Prof. W. Stahel Applied Multivariate Statistics Spring 2011

Solution Sheet 4

The full R code will be made available in a separate file on the course home-
page.

1. a) See full R code. Using the function set.seed(N), sets the random number gen-
erator to state N € N; this makes the sequence of random numbers reproducible,
i.e., the exact same sequence of numbers is generated if set.seed(N) is called
initially. Here, we used N = 42.

b) The correlation matrix of the simulated data can be computed by calling cor (data).
In our case, the correlation estimate given by the data is 0.765, which deviates
from the theoretical value of 0.7. This is to be expected since our sample is finite
(n = 100) and thus the correlation estimate (which is a random variable itself) is
subject to random fluctuations.

c) We can compute 1000 estimates of correlation (each based on n = 100 observa-
tions) using the R code given on the exercise sheet. Figure 1 shows a histogram
of the resulting estimates. The sample standard deviation of the correlation esti-
mates is 0.049.

d) The larger the number of observations we use, the higher the precision of our
correlation estimate becomes. Figure 2 shows the relation between the two.

e) From the theory we know that the standard deviation of the estimator is approx-
imately proportional to \/Lﬁ To show that a quantity is proportional to a power

(such as z*) of some other quantity, it is advisable to draw a so-called log-log plot.
In such a plot, the logarithms (with respect to any basis) are taken of both x and
y values before plotting. The degree to which the power is taken (k if the power
is 2%) then appears as the slope in this plot. The following calculation makes this
easy to see:

= Ca¥
log(y) = log(Cz")
log(y) = log(C)+ k- log(x)

Figure 3 shows the logarithm of the standard deviation for the correlation esti-
mate plotted against the logarithm of the number of observations. Here a linear
relationship is evident. Estimating the slope (using the function 1m here), we
find it to be -0.54. Then, the standard deviation of the correlation estimate is

approximately proportional to n=1/2 = \/Lﬁ



Applied Multivariate Statistics (Spring 2011) — Solution Sheet 4 — 2

Histogram of correlation estimates
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Figure 1: The histogram shows the distribution of 1000 estimates of correlation, each
based on n = 100 observations. The true correlation is 0.7; this is marked by a solid

vertical line.
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Figure 2: The larger the number of observations used in estimating the correlation, the
higher the precision of this estimate. That is, the (estimated) standard deviation of the
correlation estimate decreases as n increases.
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Figure 3: The log-log plot clearly shows a linear relationship with slope about —0.5. That
is to say, the standard deviation of the estimator is approximately proportional to \/Lﬁ
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2. a) See full R code.
b) See full R code.
c) See Figure 4. The marginal distributions look normal, but the bulb-shaped scatter
plot provides strong evidence against bivariate normality.

d) See Figure 5. The Q-Q plot does not show mentionable evidence against normal-
ity, but this does not necessarily mean that there is evidence in favor of normality
as the scatter plot in c) illustrates.

Remark: The data clayton.dat have been simulated from standard normal margins
coupled by a so called Clayton copula. Hence, the margins are indeed univariate
normal, but the distribution is not bivariate normal.
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Figure 4: Bivariate scatter plot and histograms of the margins.
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3.

a)

b)

Sample quantiles

X—quantiles

Figure 5: Q-Q plot of the Mahalanobis distances.

The test statistic is given by T? = n - d*(z,0;S). Under Hy : p =0, the statistic
mTE;Z)TZ has an F-distribution with m and n — m degrees of freedom. Here,
m = 2 and n = 250.

See full R code. The value is 0.7017.

The p-value is the probability of obtaining a test statistic at least as extreme as
the one that was actually observed, assuming that the null hypothesis is true,
i.e., in R, it is obtained via 1 - pf(q=(n-m)/m/(n-1)*T2,df1=m,df2=n-m). The
p-value is 0.7054, which is larger than 0.05, hence we cannot reject Hy on the 5%
level.




