Series 3

1. In this exercise we generate artificial data according to the model $Y_{i}=m\left(x_{i}\right)+\epsilon_{i} . i=1, \ldots, 101$.

$$
m(x)=x+4 \cos (7 x)
$$

$\epsilon_{1}, \ldots, \epsilon_{101}$ are i.i.d. $\mathcal{N}(0,1)$. In a) and b) we consider the situation with equidistant x_{i}. In c) we are using non-equidistant x_{i}.
a) Carry out a simulation where you simulate data according to the model above a 1000 times. Use 101 equidistant x_{i} between -1 and 1 .

```
> x <- seq(-1, 1, length = 101)
```

For each dataset compute the Nadaraya-Watson, the Local Polynomial and the Smoothing Splines regression estimators at every $x_{i}, i=1, \ldots, 101$. Save the results of each estimator in a matrix with rows being x-positions and columns simulation runs. For the Nadaraya-Watson estimator, use a bandwidth of 0.2 . To get (approximately) the same degrees of freedom use span $=$ 0.2971339 for loess and spar $=0.623396$ for smooth.spline. R-Hints:

```
> set.seed(79)
```

```
> ## nw = Nadaraya-Watson, lp = Local Polynomial, ss = Smoothing Splines
> estnw <- estlp <- estss <- matrix(0, nrow = 101, ncol = nrep)
> for(i in 1:nrep){
        ## Simulate y-values
        y <- m(x) + rnorm(length(x))
        ## Get estimates for the mean function
        estnw[,i] <- ksmooth(x, y, kernel = "normal", bandwidth = 0.2, x.points = x)$y
        estlp[,i] <- predict(loess(....), newdata = x)
        estss[,i] <- predict(smooth.spline(....), x = x)$y
    }
```

At each position x_{i} compute the empirical bias (mean over all simulations minus true value), the variance, and the mean square error (MSE). Plot these quantities against x_{i} for each estimator. If you save each of these quantities in a 101×3 matrix you can do the plots with matplot. Use apply to get the means and the variances. What is the connection between the bias and the curvature $m^{\prime \prime}(x)$? How does the bias behave at the boundary?
b) Calculate the corresponding estimated standard error for each simulation run, x-value and estimator. To manually calculate the estimated standard errors we need the corresponding hat matrices (see lecture notes). We can easily get them by using linear algebra. If S is the hat matrix, the $j^{\text {th }}$ column is given by $S e_{j}$, where e_{j} is the $j^{t h}$ standard basis vector. The hat matrices only depend on the design points x_{i} and they do not have to be calculated for each simulation run. For the Nadaraya-Watson kernel estimator, for instance, you can calculate the hat matrix as follows.

```
> Snw <- matrix(0, nrow = 101, ncol = 101)
> In <- diag(101) ## identity matrix
> for(j in 1:101){
    y <- In[,j]
    Snw[,j] <- ksmooth(x, y, kernel = "normal", bandwidth = 0.2, x.points = x)$y
}
```

To calculate estimated standard errors, you can then use your script file from a) adding the following commands to the for-loop:

```
> sigma2nw <- sum((....) ^2) / (length(y) - sum(diag(Snw)))
> senw[,i] <- sqrt(sigma2nw * diag(....))
```

Note that $\operatorname{sum}(\operatorname{diag}($ Mat $))$ calculates the trace of a matrix Mat. Matrix multiplication is done using $\% * \%$ in R. You may also want to consider crossprod() or tcrossprod().
How many times does the pointwise confidence interval at $x=0.5$ contain the true value $m(0.5)$, i.e., what is the so-called "coverage rate"? How often does the confidence band for all points simultaneously contain all true values?
c) Repeat a) and b) but with non-equidistant x-points. Use the R-commands
$>$ set.seed(79)
$>x<-\operatorname{sort}(c(0.5,-1+\operatorname{rbeta}(50,2,2), \operatorname{rbeta}(50,2,2)))$
to generate the points. You can use rug(x) to visualize the distribution in the plots in a) and b). Again, for the Nadaraya-Watson estimator, use a bandwidth of 0.2 . To get the same degrees of freedom you should now use span $=0.37614$ in loess and spar $=0.79424$ in smooth. spline.
Preliminary discussion: Friday, March 16.
Deadline: Friday, March 23.

