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ergoStool

i = 1, . . . ,9 subjects
j = 1, . . . ,4 different stools
Response yij : Effort required to arise from each stool
total n = 36 observations
’data.frame’: 36 obs. of 3 variables:
$ effort : num 12 15 12 10 10 14 13 12 7 14 ...
$ Type : Factor w/ 4 levels "T1","T2","T3",..: 1 2 3 4 1 2 3 4 1 2 ...
$ Subject: Factor w/ 26 levels "A","B","C","D",..: 1 1 1 1 2 2 2 2 3 3 ...

−→ R



Model Formulation 1

yij = µ+ βj + bi + εij i = 1, . . . ,9 j = 1, . . . ,3 (1)

with
bi ∼ N1(0, σ2

b) εij ∼ N1(0, σ2) εij⊥bi ∀i , j



Model Formulation 2

y i = X iβ + Z ibi + εi i = 1, . . . ,9 (2)

with
bi ∼ N1(0, σ2

b) εi ∼ N4(0, σ2I) εi⊥bi ∀i , j

where
y i ∈ R4, X i ∈ R4×4, Z i ∈ R4×1, εi ∈ R4.

y i =


yi1
yi2
yi3
yi4

 ,X i =


1 0 0 0
1 1 0 0
1 0 1 0
1 0 0 1

 ,Z i =


1
1
1
1

 , εi =


εi1
εi2
εi3
εi4


X i and Z i are the same for all subjects (in this example only).



Model Formulation 3

y = Xβ + Zb + ε (3)

with

b ∼ Nq(0, σ2
bIq×q = Σθ) ε ∼ Nn(0, σ2In×n) ε⊥b

and
y ∈ Rn,X ∈ Rn×p,Z ∈ Rn×q,Σθ = σ2ΛθΛT

θ

Remark:
This is the most general formulation.
Some models can not be written in Form (1) or (2)!

−→ R



ScotsSec I

response: attainment scores of 3435 students in seconday
school
covariates:
- primary: factor for each primary school with 148 levels
- secondary: factor for secondary school with 19 levels
- sex: sex of student
- verbal: verbal reasoning score on entry
- social: The student’s social class from low to high social class.

−→ R



ScotsSec I

With n = 3435, p = 4, q = 167 we can write the model as:

y = Xβ + Zb + ε (4)

with
b ∼ Nq(0,Σθ) ε ∼ Nn(0, σ2In×n) ε⊥b

and
y ∈ Rn,X ∈ Rn×p,Z ∈ Rn×q,Σθ ∈ Rq×q



Data structure in lme4

Take home message:

Plot your data set in an appropriate way!

Let’s look in R!



Confidence Intervals I

Goal:
Evaluate confidence intervals for the parameters.

Naive Approach:
Approximate the distribution of the parameters by a normal
distribution and derive confidence intervals using an
approximate standard error.



Confidence Intervals II

However:
Confidence Intervals for variance components can be heavily
skewed!
→ In general, the naive approach is not appropriate!

Since the distribution can not be well approximated by a normal
distribution, it is not meaningful neither to determine confidence
intervals nor to calculate p-values based on this assumption!

Idea:
Find a way to examine if the normal approximation is
appropriate.



Profile Zeta Plot I

Suggestion:
Make a plot that shows the sensitivity of the model fit to
changes in one particalur parameter.

−→ R



Profile Zeta Plot II

Calculation of the Profile Zeta Plot:
1 Calculate the globally optimal fit→M0

2 Fit the model with one parameter fixed at a specific value
→Mk

3 CompareM0 andMk by the LRT statistic tk
4 Apply a signed root transformation to tk → ζk

5 Draw a QQ Plot of ζ0, ζ1, . . .



Profile Zeta Plot III

Interpretation:
Ideally it is a straight line. Then perform inference based
on the parameter’s estimate, its standard error and
quantiles of the standard normal distribution
log(σ) is straight, so log(σ) has a good normal
approximation.
This does not hold neither for σ nor σ2!!
The CI for β0 are wider than those based on a normal
approximation.



Profile Pairs Plot I

Profile Zeta Plot:
shows the sensitity of the model to changes in parameters.

Profile Pairs Plot:
shows how the parameters influence each other.

−→ R



Profile Pairs Plot I

Calculation:
1 Fix one parameter, i.e. σ1. Calculate the conditional

estimates of the other parameters σ and β0. This gives the
profile traces (vertical and horizontal lines).

2 Contour lines correspond to the marginal confidence
intervals at different confidence levels.



What to learn from it

Interpretation:
Ideally there are ellipses. Look at distortions from an
elliptical shape.
straight line: the conditional estimate of β0 , given σ1, is
constant
curved line: the conditional estimate of σ1 given β0
depends on β0.
small values of σ1 inflate the estimate of log(σ) because
the variability of the random effects gets transfered to
variability in the error.
We see the distortions from elliptical shape in the lower
right part.



Key Tools in lme4

Reduce the optimization problem to one involving θ only
(profiling)
use sparse matrix storage formats and sparse matrix
computations
The sparse choleski decomposition can easily be
calculated

LθLT
θ = P(ΛT

θ Z T ZΛθ + Iq)PT .

where P is a permuation matrix



REML and ML: Recap

Last talk:
The ML and REML estimators in linear regression are

σ̂2
ML =

RSS
n

σ̂2
REML =

RSS
n − p

The REML estimates of the variance components are less
biased than the ML estimates in the linear mixed model
setting.

Is that all to say?



REML

Let M1 and M2 be two nested models we want to compare.

Then (as a rule of thumb):
Models with different fixed-effects structes using REML should
not be compared by a LRT. Use ML estimates in this case!

−→ R



Tests at the boundary of the parameter space

Let’s look at the Pastes Example:
−→ R

So the test problem can be easily formulated... Test of interest:

H0 : σ2 = 0 versus HA : σ2 > 0

and a LRT-test may be done in R...

...where we used anova(fm3a,fm3) using a χ2
1 distribution.



But...

However:
We have to be cautious because the test statistic is not χ2

1
distributed! The p-value is too conservative (i.e. too large)!

”Theoretical Result”:
The asymptotic null distribution for the LRT is a mixture of a χ2

k
and a χ2

k+1 distribution with equal weight 1/2, where k is the
number of correlated random effects.

In the Pastes Example:

1/2χ2
0 + 1/2χ2

1



Sleepstudy: Data Set

−→ R



Orthodont: Data set

−→ R



Introduction

This analysis is a mixture of tools and concepts from the
upcoming book of Douglas Bates and the book of West et. al.



Data set I

n = 1190 students sampled from 312 classroms in 107 schools.

sex Sex of student

minority 0=nonminority student, 1=minority student

mathkind math score in the kindergarten

mathgain change in student math scores from kindergarten to first
grade

ses Student socioeconomic status

yearstea first-grade teacher’s years of teaching experience

mathknow teacher’s mathematical knowledge

housepov percentage of households in the neighbourhood of the
school below the poverty level

mathprep teacher’s mathematics preparation

classid identifying the classrooom (312 levels)

schoolid identifying the school (107 levels)



Data set II

Some more information? - YES!!

mathgain is the response variable
schools and classrooms are randomly selected
Student is nested in classroom and classroom in school

Three-level data set:
students (Level 1)
students are nested within classrooms (Level 2)
classrooms are nested within schools (Level 3)



Three-Level Data

Allocate the covariates to the levels:
(Level 1) mathkind, sex, minority, ses
(Level 2) classid, yearstea, mathprep, mathknow
(Level 3) schoolid, housepov

−→ R



??

How to proceed?



Model Building Strategy

1 Start with a menas-only Level 1 including random effects
from Level 2 and Level 3

2 Add Level 1 covariates
3 Add Level 2 covariates



1. Model

Model Formulation:
For i = 1, . . . ,107, j = 1, . . . ,312

yijk = µ+ ui + vj(i) + εijk

−→ R



lme and lmer

lme4 uses the full matrix approach
lme4 can fit more general models than nlme
lme4 can fit large data sets very fast (i.e. 378’047 test
scores of 134’713 students in 3722 schools)
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