Series 6

1. Consider the following linear regression model

$$Y_i = \beta_1 + \beta_2 x_{i2} + \beta_3 x_{i3} + \epsilon_i, \ i = 1, \dots, 100, \ \beta_1 = 1, \beta_2 = -2, \beta_3 = 3, \tag{1}$$

where the pairs x_{i2}, x_{i3} lie on a $\{1, ..., 10\} \times \{1, ..., 10\}$ -grid, i.e.,

```
x2 <- rep(1:10, 10)
x3 <- rep(1:10, each = 10)
```

In this exercise, we will simulate datasets from this model using different error distributions and perform linear regression. Confidence intervals for the regression parameters will then be estimated using classical "normal theory" and bootstrapping.

- a) Implement your own bootstrap routine as an R function that takes a data frame with columns x2, x3 and y as input and that returns three confidence intervals, one for each regression parameter β_j, j = 1, 2, 3.
- b) Simulate 100 datasets¹ from model (1) computing each time classical "normal theory" 0.95-confidence intervals and bootstrap² 0.95-confidence intervals for the three regression parameters. For the simulations, use three different types of error distributions (resulting in 300 simulated datasets, all in all):

1.
$$\epsilon_i \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0,1),$$

:: ...

2. $\epsilon_i \stackrel{\text{i.i.d.}}{\sim} t_3$ (R function rt),

3. $\epsilon_i = e_i - 1$, where $e_i \stackrel{\text{i.i.d.}}{\sim} \text{Exp}(1)$ (R function rexp).

How often do the confidence intervals include the true values (estimated coverage rate)?

R-hints: To make your results reproducible, use **set.seed(11)** at the beginning of your simulation experiment.

Classical confidence intervals for output objects of lm can be computed using confint.

To sample the bootstrap-indices for your own bootstrap-routine, use the functions sample and/or replicate (Look at the help-files!).

Use B = 1000 bootstrap samples. Beware that bootstrapping is computationally quite expensive. In order to avoid long waiting times, first develop and test your code with few simulations and bootstrap samples (say, 10 each), and augment these numbers only when your code works.

c) Repeat the bootstrap calculation of the confidence intervals by using the function boot.ci from package boot.

R-hints: The function boot from package boot allows automatic bootstrapping of statistics on given data. To apply this function, you have to write your own R-function which returns the regression coefficients and has arguments dat and ind. dat is a data frame containing the variables y, x2 and x3, and ind is a vector of indices (see help page, parameter statistic). Such a function may look like this:

lmcoefs <- function(dat, ind) coef(lm(y~x2+x3, data=dat[ind,]))
Then use the boot function:</pre>

bst.sample <- boot(data=dat, statistic=lmcoefs, R=B)</pre>

Bootstrap confidence intervals are then computed by boot.ci, which may look as follows:

¹It depends on the computer time you can spend whether you try 50, 100, 200 or 1000 simulations. It may need lots of time, because each time a complete bootstrap simulation has to be carried out. You can always downsize your simulations by simulating fewer datasets and/or varying the number of bootstrap replicates.

²The bootstrap replicates should be generated by sampling from the set $\{(x_1, Y_1), \ldots, (x_{100}, Y_{100})\}$, and **not** by resampling the residuals as in the model-based bootstrap.

bst.ci <- boot.ci(bst.sample, conf=1-alpha, type="basic", index=k)
bst.sample is the output of boot, index should be 1 for the intercept parameter, 2 and 3 for the
regression parameters (if computed as in lmcoefs above). The interval bounds come as values
bst.ci\$basic[4] and bst.ci\$basic[5].</pre>

d) In this part of the exercise we want to compare the usual L_1 -loss $\frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{m}(x_i)|$ with the L_1 generalization error $\mathbf{E}[|Y_{\text{new}} - \hat{m}(X_{\text{new}})|]$. This time the L_1 -generalization-error is estimated by
bootstrapping instead of cross-validation as described in the manuscript. Do 100 simulations for
each of the given error distributions. In each simulation calculate the two quantities of interest
and compare their averages over the whole range of simulations. A histogram of the two quantities
may be informative too. You might want to recycle the bootstrap-samples you generated above.

Preliminary discussion: Friday, April 08.

Deadline: Friday, April 15.