yi and the jth predictor variable xij .

1.3.5 Computer-Output from R : Part I

We show here parts of the computer output (from R ) when fitting a linear model to data
about quality of asphalt.

y = LOGRUT : log("rate of rutting") = log(change of rut depth in inches

per million wheel passes)

["rut" := ‘Wagenspur’, ausgefahrenes Geleise]

x1 = LOGVISC : log(viscosity of asphalt)

x2 = ASPH : percentage of asphalt in surface course

x3 = BASE : percentage of asphalt in base course

x4 = RUN : ’0/1’ indicator for two sets of runs.

x5 = FINES : 10* percentage of fines in surface course

x6 = VOIDS : percentage of voids in surface course

The following table shows the least squares estimates β̂j (j = 1, . . . , 7), some empirical
quantiles of the residuals ri (i = 1, . . . , n), the estimated standard deviation of the errors2√
σ̂2 and the so-called degrees of freedom n− p.

Call:

lm(formula = LOGRUT ~ . , data = asphalt1)

Residuals:

Min 1Q Median 3Q Max

-0.48348 -0.14374 -0.01198 0.15523 0.39652

Coefficients:

Estimate

(Intercept) -5.781239

LOGVISC -0.513325

ASPH 1.146898

BASE 0.232809

RUN -0.618893

FINES 0.004343

VOIDS 0.316648

Residual standard error: 0.2604 on 24 degrees of freedom

2 The term “residual standard error” is a misnomer with a long tradition, since “standard error” usually

means

√
V̂ar
(
θ̂
)

for an estimated parameter θ.
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1.4 Properties of Least Squares Estimates

As an introductory remark, we point out that the least squares estimates are random
variables: for new data from the same data-generating mechanism, the data would look
differently every time and hence also the least squares estimates. Figure 1.3 displays three
least squares regression lines which are based on three different realizations from the same
data-generating model (i.e., three simulations from a model). We see that the estimates
are varying: they are random themselves!
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Figure 1.3: Three least squares estimated regression lines for three different data realiza-
tions from the same model.

1.4.1 Moments of least squares estimates

We assume here the usual linear model

Y = Xβ + ε, E[ε] = 0, Cov(ε) = E[εεᵀ] = σ2In×n. (1.7)

This means that assumption 1.-4. from section 1.3.2 are satisfied.
It can then be shown that:

(i) E[β̂] = β: that is, β̂ is unbiased

(ii) E[Ŷ] = E[Y] = Xβ which follows from (i). Moreover, E[r] = 0.

(iii) Cov(β̂) = σ2(XᵀX)−1

(iv) Cov(Ŷ) = σ2P , Cov(r) = σ2(I − P )

The residuals (which are estimates of the unknown errors εi) are also having expecta-
tion zero but they are not uncorrelated:

Var(ri) = σ2(1− Pii).

From this, we obtain

E[
n∑
i=1

r2i ] =
n∑
i=1

E[r2i ] =
n∑
i=1

Var(ri) = σ2
n∑
i=1

(1− Pii) = σ2(n− tr(P )) = σ2(n− p).

Therefore, E[σ̂2] = E[
∑n

i=1 r
2
i /(n− p)] = σ2 is unbiased.
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1.4.2 Distribution of least squares estimates assuming Gaussian errors

We assume the linear model as in (1.7) but require in addition that ε1, . . . , εn i.i.d. ∼
N (0, σ2). It can then be shown that:

(i) β̂ ∼ N p(β, σ
2(XᵀX)−1)

(ii) Ŷ ∼ N n(Xβ, σ2P ), r ∼ N n(0, σ2(I − P ))

(iii) σ̂2 ∼ σ2

n−pχ
2
n−p.

The normality assumptions of the errors εi is often not (approximately) fulfilled in
practice. We can then rely on the central limit theorem which implies that for large
sample size n, the properties (i)-(iii) above are still approximately true. This is the usual
justification in practice to use these properties for constructing confidence intervals and
tests for the linear model parameters. However, it is often much better to use robust
methods in case of non-Gaussian errors which we are not discussing here.

1.5 Tests and Confidence Regions

We assume the linear model as in (1.7) with ε1, . . . , εn i.i.d. ∼ N (0, σ2) (or with εi’s i.i.d.
and“large” sample size n). As we have seen above, the parameter estimates β̂ are normally
distributed.

If we are interested whether the jth predictor variable is relevant, we can test the
null-hypothesis H0,j : βj = 0 against the alternative HA,j : βj 6= 0. We can then easily

derive from the normal distribution of β̂j that

β̂j√
σ2(XᵀX)−1jj

∼ N (0, 1) under the null-hypothesis H0,j .

Since σ2 is unknown, this quantity is not useful, but if we substitute it with the estimate
σ̂2 we obtain the so-called t-test statistic

Tj =
β̂j√

σ̂2(XᵀX)−1jj

∼ tn−p under the null-hypothesis H0,j , (1.8)

which has a slightly different distribution than standard Normal N (0, 1). The corre-
sponding test is then called the t-test. In practice, we can thus quantify the relevance of
individual predictor variables by looking at the size of the test-statistics Tj (j = 1, . . . , p)
or at the corresponding P -values which may be more informative.

The problem by looking at individual tests H0,j is (besides the multiple testing problem
in general) that it can happen that all individual tests do not reject the null-hypotheses
(say at the 5% significance level) although it is true that some predictor variables have
a significant effect. This “paradox” can occur because of correlation among the predictor
variables.

An individual t-test for H0,j should be interpreted as quantifying the effect of
the jth predictor variable after having subtracted the linear effect of all
other predictor variables on Y .

To test whether there exists any effect from the predictor variables, we can look at the
simultaneous null-hypothesis H0 : β2 = . . . = βp = 0 versus the alternative HA : βj 6=
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0 for at least one j ∈ {2, . . . , p}; we assume here that the first predictor variable is the
constant Xi,1 ≡ 1 (there are p − 1 (non-trivial) predictor variables). Such a test can be
developed with an analysis of variance (anova) decomposition which takes a simple form
for this special case: ∥∥Y −Y

∥∥2 =
∥∥Ŷ −Y

∥∥2 +
∥∥Y − Ŷ

∥∥2
which decomposes the total squared error Y −Y around the mean Y = n−1

∑n
i=1 Yi · 1

as a sum of the squared error due to the regression Ŷ − Y (the amount that the fitted
values vary around the global arithmetic mean) and the squared residual error r = Y−Ŷ.
(The equality can be seen most easily from a geometrical point of view: the residuals r
are orthogonal to X and hence to Ŷ −Y). Such a decomposition is usually summarized
by an ANOVA table (ANalysis Of VAriance).

sum of squares degrees of freedom mean square E [mean square]

regression ‖Ŷ −Y‖2 p− 1 ‖Ŷ −Y‖2/(p− 1) σ2 +
‖E[Y]−E[Y]‖2

p−1

error ‖Y − Ŷ‖2 n− p ‖Y − Ŷ‖2/(n− p) σ2

total around

global mean ‖Y −Y‖2 n− 1 − −

In case of the global null-hypothesis, there is no effect of any predictor variable and
hence E[Y] ≡ const. = E[Y]: therefore, the expected mean square equals σ2 under H0.
The idea is now to divide the mean square by the estimate σ̂2 to obtain a scale-free
quantity: this leads to the so-called F -statistic

F =
‖Ŷ −Y‖2/(p− 1)

‖Y − Ŷ‖2/(n− p)
∼ Fp−1,n−p under the global null-hypothesis H0.

This test is called the F -test (it is one among several other F -tests in regression).

Besides performing a global F -test to quantify the statistical significance of the predic-
tor variables, we often want to describe the goodness of fit of the linear model for explaining
the data. A meaningful quantity is the coefficient of determination, abbreviated by R2,

R2 =
‖Ŷ −Y‖2

‖Y −Y‖2
.

This is the proportion of the total variation of Y around Y which is explained by the
regression (see the ANOVA decomposition and table above).

Similarly to the t-tests as in (1.8), one can derive confidence intervals for the unknown
parameters βj :

β̂j ±
√
σ̂2(XᵀX)−1jj · tn−p;1−α/2

is a two-sided confidence interval which covers the true βj with probability 1 − α; here,
tn−p;1−α/2 denotes the 1− α/2 quantile of a tn−p distribution.

1.5.1 Computer-Output from R : Part II

We consider again the dataset from section 1.3.5. We now give the complete list of sum-
mary statistics from a linear model fit to the data.

Call:

lm(formula = LOGRUT ~ ., data = asphalt1)
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Residuals:

Min 1Q Median 3Q Max

-0.48348 -0.14374 -0.01198 0.15523 0.39652

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -5.781239 2.459179 -2.351 0.027280 *

LOGVISC -0.513325 0.073056 -7.027 2.90e-07 ***

ASPH 1.146898 0.265572 4.319 0.000235 ***

BASE 0.232809 0.326528 0.713 0.482731

RUN -0.618893 0.294384 -2.102 0.046199 *

FINES 0.004343 0.007881 0.551 0.586700

VOIDS 0.316648 0.110329 2.870 0.008433 **

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.2604 on 24 degrees of freedom

Multiple R-Squared: 0.9722, Adjusted R-squared: 0.9653

F-statistic: 140.1 on 6 and 24 DF, p-value: < 2.2e-16

The table displays the standard errors of the estimates

√
V̂ar(β̂j) =

√
σ̂2(XᵀX)−1jj , the

t-test statistics for the null-hypotheses H0,j : βj = 0 and their corresponding two-sided
P -values with some abbreviation about strength of significance. Moreover, the R2 and
adjusted R2 are given and finally also the F -test statistic for the null-hypothesis H0 :
β2 = . . . = βp = 0 (with the degrees of freedom) and its corresponding P -value.

1.6 Analysis of residuals and checking of model assumptions

The residuals ri = Yi − Ŷi can serve as an approximation of the unobservable error term
εi and for checking whether the linear model is appropriate.

1.6.1 The Tukey-Anscombe Plot

The Tukey-Anscombe is a graphical tool: we plot the residuals ri (on the y-axis) versus
the fitted values Ŷi (on the x-axis). A reason to plot against the fitted values Ŷi is that
the sample correlation between ri and Ŷi is always zero.

In the ideal case, the points in the Tukey-Anscombe plot “fluctuate randomly” around
the horizontal line through zero: see also Figure 1.4. An often encountered deviation is
non-constant variability of the residuals, i.e., an indication that the variance of εi increases
with the response variable Yi: this is shown in Figure 1.5 a)–c). If the Tukey-Anscombe
plot shows a trend, there is some evidence that the linear model assumption is not correct
(the expectation of the error is not zero which indicates a systematic error): Figure 1.5d)
is a typical example.

In case where the Tukey-Anscombe plot exhibits a systematic relation of the variability
on the fitted values Ŷi, we should either transform the response variable or perform a
weighted regression (see Section 1.6.4). If the standard deviation grows linearly with the
fitted values (as in Figure 1.5a)), the log-transform Y 7→ log(Y ) stabilizes the variance; if
the standard deviation grows as the square root with the values Ŷi (as in Figure 1.5b)),
the square root transformation Y 7→

√
Y stabilizes the variance.
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Figure 1.4: Ideal Tukey-Anscombe plot: no violations of model assumptions.
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Figure 1.5: a) linear increase of standard deviation, b) nonlinear increase of standard
deviation, c) 2 groups with different variances, d) missing quadratic term in the model.

1.6.2 The Normal Plot

Assumptions for the distribution of random variables can be graphically checked with the
QQ (quantile-quantile) plot. In the special case of checking for the normal distribution,
the QQ plot is also referred to as a normal plot.

In the linear model application, we plot the empirical quantiles of the residuals (on
the y axis) versus the theoretical quantiles of a N (0, 1) distribution (on the x axis). If
the residuals were normally distributed with expectation µ and variance σ2, the normal
plot would exhibit an approximate straight line with intercept µ and slope σ. Figures
1.6 and 1.7 show some normal plots with exactly normally and non-normally distributed
observations.

1.6.3 Plot for detecting serial correlation

For checking independence of the errors we plot the residuals ri versus the observation
number i (or if available, the time ti of recording the ith observation). If the residuals
vary randomly around the zero line, there are no indications for serial correlations among
the errors εi. On the other hand, if neighboring (with respect to the x-axis) residuals look
similar, the independence assumption for the errors seems violated.



14 Multiple Linear Regression

•

•

•

•
•

•

•
•

•

•

•

•

•
•

••

•

•

• •

Quantiles of Standard Normal
-2 -1 0 1 2

-1
0

0
10

x

a)

•

•
•

• • •

•

•

••

•

•

•

•

•

•

•

•
•

•

Quantiles of Standard Normal
-2 -1 0 1 2

-1
0

0
10

20

x

•

••

•

•

•

•
•

•

•

• •

•

•
•

•

•
•

•

•
•

•
•

•

•

•

•

•

•

•
•

•

•
•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

••

•

•

•

•

•

• •

•

•

••

•

•

•

•

•

•

•

•

•
•

•
•

••

••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

••

•

•

•

•

Quantiles of Standard Normal
-2 -1 0 1 2

-2
0

0
20

x

b)

•

•

•

•

•
•

•

•

•

•

•

•

•

•
••

••
•

•

•

••

•

•

•

•

•
•

•
••

•
•

•

•
•

•

•

••

•

•

•

•••

•

•

•

•

•

•
•

•
•

•

•

•

•

•

•

•

•

•

•
•

•

• •

•
• •

•
•

••

•

•
•

••
•

•

•

•

•

• •

•
•

•

•

•

•

•

•

•
•

•

Quantiles of Standard Normal
-2 -1 0 1 2

-2
0

0
20

x

•

• •

••
•

••

• •

•

••

•
•

••

•

••

•••
•

•

•

•

• •

•

•

•

•

•

•

••

•

•

•

•

•

•

•

•
•

•
•

•

•

•

•

••
•

•••

••

•

•

•

•

•

•

•

•

•

•

••

•

•

•

••

•

•

•

•
•

•
•

•

•

••

•

•
•••
•

•

•
•

•

•

•

•

•

••
••

•

••

•

•

•

••

•• •

•
•

•

•

•

•

•
•

•

•
•

•

•
•

••

••

•

•

•

•

•

•

•

•

•

•

•

•

•
••

• •••

• •

•

•

•

•

•

•

•

•

•

•

••

••••

•
•

•

•

•
•

•

•
•

•

•

•

•
•

•
•

•

•

•
•

•
•

•
••

•

•
•

•••
•••

•

•

••
•

•

••
•

•
•

•

••

• •
•

•

•
•

•

•

•

••

•

•

•

•

•

•
•

•

•
••

•

•
• •

•
•

••

•

•

••
•

•

•

•

••

•

•
•

•

•

•

•

•

•

•

•
•

•

•
•

•
•

•

•
•

•

•
•

•

•

•
•

••

••

•

•

•

•

•

•

•

•

••
•

•
•

•

•
•

•

•
•

•

•

•

• •

•

••

•

•

•

•
•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•
•

•
• •

•

•

•

•

•

•

•
••

•

•

•

•

•
•

•

•

•

•
•••

•

•
•

•

•

•

•

•

••
••

•

•

•

•

•

•

•

•

•
•

••

•

•
•

•
•

•

•

• •

•

•

••

••

•

• •
•

•

•

•

•

•
•

•

•

•

•
•

•

•

•

•
•

•

•

•

•••

•

•

•

•

•

•
•

••

•
•

•

•

•

•

•

•

• •
••

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•
•

••
•

•

•
•

•

•

••

•

•

•

•

•

•

•

•

•

••

•

••

•

•

•
•

•

•

•

••

•

•

•

•

•
•

•

•

•

•
•

•

•

••

•

•

•

•
•

•

•
•

•
•

•

•
•

•

•

•
•

•
•

•••
•

•

•

•
••

•

•

•

•

•

••

•

•
•

•
•

•

•
•

•
•

•••
••

•

•

•

••
•

•
•

•

•

•

•
•

•

•

•
••

•
•

•
•

•

•
•

•

•

•

••

•

••

•
•

•

••
••

•

•

•

•
•

•

••

••

•

•

•

• •

•

•

•

•
••

•

••

••

••

•
•

•

•

•

•

•

•

••

•

•• •

•

••

•

•

•

•

•

•
•

•

••

•

•

••

•

•

•

•

•
••

•

•

•

••

•

•

•

•
•

•
•

•

•
•

•
•

•

••

••

•

•

•

•

•

•

• •

•
•

••

•

• •••
•

•
•

•

•••

•

•

•

•

•

•

• •
•

•

••

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•
••

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•
••

•

•
• •

•

•

•

•

•

•
•

•

•

•
•

•

•

•
•

•

•
•

•

•
•

••
•

•

•

••

•

••
••

•
•

••

•

•

•

•

••

•
••

•

•

•

•

•

•

•

•

•

•

•
•

•

•
•

•

•
••

•

•

•

•

•

•
•

•

•

•

•

•

•••

••

••

•

•
••

•
•

•

•

•

•

•

•
•

•
•

•

••

•

••

•

•

•

••

•

• •

•
••

••
•

••

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

••
•

•

•
••••
•

•
•

•

•

•

•
•

•
•

•

•

•

•

••

••

•

•
••

•

•

•

•
•

•

••

•

•

•
•

•
•

•
•

••

•

•

•

•

•

•
•

•

•

•

•

•

•
•

•

•

•

•

••

• •
•

•

•

•

•
•

•

• ••

•

•

Quantiles of Standard Normal
-2 0 2

-4
0

-2
0

0
20

x

c)

•

•

•

•

••
•

••

•••

•

•

•
•

•

••

•
•

•
•

•

•

•

•

••

•

•

•• •

•

•

•

•

•
•

•

•

•

•

•
•

•

•
•

••

•

•
•

•

•

•
•

•

•
•

•

•

•••

•

•

•
•

•

•

•
•

•• •

•

•

•
•

•

•
•

•

•

•

••

•

•

•

•
•

•

•
•

•

•

•

•

•

•

•

•

•

••

•

•

•
•

•

•
•

•

•

•

•
••

•

•

•

•

•

•
•

•

•

•

•
•

•

•

•

•

•

•
•

•

•

•

•

•
•

•

•
•

••
••

•

••
•

•

•

•
••

•
•

••

•

••

•

•••

•

•

•

•

•

•

••

•

•

•

•

•

•

•
••

•
•

•
•

•
•

•
•

•

•
•

•

•
•

•
•

•

•
•

••
•

•

•

•••

•
•

•
•

•
••

•

•

•

•
••

••

•
•

•
•

•

•

• •

•

•
•

•

•

•

•

•

•

•

•

•

•
••

•

•

•

•
•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•••
•

•

•

•

•
•

••

•
•

•

•
•

•

•

••

•

•

•
•

•

•••

•

•

•
•

•
•

•
•

•

•

•

•

•
•

•
•

•

•

•
•

•

•

•

•

•

• ••

•
•

•

•

•

•

•

•

•

• •• •
••

•••

•
•

•

•

•

•

•

•
•

•

•
•

••

•

•

•

• •
•

•

•

•

•
•

•

•

•
•

•
•

•

•

•

•

•

••

•
•

•
•

•

•

•

•

•

••

•
••

•

•

•
••

•

•

•
•

•

•

•

•

••

•

••

•

•
•

•

•

•
•

•
•

•

•

•

•

•

•

•
•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•
•

•
•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• •
••

•

•

•

•

•

•

••

•

•

•

•

•

•

••

•

•
•

•

•

•

•••
•

•

•••

•
•

•

•
•

•

•

•
•

••
••

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

••

•

•

•

• •

•

•

•

•
•

•

•
••

•

•

•

••

• •

•

••
•

••
•••

•

•

•

•

•

•

•

•

•

•
•

•

••

•

•

•

•

•
•

•

•

•
•

•
•

•

•

•

•

•
•

•
•

•

•

•
•

•

•

•

•••

•

•
••

•

•

•

•

•

•

•

•
•

•

•
•

•
• •

•

••

•
•

•

•

•

•
••••

•

•
•

•

•

•

•
•

•

•

•

•

••
••

••

•
•

••
•

•

•

•

••

•

•

••

•
•

•
•

•

•

•

•
•

••

•

• •
•

•

•

•

•

•

•

••
• •

•

•

•
•

•
••

••

•

•
•

•

•

•

•

•

•

•

•

•

•
• •

•
•

•

•

•

•
•

•

• •

•

•

•

•

•
•

•
•••

•

•

•
•

•

•
•

•

•

•
•

•
•

•

•
••

•
•

•

•

•

•

•

•

•

•

••

•

•

•

•

•

•
•

•••
•

•

•

•
•

•

•

•

•

•

•
•

•

•

•
••

•

•
•

•

•

•
•

•
•

•

•

•
•

•

•••

•

•

•

•

•• •

•

••

•

•
••

•
•

•
••

•

•

••

•
•

•

•

•

•

••

•

•

•

•

••
•

•

••
•

•

•

•

•
•

•
•

•••
•

•

• •

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•
•

•

••
•

•

•

•

•

•

•

•

•

•
•

•
•

•

•

•

•

•
•

•

•

••

•
•

•

•

•

•

•

•

•

•

•

•

•

• •

•

•
•

•

•

•

• •

•

•

• •
•

•

•

•

•

•

•

•

• •

Quantiles of Standard Normal
-2 0 2

-2
0

0
20

x

Figure 1.6: QQ-plots for i.i.d. normally distributed random variables. Two plots for each
sample size n equal to a) 20, b) 100 and c) 1000.
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Figure 1.7: QQ-plots for a) long-tailed distribution, b) skewed distribution, c) dataset
with outlier.

1.6.4 Generalized least squares and weighted regression

In a more general situation, the errors are correlated with known covariance matrix,

Y = Xβ + ε, with ε ∼ N n(0, |Σ).

When |Σ is known (and also in the case where |Σ = σ2G with unknown σ2), this case can
be transformed to the i.i.d. one, using a “square root” C such that |Σ = CCᵀ (defined,
e.g., via Cholesky factorization |Σ = LLᵀ, L is uniquely determined lower triangular):
If Ỹ := C−1Y and X̃ := C−1X, we have Ỹ = X̃β + ε̃, where ε̃ ∼ N (0, I). This
leads to the generalized least squares solution β̂ = (Xᵀ |Σ−1X)−1Xᵀ |Σ−1Y with Cov(β̂) =
(Xᵀ |Σ−1X)−1.

A special case where |Σ is diagonal, |Σ = σ2 diag(z1, z2, . . . , zn) (with trivial inverse) is
the weighted least squares problem minβ

∑n
i=1wi(Yi − xi

ᵀβ)2, with weights wi ≡ 1/zi.

1.7 Model Selection

We assume the linear model

Yi =

p∑
j=1

βjxij + εi (i = 1, . . . , n),
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where ε1, . . . , εn i.i.d., E[εi] = 0, Var(εi) = σ2.

Problem: Which of the predictor variables should be used in the linear model?
It may be that not all of the p predictor variables are relevant. In addition, every coefficient
has to be estimated and thus is afflicted with variability: the individual variabilities for
each coefficient sum up and the variability of the estimated hyper-plane increases
the more predictors are entered into the model, whether they are relevant or
not. The aim is often to look for the optimal or best - not the true - model.

What we just explained in words can be formalized a bit more. Suppose we are looking
for optimizing the prediction

q∑
r=1

β̂jrxijr

which includes q predictor variables with indices j1, . . . , jq ∈ {1, . . . , p}. The average mean
squared error of this prediction is

n−1
n∑
i=1

E[(m(xi)−
q∑
r=1

β̂jrxijr)
2]

= n−1
n∑
i=1

(E[

q∑
r=1

β̂jrxijr ]−m(xi))
2 + n−1

n∑
i=1

Var(

q∑
r=1

β̂jrxijr)︸ ︷︷ ︸
= q
n
σ2

, (1.9)

where m(·) denotes the regression function in the full model with all the predictor variables.
It is plausible that the systematic error (squared bias) n−1

∑n
i=1(E[

∑q
r=1 β̂jrxijr ]−m(xi))

2

decreases as the number of predictor variables q increases (i.e., with respect to bias, we have
nothing to lose by using as many predictors as we can), but the variance term increases
linearly in the number of predictors q (the variance term equals q/n · σ2 which is not too
difficult to derive). This is the so-called bias-variance trade-off which is present in very
many other situations and applications in statistics. Finding the best model thus means to
optimize the bias-variance trade-off: this is sometimes also referred to as “regularization”
(for avoiding a too complex model).

1.7.1 Mallows Cp statistic

The mean squared error in (1.9) is unknown: we do not know the magnitude of the bias
term but fortunately, we can estimate the mean squared error.

Denote by SSE(M) the residual sum of squares in a model M: it is overly opti-
mistic and not a good measure to estimate the mean squared error in (1.9). For example,
SSE(M) becomes smaller the bigger the model M and the biggest model under consid-
eration has the lowest SSE (which generally contradicts the equation in (1.9)).

For any (sub-)model M which involves some (or all) of the predictor variables, the
mean squared error in (1.9) can be estimated by

n−1SSE(M)− σ̂2 + 2σ̂2|M|/n,

where σ̂2 is the error variance estimate in the full model and SSE(M) is the residual sum
of squares in the submodel M. (A justification can be found in the literature). Thus, in
order to estimate the best model, we could search for the sub-model M minimizing the
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above quantity. Since σ̂2 and n are constants with respect to submodels M, we can also
consider the well-known Cp statistic

Cp(M) =
SSE(M)

σ̂2
− n+ 2|M|

and search for the sub-model M minimizing the Cp statistic.
Other popular criteria to estimate the predictive potential of an estimated model are

Akaike’s information criterion (AIC) and the Bayesian information criterion (BIC).

Searching for the best model with respect to Cp

If the full model has p predictor variables, there are 2p − 1 sub-models (every predictor
can be in or out but we exclude the sub-model M which corresponds to the empty set).

Therefore, an exhaustive search for the sub-model M minimizing the Cp statistic is
only feasible if p is less than say 16 (216 − 1 = 65′535 which is already fairly large). If p is
“large”, we can proceed with stepwise algorithms.

Forward selection.
1. Start with the smallest model M0 (location model) as the current model.
2. Include the predictor variable to the current model which reduces the residual sum of
squares most.
3. Continue step 2. until all predictor variables have been chosen or until a large number
of predictor variables has been selected. This produces a sequence of sub-models M0 ⊆
M1 ⊆M2 ⊆ . . .
4. Choose the model in the sequence M0 ⊆ M1 ⊆ M2 ⊆ . . . which has smallest Cp
statistic.

Backward selection.
1. Start with the full model M0 as the current model.
2. Exclude the predictor variable from the current model which increases the residual sum
of squares the least.
3. Continue step 2. until all predictor variables have been deleted (or a large number of
predictor variables). This produces a sequence of sub-models M0 ⊇M1 ⊇M2 ⊇ . . .
4. Choose the model in the sequence M0 ⊇ M1 ⊇ M2 ⊇ . . . which has smallest Cp
statistic.

Backward selection is typically a bit better than forward selection but it is computa-
tionally more expensive. Also, in case where p ≥ n, we don’t want to fit the full model
and forward selection is an appropriate way to proceed.



Chapter 2

Nonparametric Density
Estimation

2.1 Introduction

For a moment, we will go back to simple data structures: we have observations which are
realizations of univariate random variables,

X1, . . . , Xn i.i.d. ∼ F,

where F denotes an unknown cumulative distribution function. The goal is to estimate
the distribution F . In particular, we are interested in estimating the density f = F ′,
assuming that it exists.

Instead of assuming a parametric model for the distribution (e.g. Normal distribution
with unknown expectation and variance), we rather want to be “as general as possible”:
that is, we only assume that the density exists and is suitably smooth (e.g. differentiable).
It is then possible to estimate the unknown density function f(·). Mathematically, a
function is an infinite-dimensional object. Density estimation will become a “basic
principle” how to do estimation for infinite-dimensional objects. We will make use of such
a principle in many other settings such as nonparametric regression with one predictor
variable (Chapter 3) and flexible regression and classification methods with many predictor
variables (Chapter 7).

2.2 Estimation of a density

We consider the data which records the duration of eruptions of “Old Faithful”, a famous
geysir in Yellowstone National Park (Wyoming, USA). You can watch it via web-cam on
http://www.nps.gov/yell/oldfaithfulcam.htm

2.2.1 Histogram

The histogram is the oldest and most popular density estimator. We need to specify an
“origin” x0 and the class width h for the specifications of the intervals

Ij = (x0 + j · h, x0 + (j + 1)h] (j = . . . ,−1, 0, 1, . . .)

for which the histogram counts the number of observations falling into each Ij : we then plot
the histogram such that the area of each bar is proportional to the number of observations
falling into the corresponding class (interval Ij).

17

http://www.nps.gov/yell/oldfaithfulcam.htm
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Figure 2.1: Histograms (different class widths) for durations of eruptions of “Old Faithful”
geysir in Yellowstone Park (n = 272, data(faithful)).

x0 x0 + h x0 + 2h x0 + 3h ……

h h h h

The choice of the “origin” x0 is highly arbitrary, whereas the role of the class width is
immediately clear for the user. The form of the histogram depends very much on these
two tuning parameters.

2.2.2 Kernel estimator

The naive estimator

Similar to the histogram, we can compute the relative frequency of observations falling
into a small region. The density function f(·) at a point x can be represented as

f(x) = lim
h→0

1

2h
P[x− h < X ≤ x+ h]. (2.1)

The naive estimator is then constructed without taking the limit in (2.1) and by replacing
probabilities with relative frequencies:

f̂(x) =
1

2hn
#{i;Xi ∈ (x− h, x+ h]}. (2.2)

This naive estimator is only piecewise constant since every Xi is either in or out of the
interval (x− h, x+ h]. As for histograms, we also need to specify the so-called bandwidth
h; but in contrast to the histogram, we do not need to specify an origin x0.

An alternative representation of the naive estimator (2.2) is as follows. Define the
weight function

w(x) =

{
1/2 if |x| ≤ 1,
0 otherwise.
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Then,

f̂(x) =
1

nh

n∑
i=1

w

(
x−Xi

h

)
.

If we choose instead of the rectangle weight function w(·) a general, typically more smooth
kernel function K(·), we have the definition of the kernel density estimator

f̂(x) =
1

nh

n∑
i=1

K

(
x−Xi

h

)
,

K(x) ≥ 0,

∫ ∞
−∞

K(x)dx = 1, K(x) = K(−x). (2.3)

The estimator depends on the bandwidth h > 0 which acts as a tuning parameter. For
large bandwidth h, the estimate f̂(x) tends to be very slowly varying as a function of x,
while small bandwidths will produce a more wiggly function estimate. The positivity of
the kernel function K(·) guarantees a positive density estimate f̂(·) and the normalization∫
K(x)dx = 1 implies that

∫
f̂(x)dx = 1 which is necessary for f̂(·) to be a density.

Typically, the kernel function K(·) is chosen as a probability density which is symmetric
around 0.

The smoothness of f̂(·) is inherited from the smoothness of the kernel: if the rth
derivative K(r)(x) exists for all x, then f̂ (r)(x) exists as well for all x (easy to verify using
the chain rule for differentiation).

Popular kernels are the Gaussian kernel

K(x) = ϕ(x) = (2π)−
1
2 e−x

2/2 (the density of the N (0, 1) distribution)

or a kernel with finite support such as K(x) = π
4 cos(π2x)1(|x| ≤ 1). The Epanechnikov

kernel, which is optimal with respect to mean squared error, is

K(x) =
3

4

(
1− |x|2

)
1(|x| ≤ 1).

But far more important than the kernel is the bandwidth h, see figure 2.2: its role and
how to choose it are discussed below.
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Figure 2.2: kernel density estimates of the “Old Faithful” eruption lengths; Gaussian kernel and
bandwidths h = 0.04 · 1.61,2,...,5.

2.3 The role of the bandwidth

The bandwidth h is often also called the“smoothing parameter”: a moment of thought will
reveal that for h→ 0, we will have “δ-spikes” at every observation Xi, whereas f̂(·) = f̂h(·)
becomes smoother as h is increasing.
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2.3.1 Variable bandwidths: k nearest neighbors

Instead of using a global bandwidth, we can use locally changing bandwidths h(x).
The general idea is to use a large bandwidth for regions where the data is sparse. The

k-nearest neighbor idea is to choose

h(x) = Euclidean distance of x to the kth nearest observation,

where k is regulating the magnitude of the bandwidth. Note that generally, f̂h(x)(·) will
not be a density anymore since the integral is not necessarily equal to one.

2.3.2 The bias-variance trade-off

We can formalize the behavior of f̂(·) when varying the bandwidth h in terms of bias and
variance of the estimator. It is important to understand heuristically that

the (absolute value of the) bias of f̂ increases and the variance of f̂ decreases as h increases.

Therefore, if we want to minimize the mean squared error MSE(x) at a point x,

MSE(x) = E
[(
f̂(x)− f(x)

)2]
=
(
E[f̂(x)]− f(x)

)2
+ Var(f̂(x)),

we are confronted with a bias-variance trade-off. As a consequence, this allows - at
least conceptually - to optimize the bandwidth parameter (namely to minimize the mean
squared error) in a well-defined, coherent way. Instead of optimizing the mean squared
error at a point x, one may want to optimize the integrated mean squared error (IMSE)

IMSE =

∫
MSE(x)dx

which yields an integrated decomposition of squared bias and variance (integration is over
the support of X). Since the integrand is non-negative, the order of integration (over the
support of X and over the probability space of X) can be reversed, denoted as MISE
(mean integrated squared error) and written as

MISE = E[

∫ (
f̂(x)− f(x)

)2
dx] = E[ISE], (2.4)

where ISE =
∫ (

f̂(x)− f(x)
)2
dx.

2.3.3 Asymptotic bias and variance

It is straightforward (using definitions) to give an expression for the exact bias and vari-
ance:

E[f̂(x)] =

∫
1

h
K

(
x− y
h

)
f(y)dy

Var(f̂(x))

=
1

nh2
Var

(
K

(
x−Xi

h

))
=

1

nh2
E

[
K

(
x−Xi

h

)2
]
− 1

nh2
E
[
K

(
x−Xi

h

)]2
= n−1

∫
1

h2
K

(
x− y
h

)2

f(y)dy − n−1
(∫

1

h
K

(
x− y
h

)
f(y)dy

)2

. (2.5)
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For the bias we therefore get (by a change of variable and K(−z) = K(z))

Bias(x) =

∫
1

h
K

(
x− y
h

)
f(y)dy − f(x)

=︸︷︷︸
z=(y−x)/h

∫
K(z)f(x+ hz)dz − f(x) =

∫
K(z) (f(x+ hz)− f(x)) dz, (2.6)

To approximate this expression in general, we invoke an asymptotic argument. We assume
that h→ 0 as sample size n→∞, that is:

h = hn → 0 with nhn →∞.

This will imply that the bias goes to zero since hn → 0; the second condition requires that
hn is going to zero more slowly than 1/n which turns out to imply that also the variance
of the estimator will go to zero as n → ∞. To see this, we use a Taylor expansion of f ,
assuming that f is sufficiently smooth:

f(x+ hz) = f(x) + hzf ′(x) +
1

2
h2z2f ′′(x) + . . .

Plugging this into (2.6) yields

Bias(x) = hf ′(x)

∫
zK(z)dz︸ ︷︷ ︸

=0

+
1

2
h2f ′′(x)

∫
z2K(z)dz + . . .

=
1

2
h2f ′′(x)

∫
z2K(z)dz + higher order terms in h.

For the variance, we get from (2.5)

Var(f̂(x)) = n−1
∫

1

h2
K

(
x− y
h

)2

f(y)dy − n−1(f(x) + Bias(x))2

= n−1h−1
∫
f(x− hz)K(z)2dz − n−1(f(x) + Bias(x))2︸ ︷︷ ︸

=O(n−1)

= n−1h−1
∫
f(x− hz)K(z)2dz +O(n−1) = n−1h−1f(x)

∫
K(z)2dz + o(n−1h−1),

assuming that f is smooth and hence f(x− hz)→ f(x) as hn → 0.
In summary: for h = hn → 0, hnn→∞ as n→∞

Bias(x) = h2f ′′(x)
∫
z2K(z) dz/2 + o(h2) (n→∞)

Var(f̂(x)) = (nh)−1f(x)
∫
K(z)2dz + o((nh)−1) (n→∞)

The optimal bandwidth h = hn which minimizes the leading term in the asymptotic
MSE(x) can be calculated straightforwardly by solving ∂

∂hMSE(x) = 0,

hopt(x) = n−1/5
(

f(x)
∫
K2(z)dz

(f ′′(x))2(
∫
z2K(z)dz)2

)1/5

. (2.7)

Since it’s not straightforward to estimate and use a local bandwidth h(x), one rather
considers minimizing the MISE, i.e.,

∫
MSE(x) dx which is asymptotically

asympt. MISE =

∫
Bias(x)2 + Var(f̂(x)) dx =

1

4
h4R(f ′′) σ4K +R(K)/(nh), (2.8)
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where R(g) =
∫
g2(x) dx, σ2K =

∫
x2K(x) dx, and the “global” asymptotically optimal

bandwidth becomes
hopt = n−1/5

(
R(K)/σ4K × 1/R(f ′′)

)1/5
. (2.9)

By replacing h with hopt, e.g., in (2.8), we see that both variance and bias terms are of
order O(n−4/5), the optimal rate for the MISE and MSE(x). From section 2.4.1, this rate
is also optimal for a much larger class of density estimators.

2.3.4 Estimating the bandwidth

As seen from (2.9), the asymptotically best bandwidth depends on R(f ′′) =
∫
f ′′2(x) dx

which is unknown (whereas as R(K) and σ2K are known). It is possible to estimate the
f ′′ again by a kernel estimator with an “initial” bandwidth hinit (sometimes called a pilot
bandwidth) yielding f̂ ′′hinit . Plugging this estimate into (2.9) yields an estimated bandwidth

ĥ for the density estimator f̂(·) (the original problem): of course, ĥ depends on the
initial bandwidth hinit, but choosing hinit in an ad-hoc way is less critical for the density
estimator than choosing the bandwidth h itself. Furthermore, methods have been devised
to determine hinit and h simultaneously (e.g., “Sheather-Jones”, in R using density(*,

bw="SJ")).

Estimating local bandwidths

Note that the hopt(x) bandwidth selection in (2.7) is more problematical mainly because

f̂ĥopt(x)(x) will not integrate to one without further normalization. On the other hand, it

can be important to use locally varying bandwidths instead of a single global one in a kernel
estimator at the expense of being more difficult. The plug-in procedure outlined above
can be applied locally, i.e., conceptually for each x and hence describes how to estimate
local bandwidths from data and how to implement a kernel estimator with locally varying
bandwidths. In the related area of nonparametric regression, in section 3.2.1, we will show
an example about locally changing bandwidths which are estimated based on an iterative
version of the (local) plug-in idea above.

Other density estimators

There are quite a few other approaches to density estimation than the kernel estima-
tors above (whereas in practice, the fixed bandwidth kernel estimators are used predomi-
nantly because of their simplicity). An important approach in particular aims to estimate

the log density log f(x) (setting f̂ = exp(l̂og f)) which has no positivity constraints and
whose “normal limit” is a simple quadratic. One good implementation is in Kooperberg’s
R package logspline, where spline knots are placed in a stepwise algorithm minimiz-
ing approximate BIC (or AIC). This is can be seen as another version of locally varying
bandwidths.
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2.4 Higher dimensions

Quite many applications involve multivariate data. For simplicity, consider data which
are i.i.d. realizations of d-dimensional random variables

X1, . . . ,Xn i.i.d. ∼ f(x1, . . . , xd)dx1 · · · dxd

where f(·) denotes the multivariate density.
The multivariate kernel density estimator is, in its simplest form, defined as

f̂(x) =
1

nhd

n∑
i=1

K

(
x−Xi

h

)
,

where the kernel K(·) is now a function, defined for d-dimensional x, satisfying

K(u) ≥ 0,

∫
Rd
K(u)du = 1,

∫
Rd

uK(u)du = 0,

∫
Rd

uuᵀK(u)du = Id.

Usually, the kernel K(·) is chosen as a product of a kernel Kuniv for univariate density
estimation

K(u) =

d∏
j=1

Kuniv(uj).

If one additionally desires the multivariate kernel K(u) to be radially symmetric, it
can be shown that K must be the multivariate normal (Gaussian) density, K(u) =
cd exp(−1

2uᵀu).

2.4.1 The curse of dimensionality

In practice, multivariate kernel density estimation is often restricted to dimension d = 2.
The reason is, that a higher dimensional space (with d of medium size or large) will be
only very sparsely populated by data points. Or in other words, there will be only very few
neighboring data points to any value x in a higher dimensional space, unless the sample
size is extremely large. This phenomenon is also called the curse of dimensionality.

An implication of the curse of dimensionality is the following lower bound for the best
mean squared error of nonparametric density estimators (assuming that the underlying
density is twice differentiable): it has been shown that the best possible MSE rate is

O(n−4/(4+d)).

The following table evaluates n−4/(4+d) for various n and d:

n−4/(4+d) d = 1 d = 2 d = 3 d = 5 d = 10

n = 100 0.025 0.046 0.072 0.129 0.268
n = 1000 0.004 0.010 0.019 0.046 0.139
n = 100′000 1.0 10−4 4.6 10−4 13.9 10−4 0.006 0.037

Thus, for d = 10, the rate with n = 100′000 is still 1.5 times worse than for d = 1 and
n = 100.
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Chapter 3

Nonparametric Regression

3.1 Introduction

We consider here nonparametric regression with one predictor variable. Practically rele-
vant generalizations to more than one or two predictor variables are not so easy due to the
curse of dimensionality mentioned in section 2.4.1 and often require different approaches,
as will be discussed later in Chapter 7.

Figure 3.1 shows (several identical) scatter plots of (xi, Yi) (i = 1, . . . , n). We can
model such data as

Yi = m(xi) + εi, (3.1)

where ε1, . . . , εn i.i.d. with E[εi] = 0 and m : R→ R is an “arbitrary” function. The func-
tion m(·) is called the nonparametric regression function and it satisfies m(x) = E[Y |x].
The restriction we make for m(·) is that it fulfills some kind of smoothness conditions.
The regression function in Figure 3.1 does not appear to be linear in x and linear regres-
sion is not a good model. The flexibility to allow for an “arbitrary” regression function is
very desirable; but of course, such flexibility has its price, namely an inferior estimation
accuracy than for linear regression.

3.2 The kernel regression estimator

We can view the regression function in (3.1) as

m(x) = E[Y |X = x],

(assuming that X is random and Xi = xi are realized values of the random variables). We
can express this conditional expectation as∫

R
yfY |X(y|x)dy =

∫
R yfX,Y (x, y)dy

fX(x)
,

where fY |X , fX,Y , fX denote the conditional, joint and marginal densities. We can now
plug in the univariate and bivariate kernel density (all with the same univariate kernel K)
estimates

f̂X(x) =

∑n
i=1K

(
x−xi
h

)
nh

, f̂X,Y (x, y) =

∑n
i=1K

(
x−xi
h

)
K
(
y−Yi
h

)
nh2

25
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Figure 3.1: Various regression estimators in model Yi = m(xi) + εi (i = 1, . . . , 43) with re-
sponse Y a log-concentration of a serum (in connection of Diabetes) and predictor variable
x the age in months of children. See Hastie and Tibshirani (1990, p.10). Except for the
linear regression fit (top left panel), all other estimators have about 5 degrees of freedom.

into the formula above which yields the so-called Nadaraya-Watson kernel estimator

m̂(x) =

∑n
i=1K((x− xi)/h)Yi∑n
i=1K((x− xi)/h)

=

∑n
i=1 ωiYi∑
i ωi

, (3.2)
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i.e., a weighted mean of the Yi where ωi = ωi(x) is a kernel centered at xi. An interesting
interpretation of the kernel regression estimator in (3.2) is

m̂(x) = arg min
mx∈R

n∑
i=1

K

(
x− xi
h

)
(Yi −mx)2. (3.3)

This can be easily verified by solving d
dmx

∑n
i=1K((x − xi)/h)(Yi −mx)2 = 0. Thus, for

every fixed x, we are searching for the best local constant mx such that the localized sum of
squares is minimized; localization is here described by the kernel and gives a large weight
to those observations (xi, Yi) where xi is close to the point x of interest.

3.2.1 The role of the bandwidth

Analogously as in section 2.3, the bandwidth h controls the bias-variance trade-off: a large
bandwidth h implies high bias but small variance, resulting in a slowly varying curve, and
vice-versa. We are not showing the computations for MSE(x), just note that they not only
depend on (derivatives of) m(x), but also on fX(x).

Local bandwidth selection

Similarly as in (2.7), also using
∫
uK(u)du = 0, there is a formula of the asymptotically

best local bandwidth hopt(x) which depends on m′′(·) and the error variance σ2ε :

hopt(x) = n−1/5
(

σ2ε
∫
K2(z)dz

{m′′(x)
∫
z2K(z)dz}2

)1/5

. (3.4)

The locally optimal bandwidth hopt(x) can then be estimated in an iterative way using the
plug-in principle. Roughly speaking, start with an initial bandwidth h0 to estimate m′′(·)
(by using an inflated version n1/10h0) and σ2ε ; these estimates can then be used to get a
first estimate of hopt(x). Now use this first bandwidth estimate as the current bandwidth
h1 to estimate again m′′(·) (by using the inflated version n1/10h1) and σ2ε , and then obtain
new estimates for hopt(x); and so on, see Brockmann et al. (1993).

Such a procedure has been implemented in R with the function lokerns in the package
lokern. The dataset cars contains the distance for stopping as a function of speed of a car.
A nonparametric function estimate with locally varying bandwidth can then be obtained
as follows:

library(lokern); lofit <- lokerns(cars$ speed, cars$ dist)

3.2.2 Inference for the underlying regression curve

We consider here the properties, in particular the variability, of the kernel estimator m̂(xi)
at an observed design point xi.

The hat matrix

It is useful to represent the kernel estimator evaluated at the design points m̂(x1), . . . , m̂(xn)
as a linear operator (on Rn, i.e., a matrix):

S : Rn → Rn,
(Y1, . . . , Yn)ᵀ 7→ (m̂(x1), . . . , m̂(xn))ᵀ =: m̂(x·) = Ŷ,



28 Nonparametric Regression

0.0

0.8

1.0

1.2

1.4

1.6

1.8

2.0

4 6 8 10 12 14 16 18 20 22 24

0
10

20
30

40
50

60
70

80
90

10
0

11
0

12
0

Cars Data − Local Plug−In Bandwidths via lokerns()

speed

di
st

bandwidth in [ 0.934,1.949 ];  Median b.w.= 1.465

Figure 3.2: Nonparametric function estimate and locally varying bandwidths for distance
of stopping as a function of speed of cars.

i.e., Ŷ = SY where S is the matrix representing the linear operator above. The kernel
estimator in (3.2) is of the form

m̂(x) =
n∑
i=1

wi(x)Yi, wi(x) =
K((x− xi)/h)∑n
j=1K((x− xj)/h)

.

Therefore, the matrix S which represents the operator above is

[S]r,s = ws(xr), r, s ∈ {1, . . . , n},

since S{(Y1, . . . , Yn)ᵀ} = (m̂(x1), . . . , m̂(xn))ᵀ. The “smoother” matrix S is also called
the “hat matrix”, since it yields the vector of fitted values (at the observed design points
xi). Note that many other nonparametric regression methods (including those in the next
two sections) can be seen to be linear in Y and hence be written as Ŷ = SY where
S depends on the x-design (x1, x2, . . . , xn) and typically a smoothing parameter, say h.
Algorithmically, for Ŷ = s(x,Y, h), the hat matrix can easily be computed columnwise as
S.,j = s(x, ej , h) where ej is the unit vector with (ej)i = δi,j := 1(i = j).

Because of the elementary formula Cov(AX) = ACov(X)Aᵀ (for a non-random matrix
A and random vector X), we get the covariance matrix

Cov(m̂(x·)) = σ2εSSᵀ, (3.5)

i.e., Cov(m̂(xi), m̂(xj)) = σ2ε(SSᵀ)ij , and Var(m̂(xi)) = σ2ε(SSᵀ)ii.

Degrees of freedom

One way to assign degrees of freedom for regression estimators with a linear hat-operator
S is given by the trace,

df = tr(S). (3.6)
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This definition coincides with the notion we have seen in the linear model: there, (1.5),
the fitted values Ŷ1, . . . , Ŷn can be represented by the projection P = X(XᵀX)−1Xᵀ, which
is the hat matrix, and tr(P ) = tr((XᵀX)−1XᵀX) = tr(Ip) = p equals the number of
parameters in the model. Thus, the definition of degrees of freedom above can be viewed
as a general concept for the number of parameters in a model fit with linear hat matrix.

Estimation of the error variance

Formula (3.5) requires knowledge of σ2ε . A plausible estimate is via the residual sum of
squares,

σ̂2ε =

∑n
i=1(Yi − m̂(xi))

2

n− df
.

We then get an estimate for the standard error of the kernel regression estimator at the
design points via (3.5):

ŝ.e(m̂(xi)) =

√
V̂ar(m̂(xi)) = σ̂ε

√
(SSᵀ)ii. (3.7)

The estimated standard errors above are useful since under regularity conditions, m̂(xi)
is asymptotically normal distributed:

m̂(xi) ≈ N (E[m̂(xi)],Var(m̂(xi))),

so that

I = m̂(xi)± 1.96 · ŝ.e.(m̂(xi))

yields approximate pointwise confidence intervals for E[m̂(xi)]. Some functions in R (e.g.
the function gam from package mgcv, see Chapter 7) supply such pointwise confidence
intervals. Unfortunately, it is only a confidence interval for the expected value E[m̂(xi)]
and not for the true underlying function m(xi). Correction of this interval is possible by

subtracting a bias estimate: i.e., instead of the interval I above, we can use I − b̂ias,
where b̂ias is an estimate of the bias (which is not so easy to construct; see also section 2.3).

3.3 Local polynomial nonparametric regression estimator

As a starting point, consider the kernel estimator which can be represented as a locally
constant function as in (3.3). This can now be extended to functions which are locally
polynomial. We aim to find local regression parameters β(x), defined as

β̂(x) = arg min
β∈Rp

n∑
i=1

K

(
x− xi
h

)(
Yi − β1 − β2(xi − x)− . . .− βp(xi − x)p−1

)2
.

An even number p turns out to be better: in practice, we often choose p = 2 or p = 4.
The estimated local regression parameter β̂(x) describes a local polynomial regression fit,
localized and centered at x. The function estimator is then given by evaluating this local
regression fit

∑p
j=1 β̂j(x)(u−x)j−1 at u = x: due to the centering, only the local intercept

remains and the local polynomial function estimator becomes

m̂(x) = β̂1(x).
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Note that due to (local) correlation among the (xi−x)j ’s, β̂1(x) is not the same as a local
constant fit from (3.3).

The local polynomial estimator is often better at the edges than the locally constant
Nadaraya-Watson kernel estimator. Another interesting property is that the method also
immediately yields estimates for the derivatives of the function: when differentiating the
local regression fit

∑p
j=1 β̂j(x)(u−x)j−1 with respect to u and evaluating it at x, we obtain

m̂(r)(x) = r!β̂r+1(x) (r = 0, 1, . . . p− 1).

3.4 Smoothing splines and penalized regression

Function estimation could also be done by using higher order global polynomials, which is
often not advisable, or by using splines which can be specified by choosing a set of knots.
The latter is a more locally oriented approach and is called “regression splines”. Here, we
discuss a method based on splines without having to specify where to select the knots of
the spline.

3.4.1 Penalized sum of squares

Consider the following problem: among all functions m with continuous second derivatives,
find the one which minimizes the penalized residual sum of squares

n∑
i=1

(Yi −m(xi))
2 + λ

∫
m′′(z)2dz, (3.8)

where λ ≥ 0 is a smoothing parameter. The first term measures closeness to the data and
the second term penalizes curvature (“roughness”) of the function. The two extreme cases
are:

• λ = 0: m is any function interpolating the data (but for λ→ 0, in the limit, mλ →
the well defined interpolating natural cubic spline).

• λ =∞: the least squares fit for linear regression which fulfills m′′(x) ≡ 0.

Thus, a large λ corresponds to a smooth function.

3.4.2 The smoothing spline solution

Remarkably, the minimizer of (3.8) is finite-dimensional, although the criterion to be
minimized is over a Sobolev space of functions (function space for which the integral∫
m′′2 is defined), an infinite-dimensional space. Let us assume for now that the data has

x values sorted and unique, x1 < x2 < . . . < xn.
The solution m̂λ(·) (i.e., the unique minimizer of (3.8)) is a natural cubic spline with

knots at the predictors xi: that is, m̂ is a piecewise cubic polynomial in each interval

[xi, xi+1) such that m̂
(k)
λ (k = 0, 1, 2) is continuous everywhere and (“natural”) m̂′′(x1) =

m̂′′(xn) = 0. For the n − 1 cubic polynomials, we’d need (n − 1) · 4 coefficients. Since
there are (n− 2) · 3 continuity conditions (at every “inner knot”, i = 2, . . . , n− 1) plus the
2 “natural” conditions, this leaves 4(n− 1)− [3(n− 2) + 2] = n free parameters (the βj ’s
below). Knowing that the solution is a cubic spline, it can be obtained by linear algebra.
The trick is to represent

m̂λ(x) =

n∑
j=1

βjBj(x), (3.9)
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where the Bj(·)’s are basis functions for natural splines. The unknown coefficients can then
be estimated from least squares in linear regression under side constraints. The criterion
in (3.8) for m̂λ as in (3.9) then becomes

‖Y −Bβ‖2 + λβᵀΩβ,

where the design matrixB has jth column (Bj(x1), . . . , Bj(xn))ᵀ and Ωjk =
∫
B′′j (z)B′′k(z)dz.

The solution can then be derived in a straightforward way,

β̂n×1 = (BᵀB + λΩ)−1BᵀY. (3.10)

This can be computed efficiently using fast linear algebra, particularly when B is a banded
matrix.

The fitted values are then Ŷi = m̂λ(xi) (i = 1, . . . , n) and

Ŷ = (Ŷ1, . . . , Ŷn)ᵀ = SλY, Sλ = B(BᵀB + λΩ)−1Bᵀ. (3.11)

The hat matrix Sλ = Sλᵀ is here symmetric which implies elegant mathematical prop-
erties (real-valued eigen-decomposition).

3.4.3 Shrinking towards zero

At first sight, the smoothing spline solution in (3.9) looks heavily over-parameterized since
we have to fit n unknown coefficients β1, . . . , βn. However, the solution in (3.10) is not the
least squares estimator but rather a Ridge-type version: the matrix λΩ serves as a Ridge
or shrinkage matrix so that the estimates β̂ are shrunken towards zero: i.e., for large λ,
the expression (BᵀB+ λΩ)−1 becomes small. Thus, since all the coefficients are shrunken
towards zero, we gain on the variance part of each β̂j by the square of the shrinkage factor,
and the overall smoothing spline fit will be appropriate if λ is chosen suitably.

Note that λ can be chosen on the scale of equivalent degrees of freedom (df): df =
tr(Sλ). This provides an intuitive way to specify a smoothing spline: e.g. a smoothing
spline with df=5 is as complex as a global polynomial of degree 4 (which has 5 parameters
including the intercept), see also Figure 3.1.

3.4.4 Relation to equivalent kernels

It is interesting to note that there is a relationship between the smoothing spline estimate
and a particular kernel estimator. The smoothing spline estimate m̂(x) is approximately

m̂λ(x) ≈
n∑
i=1

wi(x)Yi,

wi(x) =
1

nh(x)fX(x)
K

(
x− xi
h(x)

)
,

h(x) = λ1/4n−1/4fX(x)−1/4,

K(u) =
1

2
exp

(
− |u|√

2

)
sin

(
|u|√

2
+
π

4

)
.

See for example Green and Silverman (1994, Ch. 3.7).

The important fact is here that the bandwidth of the equivalent kernel estimator has
a local bandwidth, depending on the density of the predictor variable x. In regions where
the density of the predictor is low (observations are sparse), the bandwidth automatically
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adapts and becomes large: intuitively, this is the right behavior because we should use
strong smoothing in regions where only few observations are available.

An example of a smoothing spline fit for real data is displayed in Figure 3.1. Finally,
we illustrate on an artificial dataset the advantage of smoothing splines to adapt to the
density of the predictor variables. Figure 3.3 shows the performance of smoothing splines
in comparison with the Nadaraya-Watson Gaussian kernel estimator. The data has the
following structure:
• the density of the predictor is high for positive values and low for negative values
• the true function is strongly oscillating where the predictor density is high

and slowly oscillating where the predictors are sparse
The smoothing spline fit (using the GCV criterion for selecting the degrees of freedom,
see section 4.5) yields a very good fit: it captures the strong oscillations because there
are many data points with positive values of the predictors. On the other hand, the
kernel estimator has been tuned such that it captures the strong oscillations, using a small
bandwidth h (this was done by knowing the true underlying function – which is not feasible
in practice): but the small bandwidth h then causes a much too rough and poor estimate
for negative predictor values, although the underlying true function is smooth.
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Figure 3.3: Curve estimation for synthetic dataset (n = 417). Left panels: scatterplot,
overlaid with curve estimates (red) and true curve (gray); Right panels: curve estimates
(red) and true curve (gray).
Top: Smoothing spline with GCV-selected df (= 9.23); Bottom: Nadaraya-Watson kernel
estimator with bandwidth chosen for good estimation of the strong oscillations of the true
function (giving df = 25.6).



Chapter 4

Cross-Validation

4.1 Introduction

The generalization performance (which is a terminology from the machine learning com-
munity) of a learning method describes its prediction capacity on new test data. Or in
other words, the generalization performance measures the predictive power of a learning
method on new, out-sample data. Having an estimate of this predictive power is very
important for comparing among different methods or for tuning an estimator or algorithm
to optimize predictive power.

Cross-Validation is one very general method for estimating such generalization or out-
sample performance.

4.2 Training and Test Set

Consider the situation where we have data

(X1, Y1), . . . , (Xn, Yn) i.i.d. ∼ P

where P denotes the unknown distribution. (In case where the xi is non-random, we can
also drop the i.i.d. assumption for the pairs (xi, Yi).)

We typically have a target in mind, for example the regression function m(·). The esti-
mated regression function m̂(·) is then constructed by using some estimator or algorithm,
based on the data (X1, Y1), . . . , (Xn, Yn). This data is also called the training data, since
it is used to train the estimator or learning algorithm.

We then would like to evaluate the accuracy of the estimated target which is based on
the training data. A principal problem thereby is that if we use the training data again
to measure the predictive power of our estimated target (e.g. of m̂(·)), the results will be
overly optimistic. For example, when using the residual sum of squares in regression,

n∑
i=1

(Yi − m̂(Xi))
2

becomes smaller the more“complex”(more degrees of freedom) the model for m̂(·) involves.
Obviously, a very complex model will not be good. We have seen already in Section 3.4
that penalizing the residual sum of squares can be useful to cope with the overfitting
problem.

Alternatively, we could look how well the estimated target, e.g. m̂(·), does on new
test data

(Xnew,1, Ynew,1), . . . , (Xnew,`, Ynew,`) i.i.d. ∼ P,

33



34 Cross-Validation

which is assumed to be independent from the training data but having the same distribu-
tion P . In case of regression, we would like to evaluate

`−1
∑̀
i=1

(Ynew,i − m̂(Xnew,i))
2.

More generally, when having an estimated target m̂ and a loss function ρ, we would like
to evaluate

`−1
∑̀
i=1

ρ (Ynew,i, m̂(Xnew,i)) ,

where m̂(·) is constructed from training data only. If ` is large, this evaluation on the test
set approximates the theoretical test set error

E(Xnew,Ynew)[ρ(Ynew, m̂︸︷︷︸
based on training data only

(Xnew))]

which is still a function of the training data. The expected value of this (with respect to
the training data) is the generalization error,

EtrainingE(Xnew,Ynew)[ρ(Ynew, m̂︸︷︷︸
...training data

(Xnew))] = E[ρ(Ynew, m̂(Xnew))], (4.1)

where the latter E is over the training data (X1, Y1), . . . , (Xn, Yn) as well as the test data
(Xnew, Ynew). This generalization error avoids the fact that it would get smaller the more
complex the model for m̂(·). In particular, it will increase as m̂ is overfitting. Hence the
generalization error in (4.1) is a very useful quantity to regularize and tune an estimator
or algorithm for m̂.

4.3 Constructing training-, test-data and cross-validation

Unfortunately, test data is not available at the time we want to run and tune our estimator
or algorithm. But we can always “artificially” construct (smaller) training- and test-data.

4.3.1 Leave-one-out cross-validation

For leave-one-out cross-validation (CV), we use the ith sample point as test data (test
sample size = 1) and the remaining n− 1 sample points as training data.

Denote in general the estimator or algorithm by θ̂n which is based on the n sample
points. In CV, when deleting the ith sample, the estimator is based on the sample without
the ith observation, and we denote this by

θ̂
(−i)
n−1, i = 1, . . . , n.

We can then evaluate this estimate on the ith observation (the test sample), for every
i = 1, . . . , n. To make this more explicit, we suppose that the estimator θ̂ is a curve
estimator m̂, and performance is evaluated in terms of a loss function ρ, e.g. ρ(u) = u2 as
in Chapter 3. The cross-validated performance is then

n−1
n∑
i=1

ρ
(
Yi, m̂

(−i)
n−1(Xi)

)
(4.2)
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which is an estimate of the test set error, or generalization error, in (4.1).
Note that the CV-method is very general: it can be used for any loss function ρ and

in many problems which can be different than linear or nonparametric regression.
CV in general requires that the estimator θ̂ is fitted n times, namely for all training

sets where the ith observation has been deleted (i = 1, . . . , n).

4.3.2 K-fold Cross-Validation

A computationally cheaper version of leave-one-out CV is the so-called K-fold CV. The
data set is randomly partitioned into K equally sized (as equal as possible) subsets Bk of
{1, . . . , n} such that ∪Kk=1Bk = {1, . . . , n} and Bj ∩ Bk = ∅ (j 6= k). We can now set aside
a kth test data set including all sample points whose indices are elements of Bk.

K-fold cross-validation then uses the sample points with indices not in Bk as training
set to construct an estimator

θ̂
(−Bk)
n−|Bk|.

The analogue of the evaluation formula in (4.2) is then, for regression with m̂(·),

K−1
K∑
k=1

|Bk|−1
∑
i∈Bk

ρ
(
Yi, m̂

(−Bk)
n−|Bk|(Xi)

)
.

K-fold CV thus only needs to run the estimation algorithm K times. Leave-one-out CV
is the same as n-fold CV. In practice, often K = 5 or K = 10 are used.

4.3.3 Random divisions into test- and training-data

K-fold CV has the disadvantage that it depends on the one realized random partition into
subsets B1, . . . ,BK . In particular, if the data (pairs) are assumed to be i.i.d., the indexing
of the data (pairs) should not have an influence on validating a performance: note that
leave-one-out CV is indeed independent of indexing the data.

In principle, we can generalize leave-one-out CV to leave-d-out CV. Leave a set C
comprising d observations out (set them aside as test data) and use the remaining n − d
data points for training the statistical model or algorithm:

θ̂
(−C)
n−d , for all possible subsets Ck, k = 1, 2, . . . ,

(
n
d

)
.

We can then evaluate this estimate on observations from the test set Ci (the test sample),
for every i. The analogue of (4.2), for regression with m̂(·), is then

(
n

d

)−1 (nd)∑
k=1

d−1
∑
i∈Ck

ρ
(
Yi, m̂

(−Ck)
n−d (Xi)

)
(4.3)

which is also an estimate of the test set error, or generalization error in (4.1).
The computational burden becomes immense if d ≥ 3. A computational short-cut is

then given by randomization: instead of considering all subsets (test sets), we draw B
random test subsets

C∗1 , . . . , C∗B i.i.d. ∼ Uniform(
{

1, . . . ,
(
n
d

)}
),

where the Uniform distribution assigns probability
(
n
d

)−1 to every possible subset of size
d. Such a Uniform distribution, or such a random subset C∗, is easily constructed by
sampling without replacement:
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Draw d times randomly without replacement from {1, . . . , n}, yielding a subset C∗.

The random approximation for (4.3) is then

B−1
B∑
k=1

d−1
∑
i∈C∗k

ρ
(
Yi, m̂

(−C∗k)
n−d (Xi)

)
. (4.4)

For B =∞, the two expressions in (4.4) and (4.3) coincide (note that we only would need
a finite, maybe huge, amount of computation for evaluation of (4.3)).

In practice, we typically choose d = [γn] with γ ≈ 0.1 (10% test data). For the
number of random test and training sets, we choose B ≈ 50− 500, depending on the cost

to compute θ̂
(−C)
n−d for a training set of size n − d (evaluation on the test set C is usually

fast). Thus, in terms of computation, the stochastic version in (4.4) may be even faster
than leave-one-out CV in (4.2) if B < n, and we can use the stochastic approximation also
for leave-one-out CV when sample size n is large.

4.4 Properties of different CV-schemes

4.4.1 Leave-one-out CV

Leave-one-out CV, which is equal to n-fold CV, is approximately unbiased for the true
prediction or generalization error: the only drawback in terms of bias is that we use
training sample size n− 1 instead of the original n, causing for a slight bias. The variance
of leave-one-out CV is typically high, because the n training sets are so similar to each
other:

Var

(
n−1

n∑
i=−1

ρ
(
Yi, m̂

(−i)
n−1(Xi)

))
= n−2

n∑
i=1

n∑
j=1

Cov
(
ρ(Yi, m̂

(−i)
n−1(Xi)), ρ(Yj , m̂

(−j)
n−1 (Xj))

)
.

Although (Xi, Yi) is typically assumed to be independent from (Xj , Yj), the covariances

are substantial because of strong correlation of m̂
(−i)
n−1(·) and m̂

(−j)
n−1 (·), and hence the double

sum in the formula above can be quite large.

4.4.2 Leave-d-out CV

Heuristically, it is clear that leave-d-out CV, with d > 1, has higher bias than leave-one-out
CV; because we use training samples of sizes n− d instead of the original n, causing some
bias. In terms of variance, we average over more, although highly correlated summands
in (4.3), which can be shown to decrease variance in comparison to leave-one-out CV.

4.4.3 K-fold CV; stochastic approximations

K-fold CV has larger bias than leave-one-out CV; because the training sets are of smaller
sample size than n − 1 (in leave-one-out CV), and also smaller than the original sample
size n. In terms of variance, it is not clear (sometimes wrongly stated in the literature)
whether K-fold CV has smaller variance than leave-one-out CV.

The stochastic approximation is expected to have somewhat higher bias and variance
than the computationally infeasible leave-d-out CV: it is difficult to assess how much we
lose by using a finite B.
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4.5 Computational shortcut for some linear fitting opera-
tors

Consider the special case of fitting a cubic smoothing spline or fitting a least squares
parametric estimator: in both cases, we have a linear fitting operator S,

(m̂(x1), . . . , m̂(xn))ᵀ = SY, Y = (Y1, . . . , Yn)ᵀ.

When focusing on the squared error loss function ρ(y, x) = |y − x|2, there is a surprising
result for representing the leave-one-out CV score in (4.2):

n−1
n∑
i=1

(
Yi − m̂(−i)

n−1(Xi)
)2

= n−1
n∑
i=1

(
Yi − m̂(Xi)

1− Sii

)2

. (4.5)

The interesting property is that we can compute the CV score by fitting the original es-
timator m̂(·) once on the full dataset, without having to do it n times by holding one
observation back as a test point. Moreover, by using efficient linear algebra implementa-
tions, the elements Sii can be computed with O(n) operations.

Historically, it was computationally more difficult to obtain all diagonal elements from
the hat matrix Sii (i = 1, . . . , n); and computing the trace, tr(S), which equals the sum of
the eigenvalues of S, has been easier. The generalized cross-validation was then proposed
in the late 70’s:

GCV =
n−1

∑n
i=1(Yi − m̂(Xi))

2

(1− n−1tr(S))2
.

This again requires to compute m̂(·) only once on the full dataset. Moreover, if all the
diagonal elements Sii would be equal (which is typically not the case), GCV would coincide
with the formula in (4.5). As outlined already, GCV has been motivated by computational
considerations which are nowadays not very relevant anymore. However, the statistical
properties of GCV can also be as good (and sometimes better or worse) than the ones
from leave-one-out CV.
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Chapter 5

Bootstrap

5.1 Introduction

The bootstrap, proposed by Efron (1979), is by now considered as a breakthrough in
statistics. Essentially, the bootstrap can be described as “simulating from an estimated
model”. This turns out to be tremendously useful for making statistical inference (confi-
dence intervals and testing) and, analogous to the goals in cross-validation, for estimating
the predictive power of a model or algorithm and hence also for tuning of statistical pro-
cedures.

5.2 Efron’s nonparametric bootstrap

Consider the situation where the data are realizations of

Z1, . . . , Zn i.i.d. ∼ P,

where P denotes an unknown distribution. The variables Zi can be real-valued (usually
then denoted by Xi), or they can be vector-valued. For example, Zi = (Xi, Yi) are the
pairs in a regression problem with Xi ∈ Rp and Yi ∈ R.

We denote a statistical procedure or estimator by

θ̂n = g(Z1, . . . , Zn) (5.1)

which is a (known) function g of the data Z1, . . . , Zn. The estimator θ̂n can be a parameter
estimator or also a curve estimator (e.g. in nonparametric regression).

Whenever we want to make statistical inference, we would like to know the probability
distribution of θ̂n. For example, constructing a confidence interval for a true parameter θ
requires the knowledge of the distribution of θ̂n; or constructing a statistical test requires
the distribution of θ̂n under the null-hypothesis. We also considered in chapter 4 the
problem of estimating the generalization error in regression

E[(Ynew − m̂(Xnew))2]

which can be thought of as the expected value, a summary statistic of the distribution, of

θ̂n+1 = g(Z1, . . . , Zn, Znew) = (Ynew − m̂Z1,...,Zn(Xnew))2, Zi = (Xi, Yi),

where we have a function g of the training and test data.
Deriving the exact distribution of θ̂n is typically impossible, unless the function g is

simple and P is a mathematically convenient distribution, e.g. P is a Normal distribution.
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If exact distributions are not available, much mathematical theory has been developed to
get at least the asymptotic distribution of θ̂n as n gets large. For example, due to the
central limit theorem,

θ̂n = n−1
n∑
i=1

Xi ≈ N (µ, σ2/n), Xi ∈ R,

where µ = E[Xi], σ
2 = Var(Xi). We then only need to estimate the parameters µ and σ in

order to have an approximate distribution for n−1
∑n

i=1Xi. For the maximum-likelihood
estimator in general, estimation of the asymptotic variance is already more subtle. Or for
the sample median,

θ̂n = median(X1, . . . , Xn) ≈ N (θ, σ2asy/n), Xi ∈ R,
σ2asy = E[(X − θ)2]/(4f2(θ))

where the asymptotic variance already involves quantities like the density f of P at the
unknown parameter θ = median(P ). Estimating this asymptotic variance is already a
pretty awkward task, and we should keep in mind that we would then only get the asymp-
totic answer to the problem of getting the distribution of θ̂n. Finally, for more complex
algorithms, mathematical theory is lacking for obtaining the approximate, asymptotic
distribution.

A pioneering step has then be taken by Efron (1979). Suppose we knew what the
distribution P is: we could then simulate to obtain the distribution of any θ̂n with
arbitrary accuracy (when simulating enough). Because we do not know the distribution P
of the data generating mechanism, we use the empirical distribution P̂n which places
probability mass 1/n on every data point Zi, i = 1, . . . , n. The recipe is then to simulate
from P̂n: generate simulated data

Z∗1 , . . . Z
∗
n i.i.d. ∼ P̂n.

Such a simulated new data set is called a bootstrap sample. We can now compute our
estimator θ̂∗n = g(Z∗1 , . . . , Z

∗
n), analogously to (5.1) but based on the bootstrap sample, and

we then repeat this many times to get an approximate distribution, e.g. via the histogram
of many simulated θ̂∗n’s.

5.2.1 The bootstrap algorithm

Bootstrapping an estimator as in (5.1) can be done as follows.

1. Generate a bootstrap sample

Z∗1 , . . . , Z
∗
n i.i.d. ∼ P̂n.

This can be realized as follows. Do n uniform random drawings with replace-
ment from the data set {Z1, . . . , Zn}, yielding the bootstrap sample.

2. Compute the bootstrapped estimator

θ̂∗n = g(Z∗1 , . . . , Z
∗
n),

based on the bootstrap sample; the function g(·) is as in (5.1).

3. Repeat steps 1 and 2 B times to obtain

θ̂∗1n , . . . , θ̂
∗B
n .
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4. These B bootstrapped estimators in 3 can then be used as approximations for the
bootstrap expectation, the bootstrap variance and the bootstrap quantiles:

E∗[θ̂∗n] ≈ 1

B

B∑
i=1

θ̂∗in ,

Var∗(θ̂∗n) ≈ 1

B − 1

B∑
i=1

(
θ̂∗in −

1

B

B∑
j=1

θ̂∗jn

)2
,

α-quantile of distribution of θ̂∗n ≈ empirical α-quantile of θ̂∗1n , . . . , θ̂
∗B
n .

The definition of the bootstrap values E∗, Var∗ or the bootstrap distribution are discussed
next.

5.2.2 The bootstrap distribution

The bootstrap distribution, denoted here by P ∗, is the conditional probability distribution
which is induced by i.i.d. resampling of the data

Z∗1 , . . . , Z
∗
n i.i.d. ∼ P̂n, (5.2)

given the original data. The fact that we condition on the data allows to treat the
bootstrap resampling distribution P̂n, which is the empirical distribution of the data, as
a fixed distribution.

Therefore, the bootstrap distribution P ∗ of θ̂∗n = g(Z∗1 , . . . , Z
∗
n) is the distribution

which arises when resampling with P̂n in (5.2) and applying the function g on such a
bootstrap sample, exactly as done by simulation in section 5.2.1. (From a theoretical point
of view, the bootstrap distribution P ∗ can be represented by a multinomial distribution
that contains the information which and how many times of the original data appears
again in the bootstrap sample (5.2)).

The bootstrap expectation of θ̂∗n is then denoted by E∗[θ̂∗n] which is a conditional
expectation given the data. Likewise, Var∗(θ̂∗n) is a conditional variance given the data.
Since P̂n in (5.2) is “close” to the true data-generating probability P , the bootstrap values
are “reasonable” estimates for the true quantities. For example, we can use

V̂ar(θ̂n) = Var∗(θ̂∗n).

This estimate is approximately computed as in step 4 of the bootstrap algorithm in sec-
tion 5.2.1. Whether such a bootstrap estimate is consistent will be discussed in the fol-
lowing section.

5.2.3 Bootstrap confidence interval: a first approach

The bootstrap is called to be consistent for θ̂n if, for all x,

P[an(θ̂n − θ) ≤ x] − P∗[an(θ̂∗n − θ̂n) ≤ x]
P−→ 0 (n→∞). (5.3)

In classical situations, an =
√
n: for example, the maximum-likelihood estimator θ̂n satis-

fies under regularity assumptions

√
n(θ̂n,MLE − θ)

D−→ N (0, I−1(θ)) (n→∞),

where I(θ) denotes the Fisher information at θ. Bootstrap consistency (5.3) then means

√
n(θ̂∗n,MLE − θ̂n)

D∗−→ N (0, I−1(θ)) in probability (n→∞).
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Consistency of the bootstrap typically holds

if the limiting distribution of θ̂n is Normal,
and if the data Z1, . . . , Zn are i.i.d.

Consistency of the bootstrap (usually) implies consistent variance and bias estimation:

Var∗(θ̂∗n)

Var(θ̂n)

P−→ 1,

E∗[θ̂∗n]− θ̂n
E[θ̂n]− θ

P−→ 1.

Moreover, consistent confidence intervals can be constructed. A two-sided confidence
interval with coverage 1− α for a parameter θ is given by[

θ̂n − q1−α/2, θ̂n − qα/2
]
, where qα = α-quantile of θ̂n − θ.

This is derived using elementary calculations. In analogy, the bootstrap estimated confi-
dence interval is then defined as[

θ̂n − q̂1−α/2, θ̂n − q̂α/2
]
, (5.4)

where q̂α = α-bootstrap quantile of θ̂∗n − θ̂n.

Due to invariance of the quantile:

q̂α = q∗α − θ̂n, where q∗α = α-bootstrap quantile of θ̂∗n.

Therefore, the bootstrap confidence interval in (5.4) becomes[
2θ̂n − q∗1−α/2, 2θ̂n − q∗α/2

]
. (5.5)

Note that this is not the same as simply taking the quantiles of the bootstrap
distribution, i.e., the simple-minded

[
q∗α/2, q

∗
1−α/2

]
is “backwards” and often less appro-

priate. The derivation which we gave for this “unintuitive” fact hinges on the consistency
of the bootstrap in (5.3).

Better bootstrap confidence intervals than (5.4) exist and often have better coverage
accuracy — at the price of being somewhat more difficult to implement. See also the
double bootstrap below (section 5.3)

An example

We consider here the example about asphalt quality from section 1.5.1, where a linear
model has been used to model the log of rutting as a function of 6 predictor variables.

The bootstrap distributions for the 6 coefficients corresponding to the 6 predictor
variables are exhibited in Figure 5.1.

The standard confidence intervals based on normally distributed data (or on asymptotic
considerations) are (including an intercept)

β̂j ± tn−p−1;1−α/2 · ŝ.e.(β̂j),

where tn−p−1;α denotes the α-quantile of a tn−p−1 distribution (qt(α,n-p-1)). In this
example, n = 31, p = 6 when using α = 0.05, we get tn−7;1−α/2 = 2.063899. The
confidence intervals are then given in Table 5.2.3.
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Figure 5.1: Histograms of B = 1000 bootstrap values β̂∗j for the 6 coefficients in the linear
model about asphalt quality from section 1.5.1.

method intercept LOGVISC ASPH BASE RUN FINES VOIDS
classical [-10.86,-0.71] [-0.66,-0.36] [0.60,1.70] [-0.44,0.91] [-1.23,-0.01] [-0.02,0.02] [0.09,0.54]
bootstrap [-11.97,0.99] [-0.67,-0.36] [0.41,1.78] [-0.37,0.87] [-1.26,0.09] [-0.01,0.02] [0.10,0.60]

Table 5.1: Classical 95% confidence intervals and 95% bootstrap confidence intervals (using
B = 1000) from (5.4) for the 7 coefficients in a linear model for the asphalt dataset from
section 1.5.1. In bold are the bootstrap confidence intervals which suggest non-significance
while the classical confidence intervals (or t-tests) would suggest significance.

5.2.4 Bootstrap estimate of the generalization error

Consider the problem of estimating the generalization error

E[ρ(Ynew, m̂(Xnew))]

in (4.1), where ρ is a loss function such as ρ(y,m) = |y−m|2 and m̂(·) could be a regression
estimator.

The bootstrap approach to estimate the generalization error is from a conceptual view
as follows.

1. Generate (X∗1 , Y
∗
1 ), . . . , (X∗n, Y

∗
n ), (X∗new, Y

∗
new) i.i.d. ∼ P̂n,

where P̂n is the empirical distribution of the original data (X1, Y1), . . . , (Xn, Yn).

2. Compute the bootstrapped estimator m̂∗(·) based on (X∗1 , Y
∗
1 ), . . . , (X∗n, Y

∗
n ).
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3. Compute the bootstrap generalization error

E∗[ρ(Y ∗new, m̂
∗(X∗new))],

where E∗ is with respect to all the bootstrap variables train∗ = (X∗1 , Y
∗
1 ), . . . , (X∗n, Y

∗
n )

and test∗ = (X∗new, Y
∗
new). Use this as an estimate of the true generalization error.

The bootstrap generalization error can be re-written as follows:

E∗[ρ(Y ∗new, m̂
∗(X∗new))] = E∗train∗

[
E∗test∗ [ρ(Y ∗new, m̂

∗(X∗new)) | train∗]
]

(5.6)

= E∗train∗ [n
−1

n∑
i=1

ρ(Yi, m̂
∗(Xi))] = n−1

n∑
i=1

E∗[ρ(Yi, m̂
∗(Xi))].

The first equality on the second line follows because: (i) test∗ = (X∗new, Y
∗
new) is inde-

pendent (with respect to the bootstrap distribution) from train∗, and hence the inner
conditional expectation is a non-conditional expectation using m̂∗(·) as fixed (non-random
because we condition on the bootstrap training data train∗); (ii) the bootstrap expectation
E∗[g(X∗, Y ∗)] = n−1

∑n
i=1 g(Xi, Yi) for any function g(·).

Therefore, the bootstrap generalization error as represented in (5.6) is the average of
the bootstrap errors over the observed original data (Xi, Yi). In particular, there is no
need to generate (X∗new, Y

∗
new) as conceptually introduced above in step 1. The practical

algorithm then looks as follows.

1. Generate (X∗1 , Y
∗
1 ), . . . , (X∗n, Y

∗
n ) by resampling with replacement from the original

data.

2. Compute the bootstrapped estimator m̂∗(·) based on (X∗1 , Y
∗
1 ), . . . , (X∗n, Y

∗
n ).

3. Evaluate err∗ = n−1
∑n

i=1 ρ(Yi, m̂
∗(Xi)).

4. Repeat steps 1–3 B times to obtain err∗1, . . . , err∗B. Approximate the bootstrap
generalization error in (5.6) by

B−1
B∑
i=1

err∗i,

and use it as an estimate for the true generalization error in (4.1).

5.2.5 Out-of-bootstrap sample for estimation of the generalization error

The bootstrap generalization error in (5.6) can be criticized because it evaluates at data
points (Xi, Yi) which may have been used in the estimator m̂∗(·); see also step 3 in the
computational algorithm. The over-optimism of the bootstrap generalization error (be-
cause some of the data points will be involved for training and testing) can be addressed
by using the out-of-bootstrap sample.

Denote the bootstrap sample by L∗ = {Z∗1 , . . . , Z∗n}. Clearly, not all of the original
data points Zi belong to the bootstrap sample L∗. Thus, there is an out-of-bootstrap
sample

L∗out = ∪ni=1{Zi;Zi /∈ L∗}

which we will use as test set.
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The out-of-bootstrap error is defined in algorithmic terms. As usual, we repeat the
bootstrap sampling B times which yields bootstrap and out-of-bootstrap samples

L∗(b) and L∗(b)out , b = 1, . . . , B.

The out-of-bootstrap generalization error is then:

gen-errout−of−bootstrap =
1

B

B∑
b=1

1

|L∗(b)out |

∑
i∈L∗(b)out

ρ(Yi, m̂
∗(b)(Xi)).

Note that m̂∗(b)(·) involves only data from L∗(b), and it holds that (Xi, Yi) /∈ L∗(b).
There is a probabilistic statement about the size of the out-of-bootstrap sample, i.e.

the size of the test-sample:

P∗[Zi ∈ L∗out] = P∗[Z∗1 6= Zi, Z
∗
2 6= Zi, . . . , Z

∗
n 6= Zi]

=

n∏
k=1

P∗[Z∗k 6= Zi] = (1− n−1)n ≈ exp(−1) = 0.368.

Thus, the chance that an original data point is in the out-of-bootstrap sample is a bit
more than 1/3. Furthermore, for the expected size of the out-of-bootstrap sample:

E∗[|L∗out|] = E∗[
n∑
i=1

1[Zi∈L∗out]] = nP∗[Zi ∈ L∗out] ≈ 0.368n.

Hence, we can think of the out-of-bootstrap generalization error as some sort of cross-
validation with 36.8% test data. The difference to cross-validation is that some of the
other 63.2% of the original data are occurring more than once yielding a bootstrap sample
(i.e. training sample) which is always of size n.

5.3 Double bootstrap

We describe here how the bootstrap can be used twice (or multiple times) aiming to
improve a bootstrap confidence interval. The same idea can also be used for potentially
improving other bootstrap estimates than confidence intervals.

Suppose we wish to construct a (1−α)-confidence interval for a parameter θ based on
some estimator θ̂. The bootstrap interval I∗(1− α), as defined in (5.4), is not exact, i.e.,

P[θ ∈ I∗(1− α)] = 1− α+ ∆n,

with some approximation error ∆n which will diminish as n→∞.
The main idea is now as follows: when changing the nominal coverage to 1 − α′ and

using I∗(1− α′), we can get an exact actual coverage

P[θ ∈ I∗(1− α′)] = 1− α.

The problem is that α′ is unknown. But another level of bootstrap can be used to estimate
α′, denoted by α̂′, which typically achieves

P[θ ∈ I∗(1− α̂′)] = 1− α+ ∆′n,

where the new approximation error ∆′n is typically smaller than ∆n above.
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A second level of bootstrap

In case where the original data Z1, . . . , Zn are replaced by n i.i.d. bootstrap realizations
Z∗1 , . . . , Z

∗
n, we can get an exact answer for the level α′ above. We can proceed in analogy

to the setting above, step by step.
First, suppose the data is Z∗1 , . . . , Z

∗
n. By using the bootstrap for the bootstrap data

Z∗1 , . . . , Z
∗
n, i.e., a second level bootstrap with Z∗∗1 , . . . , Z

∗∗
n (see below), we can construct

a confidence interval I∗∗(1 − α) as in (5.4). We can now inspect the actual coverage for
this second level bootstrap interval:

P∗[θ̂n ∈ I∗∗(1− α)] =: h∗(1− α)

for some function h∗ : [0, 1]→ [0, 1] which is increasing. Now use

1− α′∗ = h∗−1(1− α) (5.7)

so that

P∗[θ̂n ∈ I∗∗(1− α′∗)] = h∗(h∗−1(1− α)) = 1− α

is an exact confidence interval “in the bootstrap world” for the “parameter” θ̂n. Therefore,
the bootstrap estimate for the adjusted nominal coverage level is

1̂− α′ = 1− α′∗ from (5.7).

Computation of bootstrap adjusted nominal level 1− α′∗

We can use a double (two-level) bootstrap scheme to approximately compute the value
1− α′∗ in (5.7).

1. Draw a bootstrap sample Z∗1 , . . . , Z
∗
n by resampling with replacement.

(a) Compute a bootstrap interval. That is, generate a second level bootstrap sample

Z∗∗1 , . . . , Z
∗∗
n

by resampling with replacement from Z∗1 , . . . , Z
∗
n. Then, analogous to (5.4),

construct the double bootstrap confidence interval

I∗∗(1− α) =
[
θ̂∗ − q̂∗1−α/2, θ̂

∗ − q̂∗α/2
]
,

where q̂∗α = α − quantile of θ̂∗∗ − θ̂∗, θ̂∗∗ = g(Z∗∗1 , . . . , Z
∗∗
n ). This is computed

by repeating step 1(a) B times to approximate q̂∗α by the empirical α-quantile
of θ̂∗∗1 − θ̂∗, . . . , θ̂∗∗B − θ̂∗.

(b) Evaluate whether the “parameter” θ̂ in the “bootstrap world” is in I∗∗(1 − α):
i.e., consider

cover∗(1− α) = 1[θ̂∈I∗∗(1−α)].

2. Repeat M times all of step 1 to obtain cover∗1(1 − α), . . . , cover∗M (1 − α). This
amounts to M first level bootstrap replications Z∗m = Z∗m1 , . . . , Z∗mn (m = 1, . . . ,M)
and for each Z∗m, we run B second level bootstrap replications for step 1(a). Use

p∗(α) := M−1
M∑
i=1

cover∗i(1− α) (5.8)

as an approximation for P∗[θ̂ ∈ I∗∗(1− α)].
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3. Vary α (in all of step 1 and 2!) to find α′∗ such that

p∗(α′∗) = 1− α (the desired nominal level) and use 1̂− α′ = 1− α′∗.

The search for α′∗ (a “zero finding problem”) can be done on a grid and/or by using
a bisection strategy.

The total amount of computation requires B ·M bootstrap samples. In case where
the bootstrap interval in (5.4) is computed with B bootstrap samples, and hence also the
interval I∗∗ in step 1(a), the adjustment with the double bootstrap may be less important
and it is then reasonable to use M < B since the magnitude of M only determines the
approximation for computing the actual level P∗[θ̂ ∈ I∗∗(1 − α)] (for I∗∗ computed with
B bootstrap replications).

An example
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Figure 5.2: Data (n = 100) and estimated curve (red) using a Nadaraya Watson Gaussian
kernel estimator with bandwidth h = 0.25.

We illustrate now the double bootstrap for confidence intervals in curve estimation.
Figure 5.2 displays the data, having sample size n = 100, and a curve estimator.

Figure 5.3 then shows how the double bootstrap is used to estimate the actual coverage:
displayed is an approximation of P∗[θ̂n ∈ I∗∗(1−α)] for various nominal levels 1−α. It also
indicates the values for the corrected levels 1−α′∗ and it also demonstrates the effect when
using a double-bootstrap corrected confidence interval instead of an ordinary interval.

5.4 Model-based bootstrap

Efron’s nonparametric bootstrap can be viewed as simulating from the empirical distribu-
tion P̂n: that is, we simulate from a very general estimated nonparametric model, where
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Figure 5.3: Double bootstrap confidence intervals for nonparametric curve at three pre-
dictor points x ∈ {−1, 0, 1}. The data (n = 100) and estimated curve are shown in
Figure 5.2. The first three panels show the estimated actual coverages (p∗(α)) of a boot-
strap confidence interval by using the double bootstrap. The values 1 − α′∗ (for actual
level 1 − α = 0.9) are 0.86, 0.922, 0.998 for the points x = −1, 0, 1, respectively. The
fourth panel shows the ordinary bootstrap confidence intervals (solid line) and the double
bootstrap corrected versions (dotted line, in red) for x ∈ {−1, 0, 1}. The double bootstrap
was used with B = 1000 and M = 500.
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the model says that the data is i.i.distributed with an unknown distribution P .

5.4.1 Parametric bootstrap

Instead of such a general nonparametric model, we sometimes assume that the data are
realizations from

Z1, . . . , Zn i.i.d. ∼ Pθ,

where Pθ is given up to an unknown parameter (vector) θ.

As one among very many examples: the data could be real-valued assumed to be from
the parametric model

X1, . . . , Xn i.i.d. ∼ N (µ, σ2), θ = (µ, σ2).

In order to simulate from the parametric model, we first estimate the unknown pa-
rameter θ by θ̂ such as least squares in regression or maximum likelihood in general. The
parametric bootstrap then proceeds by using

Z∗1 , . . . , Z
∗
n i.i.d. ∼ Pθ̂,

instead of (5.2). Everything else, e.g. construction of confidence intervals, can then be
done exactly as for Efron’s nonparametric bootstrap.

Advantages and disadvantages

Why should we choose the parametric instead of the nonparametric bootstrap? The answer
is “classical”: if the parametric model is a very good description for the data, then the
parametric bootstrap should yield more accurate variance estimates or confidence intervals
since Pθ̂ is then “closer” to the true data-generating P than the nonparametric empirical

distribution P̂n. Particularly when sample size n is small, the nonparametric estimate P̂n
may be poor. On the other hand, the nonparametric bootstrap is not (or less) sensitive
to model-misspecification.

5.4.2 Model structures beyond i.i.d. and the parametric bootstrap

Linear model with fixed predictors

For example, a linear model with fixed predictors xi ∈ Rp and Gaussian errors

Yi = βᵀxi + εi (i = 1, . . . , n),

ε1, . . . , εn i.i.d. ∼ N (0, σ2), θ = (β, σ2)

is a parametric model. The bootstrap sample can then be constructed as follows:

1. Simulate ε∗1, . . . , ε
∗
n i.i.d. ∼ N (0, σ̂2).

2. Construct

Y ∗i = β̂ᵀxi + ε∗i , i = 1, . . . , n.

The parametric bootstrap regression sample is then

(x1, Y
∗
1 ), . . . , (xn, Y

∗
n ),

where the predictors xi are as for the original data.
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Autoregressive models for time series

A Gaussian autoregressive model of order p for stationary time series is

Xt =

p∑
j=1

φjXt−j + εt (t = 1, . . . , n),

ε1, . . . , εn i.i.d. ∼ N (0, σ2),

where Xt ∈ R. Such a model produces correlated observations and is widely used for
describing time-dependent observations. Parametric bootstrapping can then be done as
follows:

1. Generate ε∗1, . . . , ε
∗
n+m i.i.d. ∼ N (0, σ̂2) with m ≈ 1000.

2. Construct recursively, starting with X∗0 = X∗−1 = . . . = X∗−p+1 = 0,

X∗t =

p∑
j=1

φ̂jX
∗
t−j + ε∗t , t = 1, . . . , n+m.

3. Use the bootstrap sample
X∗m+1, . . . , X

∗
n+m.

The reason to throw away the first values X∗1 , . . . X
∗
m is to obtain a bootstrap sample

which is approximately a stationary process (by choosing m large, the arbitrary
starting values in step 2 will be almost forgotten).

5.4.3 The model-based bootstrap for regression

A compromise between Efron’s non- and the parametric bootstrap for regression is given
by assuming possibly non-Gaussian errors. The model for the original data is

Yi = m(xi) + εi,

ε1, . . . , εn i.i.d. ∼ Pε,

where Pε is unknown with expectation 0. The regression function m(·) may be parametric
or nonparametric. The model-based bootstrap works then as follows:

1. Estimate m̂ from the original data and compute the residuals ri = Yi − m̂(xi).

2. Consider the centered residuals r̃i = ri−n−1
∑n

i=1 ri. In case of linear regression with
an intercept, the residuals are already centered. Denote the empirical distribution
of the centered residuals by P̂r̃.

3. Generate
ε∗1, . . . , ε

∗
n i.i.d. ∼ P̂r̃.

Note that P̂r̃ is an estimate of Pε.

4. Construct the bootstrap response variables

Y ∗i = m̂(xi) + ε∗i , i = 1, . . . , n,

and the bootstrap sample is then (x1, Y
∗
1 ), . . . , (xn, Y

∗
n ).

Having the bootstrap sample from step 4, we can then proceed as for Efron’s nonpara-
metric bootstrap for constructing variance estimates or confidence intervals.

The advantage of the model-based bootstrap is that we do not rely on a Gaussian error
assumption. The same discussion then applies about advantages and disadvantages as in
section 5.4.1.



Chapter 6

Classification

6.1 Introduction

Often encountered in applications is the situation where the response variable Y takes
values in a finite set of labels. For example, the response Y could encode the information
whether a patient has disease type A, B or C; or it could describe whether a customer
responds positively about a marketing campaign.
We always encode such information about classes or labels by the numbers 0, 1, . . . , J − 1.
Thus, Y ∈ {0, . . . , J − 1}, without any ordering among these numbers 0, 1, . . . , J − 1. In
other words, our sample space consists of J different groups (“sub-populations”) and our
goal is to classify the observations using the (p-dimensional) explanatory variables.

Given data which are realizations from

(X1, Y1), . . . , (Xn, Yn) i.i.d. ,

the goal is often to assign the probabilities

πj(x) = P[Y = j | X = x] (j = 0, 1, . . . , J − 1),

which is similar to the regression function m(x) = E[Y | X = x] in regression. The
multivariate function πj(·) then also allows to predict the class Ynew at a new observed
predictor Xnew.

6.2 The Bayes classifier

A classifier C : Rp → {0, . . . , J − 1} is a function which assigns to a predictor X ∈ Rp a
class or label which is a prediction for the corresponding Y . The quality of a classifier is
often measured by the expected zero-one test set error:

P[C(Xnew) 6= Ynew].

In case where C = Ĉ is estimated from training data, we consider the generalization error

Ptrain,(Xnew,Ynew)[Ĉ(Xnew) 6= Ynew].

The optimal classifier with respect to the zero-one error is the Bayes classifier, defined
“pointwise”, i.e., for each x individually, as

CBayes(x) = arg max
0≤j≤J−1

πj(x). (6.1)

51
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Its corresponding expected zero-one test set error is called the Bayes risk

P[CBayes(Xnew) 6= Ynew].

In practice, we do not know πj(·) (and hence the Bayes classifier or risk are as unknown
as MSE or bias in regression). Various methods and models are then used to come up
with multivariate function estimates, either parametric or nonparametric, to obtain π̂j(·).
With this, we can then estimate a classifier by plugging into the Bayes classifier

Ĉ(x) = arg max
0≤j≤J−1

π̂j(x). (6.2)

Such estimated classifiers are widely used, by using various models for πj(·). However,
there are also direct ways to come up with estimated classifiers without trying to estimate
the conditional probability function πj(·): an important class of examples are the support
vector machines (which we will not discuss in this course). Another is the discriminant
analysis view:

6.3 The view of discriminant analysis

6.3.1 Linear discriminant analysis

For the so-called linear discriminant analysis, we assume the following model:

(X | Y = j) ∼ N p(µj , |Σ),

P [Y = j] = pj ,
J−1∑
j=0

pj = 1; j = 0, 1, . . . , J − 1. (6.3)

The conditional distribution of Y | X can then be computed by the Bayes formula

P[Y = j | X = x] = πj(x) =
fX|Y=j(x)pj∑J−1
k=0 fX|Y=k(x)pk

, (6.4)

where fX|Y=j(·) denotes the density of the p-dimensional Gaussian distribution N p(µj , |Σ).
We can interpret this conditional distribution as the a-posteriori distribution of Y given
X by using the a-priori distribution pj for Y .

The unknown parameters in (6.4) are µj and |Σ (or |Σj if the covariances may differ
per group, see 6.3.2) which can be estimated by standard moment estimators:

µ̂j =
n∑
i=1

Xi1[Yi=j]/
n∑
i=1

1[Yi=j] =
1

nj

∑
i;Yi=j

Xi, where nj = #{i;Yi = j},

|̂Σ =
1

n− J

J−1∑
j=0

n∑
i=1

(Xi − µ̂j)(Xi − µ̂j)ᵀ1[Yi=j], and

|̂Σj =
1

nj − 1

n∑
i=1

(Xi − µ̂j)(Xi − µ̂j)ᵀ1[Yi=j] (6.5)

Moreover, we need to specify the (a-priori) distribution for Y : quite often, one takes
p̂j = n−1

∑n
i=1 1[Yi=j] = nj/n. Using these parameter estimates, we obtain a classifier via
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formula (6.4) and (6.2):

Ĉlin.discr.(x) = arg max
0≤j≤J−1

δ̂j(x),

δ̂j(x) = xᵀ |̂Σ
−1
µ̂j − µ̂jᵀ |̂Σ

−1
µ̂j/2 + log(p̂j) =

= (x− µ̂j/2)ᵀ |̂Σ
−1
µ̂j + log(p̂j).

This classifier is called “linear discriminant classifier” because the estimated decision func-
tions δ̂j(·) are linear in the predictor variables x and since the regions are determined

by δ̂j(x) − δ̂j′(x) ≥ 0, the decision boundaries are hyperplanes (i.e., lines for p = 2),

xᵀ |̂Σ
−1

(µ̂j − µ̂j′) + cj,j′ = 0.

6.3.2 Quadratic discriminant analysis

The model underlying linear discriminant analysis assumes equal covariances for all the
groups, see formula (6.3). More generally, we sometimes assume

(X | Y = j) ∼ N p(µj , |Σj),

P [Y = j] = pj ,
J−1∑
j=0

pj = 1; j = 0, 1, . . . , J − 1.

with non-equal covariances for all the groups j ∈ {0, 1, . . . , J − 1}. Analogously to linear
discriminant analysis, we then obtain discriminant functions which are quadratic in the
predictor variables x,

δ̂j(x) = − log(det( |̂Σj))/2− (x− µ̂j)ᵀ |̂Σ
−1
j (x− µ̂j)/2 + log(p̂j).

Such quadratic discriminant classifiers are more flexible and general than their linear
“cousins”: but the price to pay for this flexibility are J · p(p + 1)/2 parameters for all
covariance matrices |Σj (j = 0, 1, . . . , J − 1) instead of p(p+ 1)/2 for one |Σ in linear dis-
criminant analysis. Particularly when p is large, quadratic discriminant analysis typically
overfits (too large variability).

6.4 The view of logistic regression

As we have seen in (6.1), all we need to know for a good classifier is a good estimator for
the conditional probabilities πj(·).

6.4.1 Binary classification

For the case with binary response Y ∈ {0, 1}, the conditional probability function

π(x) = P[Y = 1 | X = x]

provides the full information about the conditional distribution of Y given X (since P[Y =
0 | X = x] = 1− π(x)). The logistic model for π(·) in general is

log

(
π(x)

1− π(x)

)
= g(x),

g : Rp → R. (6.6)

Note that the so-called logistic transform π 7→ log(π/(1 − π)) maps the interval (0, 1) to
the real line R. Models for real-valued functions can thus be used for g(·).
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Linear logistic regression

In analogy to linear regression in chapter 1, a popular and simple model for g(·) is

g(x) =

p∑
j=1

βjxj . (6.7)

The model in (6.6) with g(·) from (6.7) is called linear logistic regression.
Fitting of the parameters is usually done by maximum-likelihood. For fixed predictors

xi, the probability structure of the response variables is

Y1, . . . , Yn independent, Yi ∼ Bernoulli(π(xi)).

The likelihood is thus

L(β; (x1, Y1), . . . , (xn, Yn)) =
n∏
i=1

π(xi)
Yi(1− π(xi))

1−Yi ,

and the negative log-likelihood becomes

−`(β; (x1, Y1), . . . , (xn, Yn)) = −
n∑
i=1

(Yi log(π(xi)) + (1− Yi) log(1− π(xi)))

= −
n∑
i=1

(
Yi

p∑
j=1

βjxij − log(exp(

p∑
j=1

βjxij) + 1)

)
.

Minimization of the negative log-likelihood is a nonlinear problem. It is usually solved
numerically by versions of Newton’s gradient descent method which then yield the maximal
likelihood estimate β̂p×1.

Asymptotic inference and an example
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Figure 6.1: Survival of 247 prenatal babies as a function of age (in weeks), weight (in grams) and
3 other clinical variables.

Based on classical theory for maximum likelihood estimation, the distribution of the
estimated coefficients β̂ can be derived from an asymptotic point of view where the sample
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size n→∞. The output in R then yields a summary of the estimated coefficients, of their
estimated standard errors ŝ.e.(β̂j), of the individual t-test statistics β̂j/ŝ.e.(β̂j) (which
are asymptotically N (0, 1) distributed under the null-hypothesis H0,j : βj = 0) and the
P-values for the individual t-tests for the null-hypotheses H0,j = 0 (j = 1, . . . , p).

As an example, we consider a dataset about survival of prenatal babies (represented
by the response variable Y ∈ {0, 1}) as a function of age (in weeks), weight (in grams)
and 3 other clinical variables (see Fig. 6.1). Fitting a linear logistic regression model can
be done in R using the function glm:

> d.baby ← read.table("http://stat.ethz.ch/Teaching/Datasets/baby.dat",header=T)

> fit ← glm(Survival ~ ., data = d.baby, family= "binomial")

> summary(fit)

Call:

glm(formula = Survival ~ ., family = "binomial", data = d.baby)

Deviance Residuals:

Min 1Q Median 3Q Max

-2.3994 -0.7393 0.4220 0.7833 1.9445

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.0933685 14.3053767 -0.216 0.8288

Weight 0.0037341 0.0008468 4.410 1.03e-05 ***

Age 0.1588001 0.0761061 2.087 0.0369 *

X1.Apgar 0.1159864 0.1108339 1.046 0.2953

X5.Apgar 0.0611499 0.1202222 0.509 0.6110

pH -0.7380214 1.8964578 -0.389 0.6972

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 319.28 on 246 degrees of freedom

Residual deviance: 236.14 on 241 degrees of freedom

AIC: 248.14

Number of Fisher Scoring iterations: 4

As seen from the P -values for the individual hypotheses H0,j : βj = 0, the predictor
variables weight and age, which are strongly correlated, turn out to be significant for
describing whether a prenatal baby will survive.

For classification, we can extract the probabilities with the function predict:
predict(fit, type="response")

which yields the estimated probabilities π̂(xi), i = 1, . . . , n. Thus, the average in-sample
classification accuracy 1

n

∑n
i=1 1

[Yi=Ĉ(xi)] is given by

mean((predict(fit, type = "response") > 0.5) == d.baby$Survival) ,
which turns out to be 0.789. Remember that such an in-sample estimate is over-optimistic
for measuring the true generalization performance.
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Linear logistic regression or LDA?

In linear logistic regression, the model for the log-odds (the logit-transform)

log

(
π(x)

1− π(x)

)
=

p∑
j=1

βjxj

is linear in the predictors. But also the log-odds from lda in model (6.4) yield a linear
model in the predictor variables which is a consequence of the Gaussian assumption.
Thus, the two methods are quite similar. In our example, the lda coefficients of the five
predictors are 0.00309, 0.124, 0.0685, 0.067, -0.763, and the in-sample accuracy is slightly
smaller, at 0.785.

The linear logistic regression does not make any assumptions on the predictor variables
such a multivariate Gaussianity; but the restriction comes in by requiring a linear log-
odds function. Logistic regression can also be used when having factor variables (e.g.
x ∈ {0, 1, . . . ,K}) as predictors.

While lda does make a Gaussian assumption for the predictors, it can also be used as
a “linear technique” in case of non-Gaussian predictors (even with factors). Empirically,
lda and linear logistic regression yield similar answers, even for non-Gaussian predictors,
with respect to classification accuracy.

6.4.2 Multiclass case, J > 2

Logistic regression cannot be directly applied to the multiclass case with Y ∈ {0, 1, . . . J −
1} and J > 2. But we can always encode a multiclass problem with J classes as J binary
class problems by using

Y
(j)
i =

{
1 if Yi = j,
0 otherwise.

This means that we consider class j against all remaining classes.
We can then run (linear or “general”) logistic regressions

log

(
πj(x)

1− πj(x)

)
= gj(x) =

p∑
r=1

β(j)r xr

yielding estimates

π̂j(x) =
exp(

∑p
r=1 β̂

(j)
r xr)

1 + exp(
∑p

r=1 β̂
(j)
r xr)

. (6.8)

The estimates π̂j(·) will not sum up to one: but a normalization will do the job,

π̃j(x) =
π̂j(x)∑J−1
j=0 π̂j(x)

.

Note that for this (parametric, linear) case, the problem can be formulated more nicely, but
slightly differently, using the multinomial distribution, and solved by maximum likelihood,
very similarly to the linear logistic (J = 2) case1. This is implemented in R ’s multinom()
function (standard package nnet).

A related approach works with a reference class, say, j = 0, and instead of “one against
all” models “everyone against the reference”,

log (πj(x)/π0(x)) = gj(x), for j = 1, . . . , J − 1.

1The Likelihood is L = πn0
0 πn1

1 · πnJ−1

J−1 , the log-likelihood therefore l =
∑J−1
j=0 nj log πj , where the

constraint
∑
j πj ≡ 1 has to be fulfilled.
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Other ways are also possible to reduce a J class problem into several binary class
problems. Instead of modelling class j against the rest, we can also model class j against
another class k for all pairs (j, k) with j 6= k. This will require fitting

(
J
2

)
logistic models

(involving
(
J
2

)
· p estimated parameters in the linear case), instead of J models in the one

against the rest approach. We should keep in mind that the models are different: in the
one against the rest approach, the coefficients in (6.8) describe the effect of the predictors
for distinguishing class j from all others, and in a pairwise approach, we would model the
distinction between two classes.

Note that for the particular situation of ordered classes, one can use a more simple
“proportional odds” model

logit(P [Y ≤ k | x]) = αk+g(x), k = 0, 1, . . . , J−1, with α0 ≤ α1 ≤ . . . ≤ αJ−1. (6.9)
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Chapter 7

Flexible regression and
classification methods

7.1 Introduction

The curse of dimensionality makes it virtually impossible to estimate a regression func-
tion m(x) = E[Y |X = x] or the probability functions πj(x) = P[Y = j|X = x] (for
classification) in a full nonparametric way without making some structural assumptions.

We are going to describe some flexible models and methods which are of nonparametric
nature but making some structural assumptions. In the sequel, we will denote either a
regression function E[Y |X = x] or the logit transform in a binary classification problem
log(π(x)/(1− π(x)) by

g(·) : Rp → R.

7.2 Additive models

Additive models require additivity of the function: the model is

gadd(x) = µ+

p∑
j=1

gj(xj), µ ∈ R

gj(·) : R→ R, E[gj(Xj)] = 0 (j = 1, . . . , p).

The functions gj(·) are fully nonparametric. The requirement about E[gj(Xj)] = 0 yields
an identifiable model; note that otherwise we could add and subtract constants into the
one-dimensional functions gj(·).

Additive models are generalizations of linear models. While the additive functions
are very general, they do not allow for interaction terms such as gj,k(xj , xk)

1. The curse
of dimensionality is not present in additive models. When assuming continuous second
derivatives for all the functions gj , it can be shown that some estimators ĝadd(·) have mean
square error rate O(n−4/5) as for estimating a single one-dimensional (R→ R) function.

7.2.1 Backfitting for additive regression models

Backfitting is a very general tool for estimation in additive (and other) structures. We can
use “any” nonparametric smoothing technique for estimating one-dimensional functions.

1as a matter of fact, both the original Hastie-Tibshirani and the new algorithm in mgcv allow for
bivariate interactions, optionally

59
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A smoother against the predictor variables X1j , . . . Xnj is denoted by the hat operator

Sj : (U1, . . . , Un)ᵀ 7→ (Û1, . . . , Ûn)ᵀ (j = 1, . . . p)

for any response vector (U1, . . . , Un)ᵀ. The subscript j indicates that smoothing is done
against the jth predictor variable. For example, Sj could be smoothing splines with the
same degrees of freedom for all j, e.g. equal to 5 or estimated by (generalized) cross-
validation. Or they could be Nadaraya-Watson Gaussian kernel estimators with the same
bandwidth which may be estimated by (generalized) cross-validation.

Backfitting for additive regression then works as follows.

1. Use µ̂ = n−1
∑n

i=1 Yi. Start with ĝj(·) ≡ 0 for all j = 1, . . . , p.

2. Cycle through the indices j = 1, 2, . . . , p, 1, 2, . . . , p, 1, 2, . . . while computing

ĝj = Sj(Y − µ̂1−
∑
k 6=j

ĝk),

where Y = (Y1, . . . , Yn)ᵀ and ĝj = (ĝj(X1j), . . . , ĝj(Xnj))
ᵀ. Stop the iterations if the

individual functions ĝj(·) do not change much anymore, e.g.,

‖ĝj,new − ĝj,old‖2
‖ĝj,old‖2

≤ tol

where tol is a tolerance such as 10−6.

3. Normalize the functions

g̃j(·) = ĝj(·)− n−1
n∑
i=1

ĝj(Xij).

We may view backfitting as a method to optimize a high-dimensional (penalized) para-
metric problem. For example, with smoothing spline smoothers, we have seen in chapter 3
that the smoothing spline fit can be represented in terms of basis functions and we have
to solve a penalized parametric problem. Backfitting can then be viewed as a coordinate-
wise optimization method which optimizes one coordinate (corresponding to one predictor
variable) at a time while keeping all others (corresponding to all other predictors) fixed.
This coordinate-wise optimization may be slow but backfitting is a very general overall
method which directly allows to use one-dimensional smoothing algorithms.

7.2.2 Additive model fitting in R

Additive models can be fitted in R with the function gam (generalized additive model)
from package mgcv. The term “generalized” allows also to fit additive logistic regression,
among other things.

The function gam uses for the smoothers Sj a penalized regression spline: i.e., a spline
with selected knots including a penalty term (this is somewhat different than a smoothing
spline). Interestingly, the function will choose the degrees of freedom, which may be
different for every fitted function ĝj(·), via generalized cross-validation: in particular, this
allows to use more degrees of freedom for “complex” functions and few degrees of freedom
for functions which seem “simple”.

We consider as an example the daily ozone concentration in the Los Angeles basin as
a function of 9 predictor variables. The commands and output in R look as follows.
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library(mgcv)

data(ozone, package = "gss")

d.ozone ← ozone; colnames(d.ozone)[c(1,2,3,4)] ← ..... # ‘‘better’’ names

pairs(d.ozone, pch = ".", gap = 0.1) # --> Scatterplot Matrix
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Figure 7.1: Daily ozone concentration in the Los Angeles basin as a function of 9 predictor
variables.

fit ←
gam(O3 ~ s(vdht)+s(wind)+s(humidity)+s(temp)+s(ibht)+s(dgpg)+s(ibtp)+s(vsty)+s(day),

data = d.ozone)

summary(fit)

. . . . . . . .

Parametric coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 11.7758 0.1988 59.22 <2e-16 ***

Approximate significance of smooth terms:

edf Est.rank F p-value

s(vdht) 1.000 1 9.360 0.00242 **

s(wind) 1.000 1 4.375 0.03729 *

s(humidity) 3.631 8 2.595 0.00933 **

s(temp) 4.361 9 4.694 7.56e-06 ***

s(ibht) 3.043 7 1.708 0.10658
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s(dgpg) 3.230 7 7.916 7.94e-09 ***

s(ibtp) 1.939 4 1.809 0.12698

s(vsty) 2.232 5 3.825 0.00225 **

s(day) 4.021 9 10.174 1.04e-13 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

R-sq.(adj) = 0.797 Deviance explained = 81.2%

GCV score = 14.137 Scale est. = 13.046 n = 330

The column edf shows the estimated (via GCV) degrees of freedom: if they are equal to
1, a linear straight line is fitted. We get an indication about the relevance of a predictor
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Figure 7.2: Estimated function ĝj for the ozone data set.

either from Figure 7.2 or from the P -values in the summary output from R .

The fit of the model can be checked via residual analysis as in chapter 1. The Tukey-
Anscombe plot indicates heteroscedastic errors. We thus try the log-transform for the
response variable and re-do the whole analysis. Also, we omit observation (no. 72) which
is an outlier wrt. wind speed. The results are given below. Further data analysis would
now also consider dropping non-significant variables, possible two-way interactions, etc.
This is one motivation for the following section.

7.3 MARS

MARS is a shortcut for multivariate adaptive regression splines. MARS is an adaptive
procedure for regression and it is often useful for high-dimensional problems with many
predictor variables.
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Figure 7.3: Tukey-Anscombe plot for the ozone data set.
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Figure 7.4: Estimated additive functions and Tukey-Anscombe plot for the ozone dataset
with log(O3) as response variable and after omitting one outlier.
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MARS uses expansions in piecewise linear basis functions of the form

(xj − d)+ =
{
xj − d if xj > d,
0 otherwise.

and (d − xj)+. The value d is a knot and xj (j ∈ {1, . . . , p}) is the j-th component of
x ∈ Rp. The pair (xj−d)+, (d−xj)+ is called a reflected pair. Note that we use (xj−d)+
as a function of x (∈ Rp) where only the jth component of x is relevant. The collection of
reflected pairs is then a set of basis functions

B = {(xj − d)+, (d− xj)+; d ∈ {x1,j , x2,j , . . . , xn,j}, j ∈ {1, . . . , p}} ,
where we note that in the univariate case (p = 1), B spans the space of continuous piecewise
linear functions, i.e., linear splines.

MARS employs now a forward selection of reflected pairs of basis functions in B and
their products. The model has the form

g(x) = µ+
M∑
m=1

βmhm(x),

where each function hm(·) is a function from the basis B or a product of functions from
B. The model building technique is going in a forward way as follows:

1. Start with the function h0(x) ≡ 1. Initialize the model set M = {h0(·) ≡ 1}. Fit
the function h0 by least squares regression, yielding the estimate µ̂ = n−1

∑n
i=1 Yi.

2. For r = 1, 2, . . . do the following:
Search for the best pair of functions ((h2r−1(·), h2r(·)) which are of the form

h2r−1(·) = h`(·)× (xj − d)+,

h2r(·) = h`(·)× (d− xj)+, (7.1)

for some h` in the model set M, and some basis functions in B. The best pair of
functions is defined to be the one which reduces residual sum of squares most.
The model fit is then

ĝ(x) = µ̂+

2r∑
m=1

β̂mhm(x),

where the coefficients β̂m are estimated by least squares.
Enlarge the model set in every iteration (with index r) by

M =Mold ∪ {h2r−1(·), h2r(·)},
with the functions h2r−1, h2r from (7.1).

3. Iterate step 2 until a large enough number of basis functions hm(·) has been fitted.

4. Do backward deletion (“pruning”), allowing to remove single functions from a pair
h2r−1(·), h2r(·); i.e., of all single basis functions, delete the one which increases the
residual sum of squares the least.

5. Stop the backward deletion by optimizing a GCV score.

For example, the trace of solutions could look as follows:

h0(x) = 1, M = {1},
h1(x) = (x2 − x72)+, h2(x) = (x72 − x2)+, M = {1, (x2 − x72)+, (x72 − x2)+},
h3(x) = (x72 − x2)+ · (x1 − x51)+, h4(x) = (x72 − x2)+ · (x51 − x1)+,

M = {1, (x2 − x72)+, (x72 − x2)+, (x72 − x2)+ · (x1 − x51)+, h4(x) }
. . .
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7.3.1 Hierarchical interactions and constraints

It becomes clear from the definition of MARS, that the algorithm proceeds hierarchically in
the sense that a d-order interaction can only enter the model when an interaction of degree
d − 1 involving one predictor less is already in the model. For example, an interaction
of degree 4 involving x2, x4, x7, x9 enters the model because an interaction of degree 3
involving the predictors x2, x4, x7 is already in the model.

Quite often it is useful to restrict interactions to degree 2 or 3. Sometimes, we may
even restrict the interaction degree to 1: MARS then yields an additive model where
the predictor variables and the piecewise linear spline basis functions are included in a
forward-backward adaptive way.

7.3.2 MARS in R

MARS has been implemented in S and R in the function mars from the package mda. A
new, slightly more flexible alternative implementation is in package earth with function
earth and syntax

> fit <- earth(Volume ~ ., data = trees)

> summary(fit)

.....

Expression:

23.20824

+ 5.745962 * pmax(0, Girth - 12.9)

- 2.866452 * pmax(0, 12.9 - Girth)

+ 0.7183364 * pmax(0, Height - 76)

Number of cases: 31

Selected 4 of 5 terms, and 2 of 2 predictors

Number of terms at each degree of interaction: 1 3 (additive model)

GCV: 11.48697 RSS: 213.4354 GRSq: 0.958859 RSq: 0.9736697

> predict(fit,

data.frame(Girth= 5:15, Height= seq(60,80, length=11)))

.........

7.4 Neural Networks

Neural networks have been very popular in the 90’s in the machine learning and artificial
intelligence communities. From a statistical perspective, they can be viewed as high-
dimensional nonlinear regression models.

We will focus here on feedforward neural nets with one hidden layer. The model is

gk(x) = f0

αk +

q∑
h=1

whkφ
(
α̃h +

p∑
j=1

w̃jhxj
) . (7.2)

which is predicting multivariate (gk)k where for regression only g0 is used and for classifi-
cation, one typically uses g0, . . . , gJ−1 and ĝ(x) := arg maxj ĝj(x) which is called “softmax”
in the NN literature. The function φ(·) is usually the sigmoid function

φ(x) =
exp(x)

1 + exp(x)
,
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whereas f0(·) is typically chosen as the identity for regression and as the sigmoid φ(x)
for softmax classification. The whk, w̃jh, αk, α̃h all are unknown parameters. The so-called

Inputs
Hidden
 Units Outputs

1

2

p

j :

1

q

h : 1

2

k :
wj, h

wh, k

Figure 7.5: Simple “feedforward” neural net with one hidden layer.

input layer consists of the p predictor variables; the values whk φ
(
α̃h +

∑p
j=1 w̃jhxj

)
(h =

1, . . . , q) make the so-called hidden layer with q units. And the so-called output layer is
just a single unit for univariate regression.

A useful variant of (7.2) is a model which includes a linear regression component:

g(x) = f0

α+

p∑
j=1

wj,linxj +

q∑
k=1

wkφ(αk +

p∑
j=1

wjkxj)

 . (7.3)

7.4.1 Fitting neural networks in R

Feedforward neural nets can be fitted in R with the function nnet from the package nnet;
the algorithm is numerically maximizing the likelihood and basically equivalent to using
optim(*, method="BFGS").

In practice, it can be very important to center and scale all the predictor variables
so that they are approximately on the same scale (about “1”). This avoids that gradient
methods for optimizing the likelihood get stuck in the “flat regions” of the sigmoid func-
tions. Further note that one can regularize the problem using so called weight decay which
stabilizes the algorithm (less dependence on random starting values w∗,∗) and diminishes
the importance of choosing the number of hidden units q.

library(nnet)

## Using ’d.ozone’ data from above, using log(O3)

## and scaling the x-variables (to mean = 0, sd = 1):

sc.ozone <- data.frame(scale(d.ozone)[, -1],

log.O3 = log(d.ozone[,"ozone"]))

> set.seed(22) ## (also try others; nnet() uses random starting values!)

> fit <- nnet(log.O3 ~ . , data= sc.ozone, size = 3, skip = TRUE,

+ decay = 4e-4, linout = TRUE, maxit = 500)
# weights: 43
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initial value 2943.804833

iter 10 value 568.319707

......

......

final value 34.631788

converged

> sum(residuals(fit)^2) # -> 34.211

> summary(fit)
a 9-3-1 network with 43 weights

a 9-3-1 network with 43 weights

options were - skip-layer connections linear output units decay=4e-04

b->h1 i1->h1 i2->h1 i3->h1 i4->h1 i5->h1 i6->h1 i7->h1 i8->h1 i9->h1

-2.28 1.27 -0.34 -2.57 1.46 0.03 0.10 -1.02 -0.39 -0.33

b->h2 i1->h2 i2->h2 i3->h2 i4->h2 i5->h2 i6->h2 i7->h2 i8->h2 i9->h2

-12.43 5.08 2.04 8.19 -7.66 -7.01 2.40 -0.31 3.58 -1.19

b->h3 i1->h3 i2->h3 i3->h3 i4->h3 i5->h3 i6->h3 i7->h3 i8->h3 i9->h3

-19.79 -6.65 1.49 -4.53 -3.95 2.28 6.06 5.19 10.06 -0.20

b->o h1->o h2->o h3->o i1->o i2->o i3->o i4->o i5->o i6->o

2.50 -1.81 0.68 0.71 0.11 -0.09 -0.49 0.72 0.01 -0.03

i7->o i8->o i9->o

0.03 -0.29 -0.15

## without linear model component: skip=FALSE

set.seed(22)

> fit1 <- nnet(log.O3 ~ . , data= sc.ozone, size = 3, skip=FALSE,

+ decay = 4e-4, linout = TRUE, maxit = 500)
..........

final value 42.909

converged

> sum(residuals(fit1)^2) # 41.865

> summary(fit1)
a 9-3-1 network with 34 weights

options were - linear output units decay=4e-04

b->h1 i1->h1 i2->h1 i3->h1 i4->h1 i5->h1 i6->h1 i7->h1 i8->h1 i9->h1

-27.22 8.91 0.51 8.78 -8.26 10.55 -8.46 11.89 -11.51 8.51

b->h2 i1->h2 i2->h2 i3->h2 i4->h2 i5->h2 i6->h2 i7->h2 i8->h2 i9->h2

0.09 -0.15 -0.07 0.07 1.49 -0.43 0.05 -0.41 -0.01 -0.24

b->h3 i1->h3 i2->h3 i3->h3 i4->h3 i5->h3 i6->h3 i7->h3 i8->h3 i9->h3

-16.97 6.53 0.56 2.30 -20.19 0.64 6.34 17.51 -1.67 -3.21

b->o h1->o h2->o h3->o

0.86 0.46 2.42 0.86

linout=TRUE indicates that the function is fitted on the linear regression scale; for classifi-
cation, we use the default linout=FALSE. size = 3 chooses 3 hidden units, regularized by
weight decay = 4e-4: these are tuning parameters, and skip=TRUE enforces a neural net
with a linear model component. The random seed is stored because, by default, nnet()
uses random starting values for the high-dimensional optimization.

7.5 Projection pursuit regression

Projection pursuit regression (for regression problems) bears some similarities to feedfor-
ward neural networks. Instead of taking a linear combination of q different sigmoid function
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outputs (from the q hidden units in the hidden layer) in (7.2), we use the following model:

gPPR(x) = µ+

q∑
k=1

fk(

p∑
j=1

αjkxj), where

∑p

j=1
α2
jk = 1, E[fk(

p∑
j=1

αjkXj)] = 0, for all k.

The functions fk(·) : R → R are nonparametric (i.e. “arbitrary” smooth); the linear
combinations

∑p
j=1 αjkxj are linear projections: For the unit vector αk = (α1k, . . . , αpk)

ᵀ,

αk
ᵀx is the projection of x onto (a ray through ~0 in direction) αk. Note that the function

x 7→ fk(
∑p

j=1 αjkxj) only varies along the direction αk, hence the fk’s are called ridge
functions and the model “projection pursuit”. This model typically requires much smaller
q than the hidden units in a neural network, at the expense of estimating ridge functions
rather than using fixed sigmoid functions in neural nets.

Estimation of projection pursuit can be done using a backfitting algorithm. Quite
often, projection pursuit yields very competitive prediction performance when choosing a
reasonable number of ridge functions (e.g. by optimizing a CV score).

7.5.1 Projection pursuit regression in R

The function ppr in R can be used for fitting projection pursuit regression. The function
in ppr re-scales the projection pursuit model to

gPPR(x) = µ+

q∑
k=1

βkfk(

p∑
j=1

αjkxj),

p∑
j=1

α2
jk = 1, E[fk(

p∑
j=1

αjkXj)] = 0, Var(fk(

p∑
j=1

αjkXj)) = 1, for all k.

Consider the ozone data set from above.

fit <- ppr(log(O3) ~ . , data = d.ozone, nterms=4)

# nterms specifies the number of ridge functions

sfsmisc::mult.fig(4) # or just par(mfrow=c(2,2))

plot(fit) ## 4 terms -> 4 plots

predict(fit,xnew) # where ’xnew’ is a new set of predictor variables

The estimated ridge functions are shown in Figure 7.6.

7.6 Classification and Regression Trees (CART)

Quite different from the previous methods are the so-called tree models. CART is the
most well known tree model or algorithm in the statistics community.

The underlying model function for CART is

gtree(x) =

R∑
r=1

βr1[x∈Rr],

where P = {R1, . . . ,RR} is a partition of Rp. Thus, the function g(·) is modelled as
piecewise constant.



7.6 Classification and Regression Trees (CART) 69

10 20 30 40 50 60 70 80 90 100
−1

.5
−1

.0
−0

.5
0.

0
0.

5
1.

0
1.

5

term 1
225 230 235 240 245 250 255 260 265 270 275

−9
−8

−7
−6

−5
−4

−3
−2

−1
0

term 2

−650 −630 −610 −590 −570 −550 −530

−6
−5

−4
−3

−2
−1

0
1

2

term 3
190 200 210 220 230 240 250

−6
−5

−4
−3

−2
−1

0
1

2

term 4

Figure 7.6: Four estimated ridge functions fk(·) from a projection pursuit fit to the ozone
data (log(O3) ~ .).

7.6.1 Tree structured estimation and tree representation

Parameter estimation β̂1, . . . , β̂R is easy when the partition P = {R1, . . . ,RR} would be
given. We use

β̂r =

n∑
i=1

Yi1[xi∈Rr]/

n∑
i=1

1[xi∈Rr]

for regression and binary classification (we do not model g(·) on the logistic scale). (For J
class problems with J > 2, we can also use the tree model directly, using arg maxj #{Yi =
j}, and do not need to go with a one against the rest approach as section 6.4.2).

The tricky issue is to get a data-driven estimate for the partition P. Some restrictions
will be made to obtain a computationally feasible algorithm. This will be discussed next.

7.6.2 Tree-structured search algorithm and tree interpretation

We restrict the search for a good partition to partition cells R which are axes parallel
rectangles. Moreover, we proceed in a greedy way since the space of partitions consisting
of axes parallel rectangles is still huge.

A tree-structured greedy algorithm then proceeds as follows.

1. Start with R = 1 subset, P = {R} = {Rp}.

2. Refine R into Rleft ∪Rright where:

Rleft = R× R× . . .× (−∞, d]× R . . .× R,
Rright = R× R× . . .× (d,∞)× R . . .× R,

where one of the axes is split at the split point d, where d is from the finite set of mid-
points between observed values. The search for the axes to split and the split point
d are determined such that the negative log-likelihood is maximally reduced with
the refinement (search over j ∈ {1, . . . , p} and d ∈ {mid-points of observed values}).
Build the new partition P = {R1,R2} with R1 = Rleft, R2 = Rright.



70 Flexible regression and classification methods

3. Refine the current partition P as in step 2 by refining one of the partition cells from
the current partition P. That is, we search for the best partition cell to refine which
includes a search as in step 2 for the best axes to split and the best split point.
Then, we up-date the partition:

P = Pold \ partition cell selected to be refined ∪ {refinement cells Rleft,Rright}.

4. Iterate step 3 for a large number of partition cells.

5. Backward deletion: prune the tree (see below) until a reasonable model size, typically
determined via cross-validation, is achieved.

Figure 7.7: Classification tree for part of the kyphosis data set. Each node is labeled
“presence” and “absence” (of kyphosis) according to majority vote, i.e., maximum likeli-
hood. The ratios a/(a + b) are empirical misclassification rates, i.e., in this binary case,
b = #{cases with given lavel}, and a counts the other, “wrongly” labeled ones.

Tree representation

The search algorithm above has a useful tree representation. Figures 7.7 and 7.8 show for
part of the kyphosis dataset (2 class problem but now only with two predictor variables
instead of 3) how R2 is recursively partitioned in a tree-structured way. As a side result,
we obtain a very useful interpretation of the model in terms of a tree! Such a decision tree
corresponds to a recursive partitioning scheme as shown in Figure 7.8.
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Figure 7.8: Partition of R2 for part of the kyphosis data set. “p” denotes presence of
kyphosis, “-” denotes absence. Majority voting in each rectangle then determines the
classification rule.

The process of backward deletion in step 5 can now be more easily understood. Steps
1–4 result in a large tree TM (M = R − 1). Backward elimination, or tree pruning, then
deletes successively the terminal node in the tree with the smallest increase of negative
log-likelihood (or another fit measure R(.)). This will produce a sequence of trees

TM ⊃ TM−1 ⊃ . . . ⊃ T1 = T∅ := {R0}, R0 = root tree = Rp, (7.4)

and we can select the “best” tree as follows:

As in regression, where we had a Cp criterion, we apply “cost complexity (=: cp)
pruning”. The relevant measure is a penalized goodness of fit,

Rα(T ) := R(T ) + α× size(T ), α ≥ 0 (7.5)

where the size of a tree is the number of its leaves (or also 1+ the number of “cuts”) and
R(.) is a quality of fit measure such as the deviance (−2· log.likelihood = sum of squares
in the case of regression) or misclassification rate.

Now pruning is done such that for (conceptually) each α an optimally pruned tree is
chosen, T (α) := arg minT Rα(T ). It can be shown that the set {T (α) | α ∈ [0,∞)} is
nested, and is the same as (or subset of) the pruned trees in (7.4). For model selection,
i.e., determining the amount of pruning, we now only need to choose the best α (or its
normalization, cp = α/R(T∅) in rpart()). For this, k-fold crossvalidation (k = 10 by
default) is applied to compute CV error rates (in the case of classification) for each α.
Instead of directly using the minimal error rate to choose α, the “1 S.E. rule” is used (see
fig. 7.9): One takes the smallest tree (most sparse model) such that its error is at most
one standard error larger than minimal one.
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Figure 7.9: plotcp(.) for the Kyphosis example shows the full leave-1-out crossvalidated
error rates of rpart()-models as function of α or cp = α/R(T∅), respectively. A tree with
five leaves (final nodes) seems therefore optimal.

7.6.3 Pros and cons of trees

One of the very nice properties of trees is their interpretation. Displaying information
in terms of a tree structure is extremely useful and very popular in very many scientific
fields. From the view of trees it also becomes clear that trees with depth ` may include
interaction terms of degree ` between different predictor variables. Regarding performance,
classification trees often yield quite good prediction results.
Also note that there is a nice approach for dealing with missing values via so called
“surrogate splits” which allow to predict also when some predictor variable values are not
known. Finally, it may be worthwhile to point out that tree models/algorithms are doing
variable selection automatically.

The disadvantages of trees include the following. The regression function estimate, or
probability estimate in classification, is piecewise constant: this is not usually the form
one thinks of an underlying “true” function. This also implies that the prediction accuracy
for regression curve estimation (or probability estimation in classification) is often not
among the best. Finally, the greedy tree-type algorithm produces fairly unstable splits: in
particular, if one of the first splits is “wrong”, everything below this split (in terms of the
tree) will be “wrong”. Thus, interpretation of a tree – despite its attractiveness – should
be done with caution.

In recent years, trees have also been used as building blocks of much more flexible (and
computationally expensive) fitting methodologies, such as boosting, see chapter 8, or in
“random forests”. There2, many trees are fit to the data and their variable selection and
predictions combined into a final model.

7.6.4 CART in R

The function rpart from the package rpart in R can be used for fitting classification or
regression trees.
As an example, we run a regression tree for the ozone data set and display the tree in
Figure 7.10.

2see R packages randomForest, randomSurvivalForest, varSelRF etc
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> fit <- rpart(log(O3) ~ . , data= d.ozone, method = "anova")

# method = ‘‘anova’’ specifies a regression tree

> fit

n= 330

node), split, n, deviance, yval

* denotes terminal node

1) root 330 184.251800 2.2129670

2) temp< 65.5 198 67.348040 1.7804120

4) ibht>=3669 100 25.313780 1.4871350

8) temp< 57.5 78 16.626380 1.3713510

16) humidity>=70 16 4.480741 0.9331287 *

17) humidity< 70 62 8.280081 1.4844410 *

9) temp>=57.5 22 3.934431 1.8976390 *

5) ibht< 3669 98 24.656390 2.0796750

10) day>=332 13 1.852759 1.3895210 *

11) day< 332 85 15.664550 2.1852280

22) day< 47.5 24 3.217857 1.7721080 *

23) day>=47.5 61 6.739110 2.3477670 *

3) temp>=65.5 132 24.287510 2.8617990

6) vsty>=145 18 3.854144 2.2880300 *

7) vsty< 145 114 13.571930 2.9523940

14) ibtp< 226.5 57 4.525832 2.7703180 *

15) ibtp>=226.5 57 5.266831 3.1344690 *

> library(maptree) ; draw.tree(fit) ## is slightly better than simply

## plot(fit) ; text(fit, use.n = TRUE) ## for plotting the tree

temp <> 65.5

ibht >< 3669

temp <> 57.5

humidity >< 70

0.9331287 
16 obs

1

1.484441 
62 obs

2

1.8976395 
22 obs

3

day >< 332

1.3895213 
13 obs

4 day <> 47.5

1.7721083 
24 obs

5

2.3477669 
61 obs

6

vsty >< 145

2.2880304 
18 obs

7 ibtp <> 226.5

2.7703184 
57 obs

8

3.1344692 
57 obs

9

Figure 7.10: Regression tree for the ozone data set.
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7.7 Variable Selection, Regularization, Ridging and the Lasso

7.7.1 Introduction

The following considerations and methods apply to both classification and regression in
principle. For several reasons however we will focus on regression in this whole section.

In problems with many potential regressor or explanatory variables which may partly
be highly correlated with each other, the classical least-squares regression approach may
suffer from the fact that estimated regression coefficients can become quite ill-determined,
i.e. have a high variance even when the fitted regression surface may be well determined.
Also, in chapter 1’s model equation (1.2) Yi = xi

ᵀβ + εi, (i = 1, . . . , n), equivalently

Y = Xβ + ε, (7.6)

where β,xi ∈ Rp, and X is the n×p matrix of rows x1,x2,. . . ,xn (or columns x(1),. . . ,x(p)),
we had assumed that the number of observations n was larger than the number of param-
eters p, i.e., n > p, in order e.g., for the matrix XᵀX to be of full rank p.

One main motivation of this topic is the advent of data where there are many more
potential explanatory variables than observations, in short, where p� n . Today the
most important class of such applications is the analysis of genomic data, where e.g.,
for so called microarrays, one gets gene expression levels for thousands of genes (p =
1000–50’000) for typically a few dozen cells (n = 20–100). The target variable Y here is
often binary (e.g., “normal” vs “special”) which means a classification problem with J = 2
classes; we assume here however that treating it as a regression problem (e.g., using least
squares or L2 error) is useful.

7.7.2 Ridge Regression

Let’s consider the regression model (7.6), or

Yi = β0 + β1xi,1 + . . .+ βpxi,p + εi, i = 1, . . . , n.

For least squares, one can see that β̂′0 = Y (= 1/n
∑n

i=1 Yi) when the model is re-written
as

Yi = β′0 + β1(xi,1 − x.,1) + . . .+ βp(xi,p − x.,p) + εi.

Hence, in all of the following, we will assume that all the variables (Y., and x.,j =: x(j))
have been centered, i.e., mean subtracted, such that no intercept is needed, and we use
the equivalent model for the transformed variables,

Yi = β1xi,1 + . . .+ βpxi,p + εi, i = 1, . . . , n. (7.7)

Note that in order to have βj on a comparable scale, one also typically scales the x(j)’s
such that

∥∥x(j)
∥∥ = 1 for all j .

Let’s now assume that the variables (column vectors) x(j) = (xi,j)
n
i=1 and x(k) are

highly correlated (positively or negatively), or equivalently, since they both have mean 0,
x(k) ≈ cx(j) (for c 6= 0) or x(j) ≈ 1/cx(k). As a consequence, in the following part of the
model,

βjx
(j) + βkx

(k) ≈ βjx
(j) + βk (cx(j))

= (βj + βkc)x
(j)

≈ (βk + βj/c)x
(k)
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the coefficients of x(j) and x(k) are not well determined individually, but their model term
(βjx

(j)+βkx
(k)) still is. Geometrically, in the βj-βk-plane the high confidence region forms

narrow ellipses, i.e., the β components themselves are linearly related, or that the coeffi-
cients of β̂j and β̂k themselves highly correlated but not be well determined individually,
i.e., have a large variance. In the extreme case of “perfect” correlation, the matrix X would
have columns j and k collinear and hence only have rank ≤ p−1. When the correlation is
less extreme, X is still of full rank p and XᵀX is close to a singular matrix.3 One approach
to this problem is to regularize it by improving the condition of the matrix corresponding
to XᵀX.

To give a numerical example, say x(2) ≈ −2x(1), then 1x(1) is close to 3x(1) + x(2)

and hence to 5x(1) + 2x(2) or 51x(1) + 25x(2). One way to make the linear combination
more clearly determined is to restrict the coefficients to small (absolute) values, or, more
conveniently requiring that

∑
j β

2
j be “small”. This leads to the so called ridge regression

β̃(s) = arg min
‖β‖2≤s

‖Y −Xβ‖2 ,

which can be shown (by way of a Lagrange multiplier) to be equivalent to

β̂
∗
(λ) = arg min

β
{‖Y −Xβ‖2 + λ ‖β‖2}, (7.8)

where there is a one-to-one relationship between λ and the bound s above, and the limit

λ→ 0 corresponds to s = max ‖β‖2 →
∥∥β̂LS∥∥2, i.e., the ordinary least squares of chapter 1.

As there, by setting derivatives ∂/∂β to zero, this minimization problem is equivalent to
the “normal equations”

(XᵀX + λI)β̂
∗

= XᵀY, (7.9)

where the p× p matrix (XᵀX + λI) will be non-singular (and “well-conditioned”) as soon
as λ > 0 is large enough, even when n < p and XᵀX is clearly singular.

The ridge penalty entails that β̂j(λ) → 0 (“shrinking”) when λ → ∞, and also, in

general, β̂j → β̂j′ (“shrinking together”) for two different coefficients.

Hence it seems intuitive that β̂
∗

will have some bias (E[β̂
∗
] 6= β), but that its vari-

ance(s) can be considerably smaller than β̂
LS

such that mean squared errors are smaller.
As for smoothing (in particular, spline smoothing, sect. 3.4) we have a regularization pa-
rameter λ which determines the trade-off between bias and variance, and as there, we’d
use something like cross validation to determine an approximately optimal value for λ.

In the literature (and the R function lm.ridge() from the package MASS) there are
“cheaper” approaches like GCV (see ch. 4) for determining an approximately optimal λ.
In practice, one often wants to look at the ridge traces, i.e., a plot of the coefficients β̂j(λ)
vs λ. As an example we consider Longley’s macro economical data, for once modelling
y = GNP.deflator as function of the other six variables. The ridge traces β̂j(λ) are shown
in Figure 7.11. We have used a “relevant” interval for λ where the shrinking towards zero
is visible (but still somewhat distant from the limit).

7.7.3 The Lasso

In some sense, the “Lasso” (Tibshirani, 1996) regression is just a simple variant of ridge
regression. However with the goal of variable selection in mind, the lasso brings a major
improvement:

3such that Cov(β̂) = σ2(XᵀX)−1 (section 1.4.1) will have very large entries corresponding to the high
variance (and correlation) of β̂j and β̂k.
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Figure 7.11: Ridge traces for the six coefficients βj(λ) (j = 1, . . . , 6) for the Longley data.
The vertical lines indicate traditional estimates of the optimal ridge parameter λ.

The lasso can be defined by restricting the absolute instead of the squared values of
the coefficients, i.e.,

β̃(s) = arg min∑
j |βj |≤s

‖Y −Xβ‖2 ,

or

β̂
∗
(λ) = arg min

β
{‖Y −Xβ‖2 + λ

p∑
j=1

|βj |},

= arg min
β

{‖Y −Xβ‖2 + λ‖β‖1}. (7.10)

As opposed to the ridge regression case above, this problem is not solvable by simple
linear algebra but rather needs quadratic programming or related algorithms.

On the other hand, the solution is much more interesting, because it will be frequent
that β̂j will become exactly 0 as soon as λ > λj , in other words, choosing λ here, au-
tomatically means model selection, namely only choosing regressor variables x(j) with
βj 6= 0.

This can be visualized considering the “lasso traces”.

7.7.4 Lasso extensions

1) Regularization and variable selection via the elastic net

The elastic net has been propagated by Zou and Hastie (2003), J.R. Statist. Soc. B, and is
implemented in R package elasticnet. For any fixed non-negative λ1 and λ2, we define
the näıve elastic net criterion

L(λ1, λ2,β) = ‖Y −Xβ‖2 + λ2 ‖β‖2 + λ1‖β‖1, (7.11)
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and the näıve elastic net estimator β̂ is the minimizer of (7.11), β̂ = arg minβ L(λ1, λ2,β).
This procedure can be viewed as a penalized least squares method. Let

α = λ2/ (λ1 + λ2) ,

then solving β̂ in (7.11) is equivalent to the optimization problem

β̂ = arg min
β

‖Y −Xβ‖2 , subject to (1− α)‖β‖1 + α ‖β‖2 ≤ t for some t. (7.12)

We call the function (1− α)‖β‖1 + α ‖β‖2 the “elastic net penalty”, which is a convex
combination of the lasso and ridge penalty. When α = 1, the näıve elastic net becomes
simple ridge regression.

Here, we consider only α < 1. For all α ∈ [0, 1), the elastic net penalty function is
singular (without first derivative) at 0 and it is strictly convex for all α > 0, thus having
the characteristics of both the lasso and ridge regression. Note that the lasso penalty
(α = 0) is convex but not strictly convex. These arguments can be seen clearly from
Fig. 7.12.

β1

β2

α = 0
α = 1 2
α = 1

Figure 7.12: Two-dimensional contours of the ridge, lasso, and elastic net (α = 1
2) penal-

ties.

2) The Adaptive Lasso and its Oracle Properties

Based on Hui Zou (2006), JASA. Let us consider the lasso with penalty weights,

arg min
β

∥∥Y − p∑
j=1

βjxj

∥∥2 + λ ·
p∑
j=1

wj |βj | . (7.13)
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where w is a known weights vector. Zou shows that if the weights are data-dependent
and cleverly chosen, the weighted lasso can possess so called oracle properties. The new
methodology, called the adaptive lasso, is defined as follows. Suppose β̂ is a

√
n consistent

estimator of β. For example, we can use the least squares β̂ols . Pick a γ > 0, and define

the weight vector ŵ componentwise as ŵj = 1
β̂γj

. The adaptive lasso estimates β̂∗(n) are

then given by

β̂∗(n) = arg min
β

∥∥∥Y − p∑
j=1

βjxj

∥∥∥2 + λ ·
p∑
j=1

ŵj |βj | . (7.14)

It is worth emphasizing that (7.14) is a convex optimization problem, and thus has no
multiple local minimal and its global minimizer can be efficiently found.

3) The “Relaxed Lasso”

Recently developed by Nicolai Meinshausen, ETHZ and Berkeley, http://www.stat.

berkeley.edu/~nicolai/ and implemented in R package relaxo.
Again motivated by the idea that variable selection on one hand and shrinking of the

selected variables on the other hand should be controllable separately.
Let β̂

∗
(λ) = (β̂λ1 , . . . , β̂

λ
p )ᵀ be the lasso estimated parameter vector of (7.10), and define

Mλ = {1 ≤ k ≤ p | β̂λk 6= 0}, (7.15)

the set of “significant” variables.
The relaxed lasso estimator is then defined for λ ∈ [0,∞) and φ ∈ [0, 1] as

β̂
λ,φ

= arg min
β

n−1
n∑
i=1

(
Yi −

∑
k∈Mλ

βkxi,k
)2

+ φλ · ‖β‖1 . (7.16)

For φ = 1 this is the “classical” lasso, whereas for φ = 0, this means to use lasso for
variable selection and then re-estimate the selected non-zero parameters by least squares.
Interesting is 0 < φ < 1 which can be shown to be much better than ordinary lasso (or
OLS) in some situations. Astonishingly, there’s a fast algorithm for computing solutions
for all (relevant) (φ, λ) combinations which is only slightly more expensive than the fast
lasso algorithm.

http://www.stat.berkeley.edu/~nicolai/
http://www.stat.berkeley.edu/~nicolai/


Chapter 8

Bagging and Boosting

8.1 Introduction

Bootstrap aggregating (bagging) and boosting are useful techniques to improve the pre-
dictive performance of tree models. Boosting may also be useful in connection with many
other models, e.g. for additive models with high-dimensional predictors; whereas bagging
is most prominent for improving tree algorithms.

8.2 Bagging

Consider a base procedure, e.g. a tree algorithm such as CART, which yields a function
estimate

ĝ(·) : Rp → R

(or ĝ(·) takes values in [0, 1] for classification).

8.2.1 The bagging algorithm

Bagging works as follows.

1. Generate a bootstrap sample

(X∗1 , Y
∗
1 ), . . . , (X∗n, Y

∗
n )

and compute the bootstrapped estimator ĝ∗(·).

2. Repeat step 1 B times, yielding

ĝ∗1(·), . . . , ĝ∗B(·).

3. Aggregate the bootstrap estimates

ĝBag(·) = B−1
B∑
i=1

ĝ∗i(·).

The bagging algorithm is nothing else than an approximation

ĝBag(·) ≈ E∗[ĝ∗(·)]

79
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which can be made arbitrarily good by increasing B. The novel point is that we should
use now E∗[ĝ ∗ (·)] as a new estimator.

A trivial identity hints at some properties of bagging: write (the theoretical version of
bagging with B =∞)

ĝBag(·) = ĝ(·) + (E∗[ĝ∗(·)]− ĝ(·))
= ĝ(·) + bootstrap bias estimate.

Instead of subtracting the bootstrap bias estimate, we are adding it! What we can hope
for is a variance reduction at the price of a higher bias. This turns out to be true if ĝ(·)
is a tree-based estimator.

8.2.2 Bagging for trees

It can be shown that for tree-based estimators ĝ(·),

Var(ĝBag(x))
asymp.
< Var(ĝ(x)),

for very many x. Thus, bagging is a variance reduction technique. The reason for this
is that a bagged tree turns out to be a product of probit functions Φ(d − ·) instead of
indicator functions 1[·≤d]. This causes a variance reduction at the price of some bias. For
example,

Var(1[X≤d]) = P[X ≤ d](1− P[X ≤ d]).

If X ∼ N (0, 1) and d = 0, the latter quantity equals 1/4. On the other hand,

Var(Φ(−X)) = Var(U) = 1/12, U ∼ Unif.([0, 1]),

which reduces the variance by the factor 3!
We should use large trees for bagging, because the variance reduction due to bagging

asks for a large tree to balance the bias-variance trade-off.

8.2.3 Subagging

Subagging (subsample aggregating) is a version of bagging: instead of drawing a boot-
strap sample in step 1 of the bagging algorithm, we draw

(X∗1 , Y
∗
1 ), . . . , (X∗m, Y

∗
m) without replacement

for some m < n. In some simple cases, it can be shown that m = [n/2] is equivalent to
bagging. Thus, subagging with m = [n/2] can be viewed as a computationally cheaper
version of bagging.

We consider a dataset about ozone concentration with p = 8 predictor variables (dif-
ferent from the previous ozone dataset). The performance of (su-)bagging for trees and
MARS are shown in Figure 8.1. We see that bagging improves a regression tree substan-
tially while it does not improve MARS at all (for this example).

The main drawback of bagging is the loss of interpretation in terms of a tree. It is by
no means simple to interpret a linear combination of trees.

8.3 Boosting

Boosting is a very different method to generate multiple predictions (function estimates)
and combine them linearly. As with bagging, we have a base procedure yielding function
estimates ĝ(·) (e.g. a tree algorithm).
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Figure 8.1: Mean squared error performance for a large regression tree and MARS and
their (su-)bagged versions for an ozone data (different from the previous one).

8.3.1 L2Boosting

The so-called L2Boosting method (for regression) works as follows.

1. Fit a first function estimate from the data {(Xi, Yi); i = 1, . . . , n} yielding a first
function estimate ĝ1(·).
Compute residuals

Ui = Yi − ĝ1(Xi) (i = 1, . . . , n).

Denote by f̂1(·) = νĝ1(·) (0 < ν ≤ 1).

2. For m = 2, 3, . . . ,M do:
Fit the residuals

(Xi, Ui)→ ĝm(·)

and set

f̂m(·) = f̂m−1(·) + νĝm(·).

Compute the current residuals

Ui = Yi − f̂m(Xi) (i = 1, . . . , n).

The shrinkage parameter ν can be chosen to be small, e.g. ν = 0.1. The stopping
parameter M is a tuning parameter of boosting. For ν small we typically have to choose
M large.

Boosting is a bias reduction technique, in contrast to bagging. Boosting typically
improves the performance of a single tree model. A reason for this is that we often cannot
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construct trees which are sufficiently large due to thinning out of observations in the
terminal nodes. Boosting is then a device to come up with a more complex solution by
taking linear combination of trees. In presence of high-dimensional predictors, boosting is
also very useful as a regularization technique for additive or interaction modeling.
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