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1. The dataset heart.dat contains data for 99 people sorted by age. In each age group the total number
of individuals (mi) is known, as well the number of those with symptoms of heart disease (Ni). The
goal of this exercise is to estimate the probability of having such symptoms as a function of age using
logistic regression.

The data is located at http://stat.ethz.ch/Teaching/Datasets/heart.dat.

a) In contrast to the binary classification example in the lecture notes (page 56), the response
variable N has not a Bernoulli, but a binomial distribution: N1, . . . , Nn independent, Ni ∼
Binomial(mi, π(xi)).

Show that the log-likelihood is in this case

`(β; (x1,m1, N1), . . . , (xn,mn, Nn)) =

n∑
i=1

[
log

(
mi

Ni

)
+Nig(β;xi)−mi log

(
1 + eg(β;xi)

)]
,

where g(β;x) = β0 + β1x is the model function for the logistic transform of π(x) (see Formula
(6.6) in the lecture notes).

b) Write an R function neg.ll(beta, data) that calculates the negative log-likelihood

−`(β; (x1,m1, N1), . . . , (xn,mn, Nn))

that you derived in task a). beta is a vector with two entries β0 and β1, and data is a data frame
with columns age, m and N (as in heart.dat).

Make a contour plot of the negative log-likelihood of the heart dataset in the range −10 ≤ β0 ≤
10, −1 ≤ β1 ≤ 1.

R hint: use a command like

> contour(beta0.grid, beta1.grid, neg.ll.values)

beta0.grid and beta1.grid are equidistant grids of values of β0 and β1 in the region of interest;
use, e.g.

> beta0.grid <- seq(-10, 10, length = 51)

neg.ll.values is a matrix of negative log-likelihood values for the different values of β0 and β1.

c) Estimate the parameters β0 and β1 of the model function (see task a)) using the R function glm.
Does age influence this probability in a significant way? How do you interpret the sign of the
coefficient of age?

Compare the estimates from glm with estimates you get when minimizing the negative log-
likelihood function you implemented in task b).

R hint: the logistic regression model can be fitted by using the command

> fit <- glm(cbind(N, m - N) ~ age, family = binomial, data = heart)

Binomial responses Ni ∼ Bin(mi, πi) for mi > 1 should be entered as a (two-column) matrix,
with the number of “successes” (Ni) in the first column and the number of “failures” (mi − Ni)
in the second.

To minimize your function neg.ll from task b), use

> optim(c(0, 0), neg.ll, data = heart)

The first argument is the start value used for numerical optimization.

d) Plot the probability estimate against age. At what age would you expect 10%, 20%, . . . , 90% of
people to have symptoms of heart disease? Discuss your results.

R hint: you can obtain probability estimates at arbitrary ages new.age by using the command

> predict(fit, newdata = data.frame(age = new.age), type = "response")
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2. a) Quadratic Discriminant Analysis (QDA)

Assume the normal model X|Y = j ∼ N p(µj ,Σj), P[Y = j] = pj ,
∑J−1
j=0 pj = 1.

Show that (6.2) and (6.4) lead to

δ̂QDAj (x) = − log(det(Σ̂j))/2− (x− µ̂j)ᵀΣ̂−1
j (x− µ̂j)/2 + log(p̂j).

b) Linear Discriminant Analysis (LDA)
Use the result from a) and replace Σ̂j by Σ̂ to get

δ̂LDAj (x) = xᵀΣ̂−1µ̂j − µ̂jᵀΣ̂−1µ̂j/2 + log(p̂j) (1)

= (x− µ̂j/2)ᵀΣ̂−1µ̂j + log(p̂j).

c) The LDA decision function can be written as (see (1) above)

δ̂j(x) = xᵀbj + cj ,

where bj ∈ Rp and cj ∈ R. Assume that we only have two classes (j = 0, 1). Use the equation
above to characterize the decision boundary.

d) Small Simulation
Use the R-code below to generate data samples from three groups of normal distributions; change
the covariance matrix and mean vectors if you like:

library(MASS) ## Needed for lda/qda and mvrnorm

## Read in a function that plots LDA/QDA decision boundaries

source("http://stat.ethz.ch/education/semesters/ss2012/CompStat/predplot.R")

## Covariance Matrix

sigma <- cbind(c(0.5, 0.3), c(0.3, 0.5))

## Mean vectors

mu1 <- c(3, 1.5)

mu2 <- c(4, 4)

mu3 <- c(8.5, 2)

m <- matrix(0, nrow = 300, ncol = 3)

## Grouping vector

m[,3] <- rep(1:3, each = 100)

## Simulate data

m[1:100,1:2] <- mvrnorm(n = 100, mu = mu1, Sigma = sigma)

m[101:200,1:2] <- mvrnorm(n = 100, mu = mu2, Sigma = sigma)

m[201:300,1:2] <- mvrnorm(n = 100, mu = mu3, Sigma = sigma)

m <- data.frame(m)

Perform LDA and plot the results:

fit <- lda(x = m[,1:2], grouping = m[,3])

predplot(fit, m)

Manually calculate (see c)) the boundary between group 1 and 2. Add your solution to the plot
with abline()

Hint:
If A <- fit$scaling, it holds (in the case of p+ 1 groups in Rp) that Σ̂−1 = AAᵀ. The means
and prior probabilites can also be found in the lda-object. However, you may also want to
do everything on your own, i.e., without using the result of lda; in this case, you can use the
estimators for µ̂j and Σ̂ given in Chapter 6.3.1 of the lecture notes, just above Formula (6.5).

Preliminary discussion: Friday, April 20.

Deadline: Friday, April 27.


