
M. Mächler Computational Statistics SS 2012

Series 3

1. In this exercise we generate artificial data according to the model Yi = m(xi) + εi. i = 1, . . . , 101.

m(x) = x+ 4 cos(7x)

ε1, . . . , ε101 are i.i.d. N (0, 1). In a) and b) we consider the situation with equidistant xi. In c) we are
using non-equidistant xi.

a) Carry out a simulation where you simulate data according to the model above a 1000 times. Use
101 equidistant xi between −1 and 1.

> x <- seq(-1, 1, length = 101)

For each dataset compute the Nadaraya-Watson, the Local Polynomial and the Smoothing Splines
regression estimators at every xi, i = 1, . . . , 101. Save the results of each estimator in a matrix
with rows being x-positions and columns simulation runs. For the Nadaraya-Watson estima-
tor, use a bandwidth of 0.2. To get (approximately) the same degrees of freedom use span =

0.2971339 for loess and spar = 0.623396 for smooth.spline. R-Hints:

> set.seed(79)

> ## nw = Nadaraya-Watson, lp = Local Polynomial, ss = Smoothing Splines

> estnw <- estlp <- estss <- matrix(0, nrow = 101, ncol = nrep)

> for(i in 1:nrep){

Simulate y-values

y <- m(x) + rnorm(length(x))

Get estimates for the mean function

estnw[,i] <- ksmooth(x, y, kernel = "normal", bandwidth = 0.2, x.points = x)$y

estlp[,i] <- predict(loess(....), newdata = x)

estss[,i] <- predict(smooth.spline(....), x = x)$y

}

At each position xi compute the empirical bias (mean over all simulations minus true value), the
variance, and the mean square error (MSE). Plot these quantities against xi for each estimator.
If you save each of these quantities in a 101× 3 matrix you can do the plots with matplot. Use
apply to get the means and the variances. What is the connection between the bias and the
curvature m′′(x)? How does the bias behave at the boundary?

b) Calculate the corresponding estimated standard error for each simulation run, x-value and es-
timator. To manually calculate the estimated standard errors we need the corresponding hat
matrices (see lecture notes). We can easily get them by using linear algebra. If S is the hat ma-
trix, the jth column is given by Sej , where ej is the jth standard basis vector. The hat matrices
only depend on the design points xi and they do not have to be calculated for each simulation
run. For the Nadaraya-Watson kernel estimator, for instance, you can calculate the hat matrix
as follows.

> Snw <- matrix(0, nrow = 101, ncol = 101)

> In <- diag(101) ## identity matrix

> for(j in 1:101){

y <- In[,j]

Snw[,j] <- ksmooth(x, y, kernel = "normal", bandwidth = 0.2, x.points = x)$y

}

To calculate estimated standard errors, you can then use your script file from a) adding the
following commands to the for-loop:

> sigma2nw <- sum((....)^2) / (length(y) - sum(diag(Snw)))

> senw[,i] <- sqrt(sigma2nw * diag(....))

2

Note that sum(diag(Mat)) calculates the trace of a matrix Mat. Matrix multiplication is done
using % ∗% in R. You may also want to consider crossprod() or tcrossprod().

How many times does the pointwise confidence interval at x = 0.5 contain the true value m(0.5),
i.e., what is the so-called “coverage rate”? How often does the confidence band for all points
simultaneously contain all true values?

c) Repeat a) and b) but with non-equidistant x-points. Use the R-commands

> set.seed(79)

> x <- sort(c(0.5, -1 + rbeta(50, 2, 2), rbeta(50, 2, 2)))

to generate the points. You can use rug(x) to visualize the distribution in the plots in a) and b).

Again, for the Nadaraya-Watson estimator, use a bandwidth of 0.2. To get the same degrees of
freedom you should now use span = 0.37614 in loess and spar = 0.79424 in smooth.spline.

Preliminary discussion: Friday, March 16.

Deadline: Friday, March 23.

