Dr. M. Méchler Computational Statistics SS 2011

Series 3

1. In this exercise we generate artificial data according to the model Y; = m(z;) +¢;. i =1,...,101.
m(z) = x + 4 cos(7x)

€1,...,€101 are i.i.d. A(0,1). In a) and b) we consider the situation with equidistant z;. In c¢) we are
using non-equidistant x;.

a) Carry out a simulation where you simulate data according to the model above a 1000 times. Use
101 equidistant x; between —1 and 1.
x <- seq(-1, 1, length = 101)
For each dataset compute the Nadaraya-Watson, the Local Polynomial and the Smoothing Splines
regression estimators at every x;,7 = 1,...,101. Save the results of each estimator in a matrix
with rows being x-positions and columns simulation runs. To get (approximately) the same
degrees of freedom use span = 0.2971339 for loess and spar = 0.623396 for smooth.spline.
R-Hints:
set.seed(79)
nw = Nadaraya-Watson, lp = Local Polynomial, ss = Smoothing Splines
estnw <- estlp <- estss <- matrix(0, nrow = 101, ncol = nrep)
for(i in 1:nrep){
Simulate y-values
y <- m(x) + rnorm(length(x))
Get estimates for the mean function
estnw([,i] <- ksmooth(x, y, kernel = "normal", bandwidth = 0.2, x.points = x)8$y
estlp[,i] <- predict(loess(...), newdata = x)
estss[,i] <- predict(smooth.spline(...), x = x)$y
}

At each position x; compute the empirical bias (mean over all simulations minus true value) and
variance. Plot these quantities against x; for each estimator. If you save each of these quantities
in a 101 x 3 matrix you can do the plots with matplot. Use apply to get the means and the
variances.

b) Calculate the corresponding estimated standard error for each simulation run, z-value and es-
timator. To manually calculate the estimated standard errors we need the corresponding hat
matrices (see lecture notes). We can easily get them by using linear algebra. If S is the hat ma-
trix, the j** column is given by Sej, where e; is the jt" standard basis vector. The hat matrices
only depend on the design points x; and they do not have to be calculated for each simulation
run. For the Nadaraya-Watson kernel estimator, for instance, you can calculate the hat matrix
as follows.

Snw <- matrix(0, nrow = 101, ncol = 101)
In <- diag(101) ## identity matrix
for(j in 1:101){
y <= In[,j]
Snw[,j] <- ksmooth(x, y, kernel = "normal", bandwidth = 0.2, x.points = x)$y
}
To calculate estimated standard errors, you can then use your script file from a) adding the
following commands to the for-loop:
sigmaZnw <- sum((...)"2) / (length(y) - sum(diag(Snw)))
senw[,i] <- sqrt(sigma2nw * diag(...))

2
Note that sum(diag(Mat)) calculates the trace of a matrix Mat. Matrix multiplication is done
using % * % in R. You may also want to consider crossprod() or tcrossprod().
How many times does the pointwise confidence interval at = 0.5 contain the true value m(0.5),
i.e., what is the so-called “coverage rate”” How often does the confidence band for all points
simultaneously contain all true values?
c) Repeat a) and b) but with non-equidistant z-points. Use the R-commands

set.seed(79)

x <- sort(c(0.5, -1 + rbeta(50, 2, 2), rbeta(50, 2, 2)))
to generate the points. You can use rug(x) to visualize the distribution in the plots in a) and b).

To use the same degrees of freedom you should now use span = 0.37614 in loess and spar =
0.79424 in smooth.spline.

Preliminary discussion: Friday, March 18.
Deadline: Friday, March 25.

