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1. In this series we are going to explore the dataset vehicle.dat which can be found at
"http://stat.ethz.ch/Teaching/Datasets/NDK/vehicle.dat". The dataset contains 846 obser-
vations of 19 variables. The aim is to classify the response (which is named Class) into four different
car types (bus,van,saab,opel) by means of 18 predictors such as compactness, some information
about the car axes and certain length ratios of the cars’ silhouettes. For this, we are going to use
CART’s with cost-complexity-optimized size. The optimal tree size can be found automatically using
the methods from the package rpart.

a) First of all, generate a classification tree using the methods from rpart. Set the options cp

= 0 and minsplit = 30 such that the resulting tree becomes too large and overfits the data.
Comment on the tree.
R-Hints:

library(rpart)

tree <- rpart(Class ~ ., data = ?,

control = rpart.control(cp = 0.0, minsplit = 30))

To visualize the tree use:

plot(tree, uniform = TRUE)

text(tree, use.n=TRUE, all=TRUE, cex=0.8, fancy=FALSE, pretty=3)

b) Now it comes to pruning the tree from part a). We let rpart perform a cost-complexity-analysis
to find an optimal cp-value by cross-validating a sequence of subtrees of the tree in a). Generate
a cost-complexity table and explain it. Determine the optimal cp according to the one standard-
error rule. Is this the same model as the one with the minimal cross-validation error? Visualize
the pruned tree with the optimal cp, compare it to the full tree, and calculate its misclassification
rate.
R-Hints:

• To access the cost-complexity table use printcp(tree), to plot classification error (rela-
tive to root tree) vs. the subtree size (dotted line represents one standard error limit) use
plotcp(tree).

• To prune the tree use tree.pruned <- prune.rpart(tree, cp = ?).

• For the misclassification rate look at ?residuals.rpart.

c) To investigate the predictive power, compute the bootstrap generalization error and the leave-
one-out cross-validated performance (based on 0-1 loss) for the cp-optimal tree from above. Use
B = 1000 bootstrap-samples, and set.seed(100) for reproducibility. Comment on the different
values you get.
R-Hint: to predict classes from an rpart object tree use

predict(tree, newdata = ?, type = "class")

d) (optional) Finally, calculate the out-of-bootstrap sample generalization error (cf. Chapter 5.2.5
of the lecture notes). Compare the value you get to the (standard) bootstrap generalization error
and the cross-validation error from c).

2. a) Let’s consider the general linear regression model:

yi = β0 +

p∑
j=1

βj · xij .

Show that this model is equivalent to the following one:

yi − ȳ =

p∑
j=1

βj · (xij − x̄.j).

Therefore by centering the variables it is always possible to get rid of the intercept β0.
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b) Show that the ridge-regression solution defined as

β̃
∗
(s) = arg min

‖β‖2≤s
‖Y −Xβ‖2

is given by
β̂∗(λ) = (XᵀX + λI)−1XᵀY.

where λ is a suitably chosen Lagrange-multiplicator. Therefore the ridge estimator is still linearly
depending on the response Y. Note that (at least) for large λ the ridge solution exists even if
XᵀX has not full rank or if it is computationally close to singular. Therefore ridge regression is
practicable also if n� p.

c) The ridge traces β̂∗(λ) can computationally easily be determined by using a singular value de-
composition of the data matrix X = UDV ᵀ where U(n× p) and V (p× p) are orthogonal and D
is diagonal. Show that:

β̂∗(λ) = V (D2 + λI)−1DUᵀY.

d) Show that the ridge regression fit is just a linear combination of shrinked response-components
yi with respect to the orthogonal basis defined by U . More explicitly show that:

ŷridge(λ) =

p∑
j=1

uj

d2j
d2j + λ

uj
ᵀy,

where dj are the diagonal elements of D. In fact one can show that the directions defined by
uj are the so called principal components of the dataset X. The smaller the corresponding dj-
value, the smaller the data variance in direction uj . For directions with small data variance, the
gradient estimation for the minimization problem is difficult, therefore ridge regression shrinks
the corresponding coefficients the most.

e) Ridge regression can also be motivated by Bayesian theory. We assume that

Y|β ∼ N (Xβ, σ2I) and β ∼ N (0, τI).

Show that the ridge estimator β̂∗(λ) is the mean of the posterior distribution. What is the
relationship between λ, τ and σ2?
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