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1. The leave-one-out CV-score for the cubic smoothing spline and the least squares parametric estimator
can be written in such a way that it depends only on the estimator m̂(·) which is computed from
the full dataset. To obtain the CV-score, it is therefore not necessary to calculate the leave-one-out

estimators m̂
(−i)
n−1(·). From the manuscript (Formula 4.5) we learn:
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where S is the hat-matrix of the linear estimator m̂(·). In this exercise we are going to prove this
formula step by step in the case of multiple-linear-regression yi = xT

i β + εi.

a) Show that for an invertible p × p-matrix A and two p-vectors a and b with bTA−1a 6= 1 the
matrix A− abT is invertible too and that its inverse can be computed as follows:

(A− abT)−1 = A−1 +
1

1− bTA−1a
·A−1abTA−1.

b) Show the following formula which describes the influence of omitting the ith observation for the
multiple-linear-regression estimator:

β̂(−i) − β̂ = −yi − xT
i β̂

1− Sii
(XTX)−1xi.

Hints: Let A := XTX =
∑n

i=1 xix
T
i , c := XT y =

∑n
i=1 yixi.

Now you might start as follows: β̂(−i) = (A− xix
T
i )−1(c− yixi), then use a).

c) From b) you can finally conclude the desired result:

yi − xT
i β̂

(−i) =
1

1− Sii
(yi − xT

i β̂).

2. Consider the diabetes-dataset from the lecture notes (Section 3.2) and the model

Yi = m(Xi) + εi,

where the response Y is a log-concentration of a serum (in connection with diabetes) and the predictor
variable X is the age in months of children.

We want to know if a complicated nonparametric regression gives us valuable information and which
one is the best. The generalization error of the following fits should be compared:

1. the kernel regression fit from ksmooth,

2. the local polynomial fit from loess,

3. a smoothing spline fit from smooth.spline with a fixed degree of freedom,

4. a smoothing spline fit from smooth.spline with the smoothing parameter selected automatically
by cross-validation,

5. a constant “fit” by the overall mean of Yi, simply ignoring the Xi-values.

a) Read in the dataset as follows:

> diabetes <-

read.table("http://stat.ethz.ch/Teaching/Datasets/diabetes2.dat",

header = TRUE)

> reg <- diabetes[, c("Age", "C.Peptide")]

> names(reg) <- c("x", "y")
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Sort the observations along x, for easier dealing with the hat matrix:

> reg <- reg[sort.list(reg$x), ]

Plot the data; choose a reasonable bandwidth h for a Nadaraya-Watson kernel estimator by eye.
Perform a non-parametric regression on the dataset using the kernel estimator of ksmooth with
the bandwidth h of your choice.

Calculate the leave-one-out CV-score of your fit; the CV-score is an estimator for the gener-
alization error. Because you will have to do that for the other regression methods too, it is
recommended to write a utility function for calculating the CV-score. An R-skeleton for such a
function is available on the course homepage, but you can of course also implement everything
on your own from scratch.

Finally, calculate the degrees of freedom df.nw that corresponds to your fit. For that aim,
calculate the hat matrix and its trace, cf. Formula (3.6) of the lecture notes and the above-
mentioned code skeleton. We will use the same degrees of freedom as smoothing parameter for
the other regression methods.

b) Perform a non-parametric regression on the dataset diabetes using the local polynomial fit from
loess. Use the degrees of freedom df.nw from task a) as a smoothing parameter:
loess(..., enp.target = df.nw, surface = "direct")

The last argument, surface = "direct", ensures that you can also predict values outside the
range of x-values you used for estimation.

Calculate the CV-value for this estimator, too.

c) Perform a non-parametric regression on the dataset diabetes using a smoothing splines fit from
smooth.spline; use the degrees of freedom df.nw from task a).

smooth.spline can calculate the CV-value internally; start by looking at that value:

> est.ss <- smooth.spline(..., cv = TRUE, df = df.nw)

> est.ss$cv.crit

Compare this internally calculated value with a value calculated “on your own”, i.e. similarly
to the CV-values in tasks a) and b). When doing your own calculations, do not provide the
smoothing parameter via the argument df, but use the parameter spar from the automatic
calculation above:
smooth.spline(..., spar = est.ss$spar)

You may also take advantage of Formula (4.5) in the lecture notes to calculate the CV-value; cf.
Exercise 1 of this series.

d) Perform a non-parametric regression on the dataset diabetes using a smoothing splines fit from
smooth.spline, this time using automatically selected degrees of freedom. Report the CV-value
that is calculated internally:

> smooth.spline(..., ..., cv = TRUE)$cv.crit

e) Perform a constant fit of the data, i.e. neglect the x-values and calculate the mean of the y-values.

Calculate the corresponding CV-value also for that estimator.

f) The CV-scores calculated in tasks a) to e) are estimators of the generalization error. According
to the values you calculated, which of the five estimators has the lowest generalization error?

The comparison of the CV-value of method no. 4 (smoothing splines with automatically selected
degrees of freedom) with the others is not fair. Can you explain the problem?

Preliminary discussion: Friday, March 30.

Deadline: Friday, April 20.


